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MS/MS and associated database search algorithms are essential proteomic tools for identifying
peptides. Due to their widespread use, it is now time to perform a systematic analysis of the var-
ious algorithms currently in use. Using blood specimens used in the HUPO Plasma Proteome
Project, we have evaluated five search algorithms with respect to their sensitivity and specificity,
and have also accurately benchmarked them based on specified false-positive (FP) rates. Spec-
trum Mill and SEQUEST performed well in terms of sensitivity, but were inferior to MASCOT,
X!Tandem, and Sonar in terms of specificity. Overall, MASCOT, a probabilistic search algorithm,
correctly identified most peptides based on a specified FP rate. The rescoring algorithm, Pepti-
deProphet, enhanced the overall performance of the SEQUEST algorithm, as well as provided
predictable FP error rates. Ideally, score thresholds should be calculated for each peptide spec-
trum or minimally, derived from a reversed-sequence search as demonstrated in this study based
on a validated data set. The availability of open-source search algorithms, such as X!Tandem,
makes it feasible to further improve the validation process (manual or automatic) on the basis of
“consensus scoring”, i.e., the use of multiple (at least two) search algorithms to reduce the num-
ber of FPs.
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1 Introduction

A major goal of the HUPO Plasma Proteome Project (PPP) is
a comprehensive analysis of the protein constituents of hu-
man plasma and serum [1]. The pilot phase of this project
brought together submissions from 47 different laboratories,
of which 18 laboratories submitted peptide and protein iden-
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tification tables based on MS/MS acquired in either an ITor Q-
TOF-like mass spectrometers coupled to multidimensional
LC. In order to maximize the discovery of low abundance and
potentially interesting peptides and/or proteins, the HUPO-
PPP committee emphasized the need for laboratories to sub-
mit peptide and protein identification tables along with cor-
responding protocols, and assigned identifications as either
“high-” or “low-confidence”. Although this approach is
potentially flawed, since the error rate and number of false-
positive (FP) protein identification submissions are
unknown, it does at least allow the capture of all information;
it is then up to informaticians to expertly curate the informa-
tion such that a reliable analysis of the protein constituents of
human plasma and serum can be reported.

It is well recognized that more extensive analysis of LC-
MS/MS data is required if data from different experiments,
instruments, and laboratories are to be compared [2, 3].
Recent guidelines [4] and issues [5] for the dissemination and
publication of large proteomic data sets indicate a growing
awareness that a significant number of published protein
identifications are indeed incorrect. Hence, an appraisal of
MS software and a more informed understanding of the
scoring schemes employed by current industry standard MS/
MS database search algorithms are warranted [6]. Future lit-
erature mining (e.g., Anderson et al. [7]) and bioinformatic
prediction tools rely heavily on expertly curated data sets so it
is imperative that the level of reported FPs remains low, pre-
ferably below 1% level.

In MS/MS, gas-phase peptide ions (precursor ions)
undergo CID with molecules of an inert gas, such as helium
or argon. Under low-energy CID (,100 eV) conditions, typi-
cal for ITs, the precursor ion fragments along the peptide
backbone bonds give rise to mainly y-, b-ions, and their neu-
tral losses. Importantly, most of the intensity of the precursor
ion is distributed amongst its product ions and depending on
the peptides’ composition and charge state, might also give
rise to selective cleavages, such as enhanced cleavage N-ter-
minal to a proline amino acid residue and/or oxidized
methionine residues [8, 9], which might hinder its structural
elucidation by both de novo sequencing and/or database
search methods. If an MS/MS spectrum is acquired for a
peptide, then its amino acid sequence can be determined by
matching the MS/MS spectrum to a known in silico gener-
ated database of peptide spectra using search algorithms
such as SEQUEST [10] and MASCOT [11] in an uninterpreted
manner. The rate-limiting step in defining a proteome by
these methods is not the capacity to correlate tryptic peptides
in this manner, but rather the capacity to accurately interpret
such data [12]. Ultimately, investigators aim to determine the
protein or gene from which a peptide is derived. This prob-
lem is complicated by the fact that a peptide sequence
usually does not uniquely define a protein [13]. To this end
statistical approaches and models, which attempt to make
tandem MS data analysis a consistent and transparent pro-
cess across research groups, mass spectrometers, and even
different MS/MS database search tools, have been developed

[14, 15]. These models would undoubtedly benefit from a
more informed understanding of the strengths, weaknesses,
and limitations of current search algorithms.

Current MS/MS search algorithms scoring functions can
essentially be classified into two categories. One category of
search algorithms, referred to as heuristic algorithms, corre-
late the acquired experimental MS/MS spectrum with a the-
oretical spectrum and calculate a score based on the similar-
ity between the two. These search algorithms are often based
on the notion of “shared peak count” (SPC), which simply
counts the number of peaks common to the two spectra.
Examples of heuristic algorithms include SEQUEST, Spec-
trum Mill, X!Tandem, and Sonar. Probabilistic algorithms
(e.g., MASCOT), on the other hand, model to some extent the
peptide fragmentation process (e.g., ladders of sequence
ions) and calculate the probability that a particular peptide
sequence produced the observed spectrum by chance. A
recent review by Sadygov et al. [16] provides a useful update
and supplement regarding the different models of MS/MS
database search algorithms.

1.1 Heuristic algorithms

SEQUEST [10] uses a preliminary scoring (Sp) algorithm,
based on a variation of the SPC, to select the 500 best candi-
date peptide sequences for direct cross-correlation. To speed
up computations, fast FTs are used to compute the cross-
correlation (Xcorr), but this does not have any influence on the
score itself. For each candidate peptide sequence several
scores and rankings are determined.

Spectrum Mill allows MS/MS spectra to be filtered prior
to searching, which significantly reduces the number of
spectra that need to be analyzed. Its scoring concept is simi-
lar to that of the SPC in that 25 of the most abundant frag-
ment ions (above noise level) are matched. Bonus points are
awarded depending on the ion type (b or y) as well as penalty
points for unmatched peaks, which is inversely proportional
to the relative peak intensity of the unmatched fragment ion.
A“scored peak intensity” (SPI) is also calculated, which is the
proportion of the TIC that has been assigned (values less
than 70% represent a poor interpretation). Again, empiri-
cally determined thresholds are used to indicate the correct-
ness of a match, which are applied in an automated fashion.

Sonar [17] (http://bioinformatics.genomicsolutions.com/
service/prowl/sonar.html) ranks the proteolytic peptides from
proteins in a sequence collection by calculating a score based
on the dot product between the theoretical and experimental
tandem mass spectra (similar to clustering approaches [18,
19]). The score is subsequently converted into an expectation
value [2]. The expectation value is obtained by collecting sta-
tistics during the search to estimate the distribution of scores
for random and false identifications. This distribution is
hypergeometric, and the expectation value of high scoring
peptides can therefore be obtained by extrapolation. The
expectation value represents the number of peptides that are
expected to get a certain score by random matching.
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X!Tandem [20, 21] (http://www.proteome.ca/x-bang/tan-
dem/tandem.html) is an open-source search engine that has
been optimized for speed. It generates theoretical spectra for
the peptide sequences using knowledge of the intensity pat-
terns associated with particular amino acid residues. These
spectra are then correlated with the experimental data using
a dot product (similar to Sonar). Subsequently, an expecta-
tion value is calculated.

1.2 Probabilistic algorithms

Details of the probabilistic MASCOT scoring algorithm have
not been published. However, the Matrix Science website
(http://www.matrixscience.com) indicates that the MASCOT
algorithm incorporates a probability-based implementation
of the MOWSE scoring algorithm used for PMF [22] as well
as, amongst other things, fragment ion series, mass accu-
racy, and peptide length. For each peptide, MASCOT reports
a probability-based “Ions Score”, which is defined as
210*log10(p), where p is the probability that the observed
match between experimental data and the database sequence
is a random event. Knowing the size of the sequence data-
base being searched, it becomes possible to provide an
objective measure of the significance of a result. MASCOT
V2.0 also reports an expectation value, which is similar to
those reported by both Sonar and X!Tandem.

Since the majority of search algorithms will always
return a score even if the peptide represented by the product
ion spectrum is not in the database, it is useful to have an
idea of the distribution of the scores for correct or incorrect
hits to be able to assess the significance of a particular result.
Empirically determined thresholds (filters) have been used
[23–25] to indicate the correctness of a match. More recently,
the PeptideProphet [14] rescoring algorithm uses Fisher’s
Linear Discriminant Analysis (LDA) to combine the different
SEQUEST scores with other information (e.g., mass differ-
ence). The Expectation-Maximization (EM) algorithm as well
as Bayes theorem is then used to derive a probability that the
peptide hit is correct.

In this paper, we explore the performance of the different
MS/MS search algorithms, which were used by the partici-
pating HUPO-PPP laboratories, on IT data specially pre-
pared by one of these laboratories. Overall, the main aim of
the work is to accurately compare and benchmark the differ-
ent MS/MS search algorithms based on a validated data set.
The more detailed aims of the search algorithm analysis are:
(i) to create an expertly curated reference data set that could
be used for testing improved MS/MS scoring functions;
(ii) to assess the strengths and weaknesses in terms of sen-
sitivity and specificity of the different algorithms; (iii) to
accurately benchmark the different algorithms at a specified
FP rate; (iv) to assess the effect of database size and different
search strategies (tryptic vs. nontryptic); (v) to determine the
utility of reversed sequence database searches; and (vi) to
assess the idea of consensus scoring by combining the
results of multiple search algorithms.

2 Materials and methods

2.1 HUPO-PPP reference specimens

Two reference specimens from BD Diagnostics (citrated
plasma (Cit-plasma) and serum) for each of three ethnic
groups (B1-Caucasian-American, B2-African-American, and
B3-Asian-American) were used in these studies [1]. The B1-
serum and B1-Cit-plasma (Caucasian-American ethnic
group) as well as B3-serum and B3-Cit-plasma (Asian-Amer-
ican ethnic group) were extensively analyzed including
manual MS/MS spectrum validation.

2.2 Sample preparation and MS analysis

The HUPO-PPP samples were prepared for MS and run by
the PNNL (Adkins and Pounds, see Acknowledgements) as
described by Adkins et al. [26]. Briefly, serum and plasma
were immunoglobulin (Ig) depleted, digested using mod-
ified trypsin (Promega), and conditioned by C18 SPE col-
umn (Supelco) clean-up. RP separation was performed with
an Agilent 1100 capillary column (90 min gradient) inter-
faced to an LCQ Deca XP IT mass spectrometer (Thermo-
Finnigan, San Jose, CA, USA) using ESI. The mass spec-
trometer was operated in the data-dependent mode to auto-
matically switch between MS and MS/MS acquisition,
selecting the three most intense precursor ions for fragmen-
tation using CID.

2.3 Protein sequence databases

All tandem mass spectra were searched against two protein
sequence databases and randomized versions of these data-
bases (forward and reverse): a Ludwig Institute non-
redundant database (NR, August 2003, ,1.5 million entries)
[27] and the Human International Protein Index database
(IPI, version 2.21 July 2003, ,56 000 entries, European
Bioinformatics Institute, www.ebi.ac/uk/IPI/) [28]. The ran-
domized versions of these databases were created by taking
all protein sequence entries and reversing them, such that
the original sequence length and composition were pre-
served.

2.4 MS/MS database search strategy

Since the majority of submissions by HUPO-PPP participat-
ing laboratories were based on IT-MS/MS data, it was
deemed appropriate to restrict our analysis to search algo-
rithms used by these individual laboratories. Peptide and
protein identification lists submitted by the individual parti-
cipating laboratories to the University of Michigan (central
repository) were based on search results from MASCOT,
SEQUEST, Sonar, X!Tandem, and Spectrum Mill. Four inde-
pendent research groups with considerable experience in
using one or more of these programs volunteered to analyze
the MS data prepared by the PNNL. The JPSL group (Mel-
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bourne, Australia) used SEQUEST and MASCOT. Inde-
pendently, the Agilent team (Jose Meza, Christine Miller, and
John Chakel) used Spectrum Mill, David Fenyo at GE
Healthcare (formerly Amersham Biosciences) used Sonar
and X!Tandem, and Jimmy Eng (ISB, Seattle) used
SEQUEST and PeptideProphet to analyze the data. Each
group independently decided on their choice of parameters
(i.e., data extraction and search parameters) as well as search
strategy in order to maximize and optimize at the search al-
gorithm level. Comparisons between search algorithms were
carried out using only the subset of spectra common to all
the searches (3952 MS/MS spectra, see Section 2.4.1). The
MS data as well as protein sequence databases used (where
appropriate) were identical for all groups.

2.4.1 SEQUEST and MASCOT workflow performed
by the JPSL research group

The LCQ_DTA utility, obtained from ThermoFinnigan as
part of the SEQUEST package of programs, was used to
extract the MS/MS spectra from the raw instrument data
files into individual spectra files (.dta file extension). Param-
eters used to extract MS/MS spectra were: 700–5000 (min–
max mass); minimum of 35 peaks and minimum TIC of
1 6 105 counts. Spectra were not merged, and since doubly-
and triply-charged precursor ions cannot accurately be dis-
tinguished using low-resolution ESI-IT MS, all spectra not
calculated as singly charged were extracted as both doubly-
and triply-charged spectra. This resulted in the analysis of
3952 MS/MS spectra for the B3-Cit-plasma (Asian-Amer-
ican) sample. Searches were carried out using both algo-
rithms against the IPI and NR database in both forward and
reverse directions using the following search parameters:
trypsin-constrained (full with two missed cleavages) as well
as no-enzyme (unconstrained) searches; no static or differ-
ential modifications; 3 Da precursor ion tolerance and 0.5 Da
fragment ion tolerance using monoisotopic masses, and ESI-
IT selected as instrument setting.

2.4.2 SEQUEST and PeptideProphet workflow
performed by the ISB research group

ThermoFinnigan LCQ raw instrument data files were first
converted to the mzXML file format using the ReAdW pro-
gram [29]. The mzXML2Other program was used to extract
individual spectra from the mzXML files into MS/MS files of
the .dta format. For the reasons stated previously, all spectra
not extracted as singly charged were extracted as both doubly-
and triply-charged and no individual spectra were merged.
After extraction, a filtering program, named dtafilter (http://
sourceforge.net/projects/sashimi), was used to reduce the
data set based on the following parameters: 600–4200 Da
peptide mass range and a minimum of six peaks with a
minimum intensity of 2. This resulted in the analysis of
5579 MS/MS spectra for the B3-Cit-plasma (Asian-Amer-
ican) sample.

SEQUEST database searches were performed on these
spectra against the Human IPI protein sequence database
(version 2.21). The search parameters were as follows: aver-
age masses used for both the peptide mass and fragment ion
calculations, peptide mass tolerance set to 3.0, fragment ion
tolerance set to 0.0, variable modification of 116.0 to
methionine residues, and a sequence constraint of at least
one tryptic cleavage site. All search results were passed to the
PeptideProphet algorithm using default parameters for IT
data. Based on multiple factors of the search results, includ-
ing individual database search scores and distribution of
peptides exhibiting expected cleavage rules, the PeptidePro-
phet algorithm assigned a probability of being a correct
identification to each search result.

2.4.3 Spectrum Mill workflow performed by the
Agilent group

LCQ instrument data files (*.raw) were extracted with the
Spectrum Mill Data Extractor using the following parame-
ters: 600–5000 (min–max mass); sequence tag length on
(.1) and off with no spectral merging for two separate sets of
search results. Where spectral charge state cannot be deter-
mined, no charge state is assigned during extraction and
both 12 and 13 charge states are considered during sear-
ches. Searches were carried out against the IPI database in
both forward and modified reverse directions using the fol-
lowing search parameters: initial search in “multihomology”
mode in which combinations of carbamylated lysine, oxi-
dized methionine, and Pyro–Glu modifications were
applied; trypsin specific with two missed cleavage; 2.5 Da
precursor ion tolerance; 0.7 Da fragment ion tolerance; and
ESI-IT as instrument. The initial results were also auto-
validated using the following parameters for the “protein
details” mode: SPI .70% for matches with score .8 for 11,
.7 for 12, and .9 for 13; SPI .90% for score .6 on 11. A
second autovalidation step was done in “peptide” mode
using criteria of a score .13 and SPI .70%. In addition,
both autovalidation steps required a forward–reverse score
.1 for 11 and 12 and .2 for 13 peptides. The validated
peptides were used to identify a set of proteins from which a
result file was created. A second round of searches with
unvalidated peptide spectra was performed against the set of
proteins in this result file using a no-enzyme (uncon-
strained) search to identify possible nonspecific or semi-
tryptic peptide fragments. All database matches above the
threshold score of 3 were summarized and reported.

2.4.4 Sonar and X!Tandem workflow performed by
David Fenyo

X!Tandem and Sonar searches were performed by grouping
the MS/MS spectra (files with .dta extension) generated by
the LCQ_DTA utility (ThermoFinnigan) into single files
(with .pkl extension) to speed up the searches. The parame-
ters used in the extraction of the MS/MS spectra were the
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same settings as for the SEQUEST and MASCOT searches
(see Section 2.4.1). The search parameters used were tryptic
digestion with a maximum of two missed cleavage sites,
parent ion tolerance of 3 Da, fragment ion tolerance of
0.5 Da, no complete or partial modifications, and the ESI-IT
settings. The searches with both Sonar and X!Tandem were
performed against IPI database in both forward and reverse
directions. Perl scripts were written to automate searches
and to parse the output of X!Tandem and Sonar. An expecta-
tion value cut-off of 1 was used to filter the results.

2.5 Web interface for data validation, integration, and
cross annotation

Scripts written in Perl (version 5.8.4, http://www.perl.com)
were used to manage the different data sets and the results of
associated database searches obtained from the four inde-
pendent groups. To assist with the process of manual valida-
tion, the Perl scripts also provided the following functional-
ities: (1) peptide hits with scores above user specified
thresholds (cut-points) and/or accepted published cut-offs
are highlighted as a visual aid to indicate that a hit is prob-
ably correct; (2) a protein summary view (list of inferred
proteins) based on correctly identified peptides are sorted by

number of matching peptide hits showing all assigned and
unassigned peptide spectra matching a particular protein
record; (3) options to autovalidate search results based on an
already manually validated data set; and (4) highlight and
detect inconsistencies between different search algorithms
and/or results for the same data set (i.e., same spectrum
assigned with two different peptide sequences). Using the
Apache web server, a web interface was assembled to allow
easy access and manual validation of the data. The annotated
spectra were displayed using a Java applet (see Fig. 1). The
web interface also allows the user the ability to perform some
simple statistics on the data sets, such as comparing num-
bers of peptide hits which are ranked first or in the top ten for
different algorithms. These statistics can be viewed in the
form of Venn diagrams and/or concordance plots. The FP
and true-positive (TP) rates can also be calculated based on
specified rules. For more sophisticated analysis, the validated
data set (list of identifications with their scores) can be
exported in tab-delimited format for import into spreadsheet
packages (such as Excel) and the R statistical package [30]
(http://www.r-project.org). Public access to the web interface,
database, and associated search results as well as peaklists
(.dta files) and supplementary material can be found at
http://www.ludwig.edu.au/archive/.

Figure 1. Web-interface for viewing and manually assigning tandem MS peptide identification results. The top ten
SEQUEST search results (scores and ancillary information) for a particular spectrum are shown. The selected top
hit is used to annotate the spectrum (java applet) showing matching b and y ions within a user defined threshold
and tolerance. Clicking the View radio control selects the chosen peptide hit, which is saved in a temporary file if
one of the Save buttons is selected. Traversing large lists of spectra is made simpler with the “Go to scan number”
function at the top of the web page.
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The informatics strategy employed to achieve accurately
validated as well as unbiased data sets consisted of several
phases. First, the four groups optionally validated all MS/MS
spectra using their chosen search engine and/or analysis
tools by a combination of automated as well as manual
assignment. All the data sets in the form of spreadsheets
were then collated and made accessible via the web interface.
The SEQUEST and MASCOTsearch results (JPSL group) for
the B3-Cit-plasma (Asian-American) sample consisting of
3952 MS/MS spectra were separately validated by two inde-
pendent experts according to established protocols [8, 31].
For SEQUEST, cut-off filters, or thresholds developed by
Yates et al. [23] and others [24, 25] were used as a guide to
highlight probable correct identifications. For MASCOT, the
peptides Ions Score, ranking, E-value as well as associated
protein record were used as a guide to highlight probable
correct identifications. All SEQUEST and MASCOT peptide
identification search results were therefore independently
classified and assigned, using the web interface, as either
“1st Pass” (correct), “Poor” (spectra with few ions and/or
poor S/N), or “Potential de novo” (good quality with many
peaks above the noise level). The Perl scripts were then run
to first detect inconsistencies (i.e., same spectrum assigned
with two different peptide sequences) between the
SEQUEST and MASCOT search results. Second, to auto-
validate the search results from the other groups based on
the already validated SEQUEST and MASCOT assignments
(i.e., where peptide sequences were the same for a particular
spectrum they were classified as 1st Pass (correct)). Third,
peptide identification lists including scores and assignments
for all the search algorithms were examined (sorted by de-
scending score or probability) for unassigned spectra as well
as conflicts between all search algorithms. Finally, all unas-
signed as well as conflicts (inconsistencies) were resolved by
means of manual inspection by two independent MS experts
(a detailed listing of all assignments and peptide sequences
returned by the different algorithms for different search
strategies can be obtained from http://www.ludwig.edu.au/
archive/). An example listing (subset) with explanation is
provided in Table 1S (supplementary material).

2.6 ROC curve generation

Receiver operating characteristic (ROC) plots were generated
using the statistical package R (version 2.0.1) and used to
measure the sensitivity (i.e., the ability to make a correct
identification irrespective of the quality of the data, see Eq. 1)
and specificity (i.e., the ability to calculate low-ranking scores
for random (incorrect) matches, see Eq. 2) of all the MS/MS
search algorithms used in this study. An ROC is a graphical
plot of the TP rate versus the FP rate for a binary classifier
system as its discrimination threshold is varied. For each
search carried out using the forward protein sequence data-
base, peptide hits were classified based on their score and
whether they were correct or incorrect. If the score for a
peptide hit was above the threshold, the hit was assigned as

positive, and below the threshold they were assigned as
negative. If a specific threshold value was selected, it was
therefore possible to assign all peptides as either TP, true
negative, FP- or false-negative hits.

Sensitivity = TP/(TP 1 FN) (1)

where TP is the number of “true positives” (correct hits with
scores above threshold) and FN is the number of “false
negatives” (correct hits with scores below threshold).

Specificity = TN/(TN 1 FP) (2)

where TN is the number of “true negatives” (incorrect hits
with scores below threshold) and FP is the number of “false
positives” (incorrect hits with scores above threshold).

3 Results and discussion

The Cit-plasma and serum samples analyzed as part of this
study serve as excellent reference data sets because the
acquired MS/MS peptide spectra originate from tryptic
digests of plasma and/or serum proteins. Human plasma
has a disproportional dynamic range of protein concentra-
tions in that only 22 abundant proteins contribute ,99% of
the total protein mass, while an unknown number of rela-
tively low-abundance proteins make up to ,1% of the total
protein mass [32]. Currently available reference data sets are
often mixtures of standard proteins of less dynamic range
than that found in human specimens [33]. A particular chal-
lenge for MS/MS search algorithms and/or the validation
process (automated and/or manual) is whether low-abun-
dance peptides, which presumably originate from low-abun-
dance proteins, are identifiable. Since the currently analyzed
samples were not albumin depleted (the most abundant
protein (40 mg/mL) in plasma) it is expected that the major-
ity of peptides identified will belong to this protein. The cap-
ture and inclusion of lower scoring peptide hits (gray area
between correct and incorrect hits), belonging to albumin,
should enhance the quality of the reference data set. So even
though each peptide hit is validated independently based on
its score and annotated spectrum (whether automatically or
manually), the inferred protein identity contributes to the
overall subjective decision-making process. The inclusion of
lower scoring peptide hits that match high-abundance pro-
teins is therefore fundamental in determining the lower
detection limits of current MS/MS search algorithms. More
often than not, many low-abundance proteins are only iden-
tified by a single peptide (the so-called “one-hit wonders”
[34]). Irrespective of how these peptides should be dealt with
in terms of protein identification, it is important that their
spectra are captured so as to facilitate future algorithmic
improvements. Finally, all peptide hits were not only vali-
dated by a combination of automated as well as manual
inspection, but were also cross-validated based on the results
of the other search algorithms.

 2005 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim www.proteomics-journal.de



Proteomics 2005, 5, 3475–3490 Bioinformatics 3481

3.1 Comparison of MS/MS search algorithms

In order to compare the MS/MS search algorithms effec-
tively one needs to calculate their coverage or sensitivity (i.e.,
how many correct hits can be found irrespective of score) and
their specificity (i.e., whether the correct hit is significant
relative to the other hits). Our reference data set enables
accurate calculation of both of these metrics since all the hits
returned by the various algorithms have been compared
against each other as well as being validated by independent
investigators.

3.1.1 Sensitivity and concordance between MS/MS
search algorithms

The sensitivity of a search algorithm demonstrates its ability
to make a correct identification using any data, irrespective
of the quality of the data. Based on the B3-Cit-plasma refer-
ence data set and extensive validation and cross-checking/
annotation between search algorithms, the overall number of
correct peptide hits that were ranked first (irrespective of
score) were tabulated in the form of concordance tables for
trypsin-constrained (Table 1A) or no-enzyme (uncon-
strained) (Table 1B) searches of the IPI protein sequence
database. The total number of correct hits for each search
algorithm is indicated in bold text (diagonal line) (Table 1A
and B) and ordered such that the search algorithm with the
most hits appear first. For trypsin-constrained searches
(Table 1A) it can be seen that SEQUEST identified 526 pep-
tide hits, whilst Spectrum Mill (with tag .1 enabled) identi-
fied 397 peptide hits. Based on this observation it is clear that

a large number of peptide spectra exhibit incomplete frag-
mentation patterns (i.e., a less than ideal ladder of sequence
ions due to fragmentation kinetics, etc.). Nevertheless, over
400 correct peptide hits are identified by at least four differ-
ent search algorithms indicating reasonable concordance
between the different algorithms. The fact that the
SEQUEST/PeptideProphet combination (ISB group) identi-
fied slightly less hits than that of SEQUEST alone (JPSL
group) can probably be attributed to differences in search
parameters (e.g., average vs. monoisotopic) and/or software
versions. For no-enzyme (unconstrained) searches (Table 1B)
it can be seen that SEQUEST and Spectrum Mill (when used
in a less restrictive mode (i.e., “no tag”)) are better able to
correctly identify peptides from poorer quality spectra (i.e.,
higher sensitivity) and also identify a higher number of pep-
tides compared with a trypsin-constrained search. All of the
additional peptides identified in the no-enzyme mode were
confirmed as belonging to already identified protein records
(e.g., albumin).

The overlap, between four of the MS/MS search algo-
rithms, in terms of the number of correctly identified peptide
hits that are ranked first is shown in the form of a Venn dia-
gram (Fig. 2) for trypsin-constrained searches of the IPI pro-
tein sequence database. Out of a possible 608 hits from the
four algorithms (union), 335 peptides are identified by all
four algorithms (intersection), whilst 70 peptides are identi-
fied by a single algorithm. Almost 75% of these peptide hits
are singly charged spectra and 46 of these were independ-
ently identified by Spectrum Mill. Upon further inspection,
the majority of the 46 hits are either small peptides between
600 and 700 Da in mass or constitute modified peptides (two

Table 1A. Number of correctly identified peptide spectra that are ranked first based on trypsin-constrained searches against the Human
IPI v2.21 protein sequence database

SEQUEST PeptideProphet MASCOT Spectrum Mill Sonar X!Tandem Spectrum Mill(tag)

SEQUEST 526 463 463 402 443 424 338
PeptideProphet 463 499 453 390 435 416 327
MASCOT 463 453 492 389 443 431 324
Spectrum Mill 402 390 389 476 389 374 395
Sonar 443 435 443 389 475 422 324
X!Tandem 424 416 431 374 422 457 314
Spectrum Mill(tag) 338 327 324 395 324 314 397

Table 1B. Number of correctly identified peptide spectra that are ranked first based on no-enzyme (unconstrained) searches against the
Human IPI v2.21 protein sequence database

SEQUEST Spectrum Mill MASCOT PeptideProphet Spectrum Mill(tag)

SEQUEST 531 422 438 436 352
Spectrum Mill 422 528 388 375 436
MASCOT 438 388 457 388 327
PeptideProphet 436 375 388 455 321
Spectrum Mill(tag) 352 436 327 321 438
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Figure 2. Four-way Venn diagram showing the overlap between
four of the MS/MS search algorithms. The number of correctly
identified peptides by one or more algorithms is indicated, e.g.,
335 peptide hits are correctly identified based on a consensus of
all four algorithms (intersection), whilst 608 peptide hits are cor-
rectly identified by one or more algorithms (union).

with methionine oxidations, one with a pyroglutamic residue
and three with internal carbamylated lysine residues). The
majority of these matches were found to be highly credible
upon closer inspection by two independent experts.

3.1.2 Specificity and discriminatory power of the
primary score statistic for the different MS/MS
search algorithms: Distribution of scores and
ROC plots

Based on the B3-Cit-plasma reference data set, the distribu-
tion of the scores for top-ranking hits obtained from each of
the MS/MS search algorithms was plotted for trypsin-con-
strained as well as no-enzyme (unconstrained) searches of
the IPI and/or NR database in both forward and reverse
directions (whichever was available). These plots (Fig. 3A–E)
illustrate the distribution of scores (highest and lowest) as
well as the potential overlap between scores of correct and
incorrect peptide hits. For MASCOT searches (Fig. 3A) there
is a clear distinction between correct (green) and incorrect
(red) peptide hits, especially for trypsin-constrained sear-
ches. A search of the reverse databases gives 0 and 6 correct
hits for the IPI and NR databases, respectively. The six pep-
tide sequences identified from the reverse NR database are
equivalent to real peptides that were also identified in the
normal, “forward” search, and all were less than ten residues
in length. For SEQUEST (Fig. 3B), it can be seen that there is
more overlap between correct and incorrect peptide hits
based on the Xcorr score, especially for no-enzyme (uncon-
strained) searches (i.e., lower specificity). As for the MAS-
COT search, a number of correctly identified peptides were
obtained when searching the NR database in reverse order.
The distribution of scores for Spectrum Mill (based on no-tag
search mode) (Fig. 3C) appears to be similar to those of
SEQUEST (i.e., slightly more overlap when compared with
MASCOT). The distribution of X!Tandem “hyperscores” and

Sonar scores for trypsin-constrained searches is displayed on
a log-scale (Fig. 3D and E, respectively). A comparison be-
tween all of the search algorithms suggests that MASCOT
and X!Tandem demonstrate the highest specificity and
therefore ability to calculate low-ranking scores for random
(incorrect) matches.

ROC plots do not give an indication of the total number
of correct hits nor do they illustrate the number of correct
hits that might not be ranked first, but they do allow an
overall comparison of the sensitivity and specificity of a
search algorithm independent of a specific threshold. Based
on the B3-Cit-plasma reference data set, ROC plots were
generated for the different MS/MS search algorithms for
trypsin-constrained (Fig. 4A) and no-enzyme (uncon-
strained) (Fig. 4B) search results. Since the ROC curve dis-
plays the sensitivities and FP rates at all possible cut-off
levels, it can be used to assess the performance of the pri-
mary score (i.e., Xcorr for SEQUEST or Hyperscore for X!Tan-
dem), independent of any decision threshold. Therefore,
ideal behavior would be a curve that approaches a sensitivity
of 1.0 without any FP (i.e., 1-specificity is 0.0). This would
indicate that a search algorithm is perfectly able to dis-
criminate between correct and incorrect peptide hits, and the
calculated area under the curve (AUC) would be 1.0. The
AUC is a measure of the overall performance in terms of
separating positives and negatives with values approaching
0.5 indicating random discrimination (i.e., the diagonal line
also called the chance diagonal). For trypsin-constrained
searches (Fig. 4A) it can seen that the MASCOT Ion Score
and SEQUEST/PeptideProphet combination perform better
than X!Tandem and Sonar, which again perform better than
SEQUEST and Spectrum Mill (tag .1 enabled). From
Fig. 4B (no-enzyme searches), it can be seen that all the
search algorithms, with the exception of the SEQUEST/Pep-
tideProphet combination, perform worse when compared
with the representative trypsin-constrained searches. The
fact that the AUC improves slightly for the SEQUEST/Pepti-
deProphet combination for no-enzyme searches (0.97 vs.
0.96) indicates that the number of tryptic termini is an
important determinant in deriving the probability for a pep-
tide hit. None of the individual search algorithms take this
into account when classifying correct versus incorrect peptide
hits.

3.1.3 Calculation of score thresholds based on
specified FP identification error rates

Based on the B3-Cit-plasma reference data set and database
search results of known validity, score thresholds (cut-offs)
for the different MS/MS search algorithms were calculated at
specified FP identification rates (0.1, 1, and 5%). These score
thresholds were also calculated with regard to their charge
state and various filtering criteria (e.g., Rsp , 5 and
DCn .= 0.1 for SEQUEST) for trypsin-constrained and/or
no-enzyme (unconstrained) searches (see Table 2A–F). The
criteria that give rise to the most TP hits at the 1% FP rate are
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Figure 3. Box-plots showing the distribution of scores obtained
for searches against different databases, using different search
parameters and reversed protein sequence databases. (A) MAS-
COT Ion Score; (B) SEQUEST Xcorr; (C) Spectrum Mill score (no
tag mode); (D) X!Tandem hyperscore displayed on a log 2 base
scale; (E) Sonar score displayed on a log 2 base scale. IPIfwd
(green) denotes an unconstrained (no enzyme) search against
the normal (forward) IPI protein sequence database
(,56 000 entries). IPIfwd-trypsin (green) denotes a tryptic (two
missed cleavages) search of the IPI database and IPIrev (red)
denotes an unconstrained (no enzyme) search against the
reversed IPI database. Reversed databases were created by sim-

ply reversing each individual protein sequence entry and as such maintaining the original sequence composition and length. The NRfwd
(green) denotes a search against the normal (forward) NR protein sequence database (,1.5 million entries). Box-plots were automatically
generated using the statistical package R, version 2.0.1 using default parameters (i.e., outliers are scores .1.5X the interquartile range (75–
25%), which are indicated by dots (o), whiskers represent the highest score not considered to be an outlier, and the box represents scores
between 25 and 75% with median at 50%).

indicated in bold text in the tables. The calculated score
thresholds can first be used to judge the usefulness of a spe-
cific criterion (e.g., Rsp for SEQUEST) and whether or not its
inclusion improves the overall specificity and sensitivity of a
particular search algorithm. Second, a sense of what con-
stitutes equivalence between search algorithms can be
obtained if one compares score thresholds at a specified FP
rate (i.e., what MASCOT score is equivalent to an X!Tandem
score, for example). Finally, the score thresholds can be used
for autovalidation purposes (i.e., assume all peptide hits to be
correct if their scores are above the calculated thresholds) but
with the following caveats: that the thresholds be applied to
similar data sets (i.e., LCQ-like data) obtained under similar
experimental conditions and analyzed using the same search

parameters (i.e., searches are performed using 3 Da pre-
cursor ion tolerance and against similar sized protein
sequence databases).

From Table 2A, for trypsin-constrained searches, it can be
seen that the DCn .= 0.1 as well as Rsp , 5 criteria improve
the overall specificity of the SEQUEST algorithm. The Rsp

criterion has largely been ignored in published studies to
date but it is clear from Table 2A that this filter should be
included when analyzing search results from complex pro-
tein extracts such as cell lysates and tissues such as blood.
For no-enzyme (unconstrained) searches (Table 2A), it can be
seen that many random (incorrect) matches can be filtered
by applying the strict trypsin rule (i.e., peptide must be fully
tryptic).
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Figure 4. ROC plot for the different search algorithms based on searches against the IPI protein sequence database: (A) tryptic-constrained
(two missed cleavages) and (B) unconstrained (no enzyme). Hundred percent discrimination between correct and incorrect peptide hits
would be indicated by a sensitivity of 1.0 and 1-specificity of 0.0 (i.e., a search algorithm is able to identify all TP hits without any FPs). The
AUC is indicated for each search algorithm (values of 0.5 would be considered random also called the chance diagonal (dotted line)).

Table 2A. SEQUEST Xcorr thresholds calculated based on different criteria at specified FP error rates for trypsin-constrained and no-enzyme
searches against the Human IPI v2.21 protein sequence database

Charge state of
precursor ion

Criteria applied
to peptide hit

Trypsin-constrained search No-enzyme search
%FP rate %FP rate

0.1 1 5 0.1 1 5

All None 3.56 (37%) 2.64 (59%) 2.28 (71%) 3.89 (30%) 3.3 (49%) 2.95 (60%)
DCn

a) 3.21 (44%) 2.55 (62%) 2.16 (73%) 3.89 (29%) 3.1 (53%) 2.4 (73%)
DCn 1 Rsp

b) 3.21 (44%) 2.44 (65%d)) 1.68 (85%) 3.41 (43%) 2.05 (68%) 0 (70%)
Trypticc) – – – 3.11 (50%) 2.27 (73%) 0 (89%)
DCn 1 Rsp 1 tryptic – – – 3.01 (48%) 0e)(63%) 0 (63%)
No. of hitsf) 526 531

Singly-charged
peptides (11)

None 2.41 (18%) 2.05 (41%) 1.73 (75%) 2.82 (9%) 2.41 (28%) 2.11 (48%)
DCn 2.22 (27%) 1.86 (58%) 1.59 (76%) 2.29 (35%) 2.01 (49%) 1.38 (68%)
DCn 1 Rsp 2.02 (35%) 1.72 (58%) 1.35 (64%) 2.03 (26%) 1.37 (31%) 0 (31%)
Tryptic – – – 2.69 (10%) 2.22 (33%) 1.71 (79%)
DCn 1 Rsp 1 tryptic – – – 0 (24%) 0 (24%) 0 (24%)
No. of hits 168 127

Doubly-charged
peptides (21)

None 3.56 (50%) 2.44 (89%) 1.97 (98%) 3.13 (66%) 2.76 (81%) 2.41 (91%)
DCn 3.01 (70%) 2.35 (90%) 1.81 (97%) 3.08 (66%) 2.52 (84%) 2.07 (92%)
DCn 1 Rsp 3.01 (70%) 2.18 (93%) 1.5 (97%) 3.01 (67%) 2.01 (84%) 0 (85%)
Tryptic – – – 3.01 (64%) 2.22 (85%) 0 (89%)
DCn 1 Rsp 1 tryptic – – – 3.01 (61%) 0 (75%) 0 (75%)
No. of hits 281 331

Triply-charged
peptides (31)

None 3.21 (74%) 2.68 (83%) 2.42 (88%) 3.89 (58%) 3.43 (78%) 3.13 (84%)
DCn 3.21 (73%) 2.68 (83%) 2.34 (90%) 3.89 (56%) 3.3 (78%) 2.75 (86%)
DCn 1 Rsp 3.21 (73%) 2.53 (84%) 2.02 (96%) 3.41 (64%) 2.38 (71%) 0 (71%)
Tryptic – – – 3.11 (82%) 2.41 (95%) 0 (99%)
DCn 1 Rsp 1 tryptic – – – 2.38 (71%) 0 (71%) 0 (71%)
No. of hits 77 73

a) DCn criteria .= 0.1
b) Rsp criteria , 5
c) True (full) tryptic criteria
d) %TP peptide identifications based on the specified criteria and total number of correctly identified peptide hits (see point f below)
e) Negligible score threshold (i.e., almost zero)
f) Total number of correctly identified peptide hits
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Table 2B. MASCOT Ions Score thresholds calculated based on different criteria at specified FP error rates for trypsin-constrained and no-
enzyme searches against the Human IPI v2.21 protein sequence database

Charge state of
precursor ion

Criteria applied
to peptide hit

Trypsin-constrained search No-enzyme search

%FP rate %FP rate
0.1 1 5 0.1 1 5

All None 51.80 (25%b)) 23.08 (78%) 16.20 (90%) 54.39 (23%) 34.63 (63%) 27.96 (80%)
Tryptica) – – – 47.94 (33%) 22.38 (79%) 0c) (87%)
No. of hitsd) 493 457

Singly-charged
peptides (11)

None 51.80 (2%) 27.83 (35%) 21.17 (59%) 42.79 (11%) 38.03 (22%) 31.21 (37%)
Tryptic – – – 42.79 (10%) 32.36 (29%) 18.46 (72%)
No. of hits 125 87

Doubly-charged
peptides (21)

None 39.02 (62%) 20.00 (93%) 13.87 (96%) 54.39 (31%) 33.12 (79%) 24.45 (91%)
Tryptic – – – 47.94 (43%) 19.06 (85%) 0 (88%)
No. of hits 299 311

Triply-charged
peptides (31)

None 16.06 (91%) 20.84 (84%) 40.92 (37%) 33.58 (64%) 28.26 (81%)
Tryptic – – – 40.77 (37%) 19.39 (95%) 0 (97%)
No. of hits 69 59

a) True (full) tryptic criteria
b) %TP peptide identifications based on the specified criteria and total number of correctly identified peptide hits (see point d below)
c) Negligible score threshold (i.e., almost zero)
d) Total number of correctly identified peptide hits

Table 2C. X!Tandem score thresholds calculated based on specified FP error rates for trypsin-constrained searches against the Human
IPI v2.21 protein sequence database

Charge state of
precursor ion

Criteria applied
to peptide hit

Trypsin-constrained search
%FP rate

0.1 1 5

All None 66.4 (42%a)) 50.7 (68%) 45 (81%)
No. of hitsb) 457

Singly-charged peptides (11) None 54.4 (19%) 53.7 (20%) 44.6 (44%)
No. of hits 116

Doubly-charged peptides (21) None 66.4 (63%) 53.3 (82%) 46.3 (93%)
No. of hits 284

Triply-charged peptides (31) None 62.3 (21%) 48.1 (82%) 44.3 (89%)
No. of hits 57

a) %TP peptide identifications based on the specified criteria and total number of correctly identified peptide hits (see point b below)
b) Total number of correctly identified peptide hits

The MASCOT Ions Score thresholds for both trypsin
and no-enzyme searches (Table 2B) indicate that thresholds
are higher for singly-charged peptide ions compared with
doubly- and triply-charged peptides. A comparison of the
thresholds with the reported MASCOT “identity score
(p , 0.05)” of 43 for trypsin-constrained and 60 for no-en-
zyme searches reveals the following: for trypsin-con-
strained searches a cut-off score of 43 gives an FP rate of
0.03% and TP rate of 38% whilst applying the reported
homology score gives an FP rate of 0.23% and a TP rate of
70.38% (data not shown); for the no-enzyme searches a
cut-off score of 60 gives an FP rate of 0% and a TP rate of

14.22% whilst applying the reported homology score gives
an FP rate of 0.34% and TP rate of 60.39% (data not
shown).

A comparison of trypsin-constrained and no-enzyme
(unconstrained) searches for SEQUEST and MASCOT
searches (Table 2A and B, respectively) indicates that score
thresholds are considerably higher at all predefined FP rates for
no-enzyme searches. Indeed forboth SEQUESTand MASCOT,
similar score thresholds are obtained for a no-enzyme search
against the IPI protein sequence database compared with a
trypsin-constrained search of the NR database (which is com-
prised of ,1.5 million entries) (data not shown). This
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Table 2D. Sonar score thresholds calculated based on specified FP error rates for trypsin-constrained searches against the Human IPI v2.21
protein sequence database

Charge state of
precursor ion

Criteria applied
to peptide hit

Trypsin-constrained search

%FP rate
0.1 1 5

All None 5.3e13(21%a)) 3.6e9 (63%) 2.4e8 (78%)
No. of hitsb) 475

Singly-charged peptides (11) None 3.7e12 (12%) 4.5e10 (33%) 1.6e9 (60%)
No. of hits 129

Doubly-charged peptides (21) None 6.7e10 (54%) 3.4e8 (77%) 5.3e7 (87%)
No. of hits 281

Triply-charged peptides (31) None 5.3e13 (38%) 4.1e9 (77%) 3.4e8 (85%)
No. of hits 65

a) %TP peptide identifications based on the specified criteria and total number of correctly identified peptide hits (see point b below)
b) Total number of correctly identified peptide hits

Table 2E. Spectrum Mill (tag .1) score thresholds calculated based on different criteria at specified FP error rates for trypsin and hier-
archical iterative searches against the Human IPI v2.21 protein sequence database

Charge state of
precursor ion

Criteria applied
to peptide hit

Trypsin and no-enzyme iterative search

%FP rate
0.1 1 5

All None 14.68 (13%b)) 9.42 (53%) 7.96 (66%)
Tryptica) 8.46 (58%) 7.67 (63%) 5.39 (79%)
No. of hitsc) 438

Singly-charged peptides (11) None 8.6 (16%) 8.6 (16%) 5.77 (51%)
Tryptic 7.65 (21%) 7.65 (21%) 5.39 (46%)
No. of hits 104

Doubly-charged peptides (21) None 10.78 (50%) 10.78 (50%) 8.66 (71%)
Tryptic 8.46 (69%) 8.46 (69%) 7.96 (73%)
No. of hits 268

Triply-charged peptides (31) None 14.68 (23%) 12.13 (45%) 7.95 (85%)
Tryptic 7.51 (86%) 6.38 (91%) 4.03 (97%)
No. of hits 66

a) True (full) tryptic criteria
b) %TP peptide identifications based on the specified criteria and total number of correctly identified peptide hits (see point c below)
c) Total number of correctly identified peptide hits

Table 2F. SEQUEST/PeptideProphet thresholds calculated based on specified FP error rates for trypsin-constrained searches against the
Human IPI v2.21 protein sequence database

Charge state of
precursor ion

Criteria applied
to peptide hit

Trypsin-constrained search

%FP rate

0.1 1 5

All None 0.96 (56%a)) 0.11 (88%) 0 (93%)
No. of hitsb) 499

Singly-charged peptides (11) None 0.49 (57%) 0.29 (67%) 0 (76%)
No. of hits 126

Doubly-charged peptides (21) None 0.96 (76%) 0.17 (94%) 0.01 (99%)
No. of hits 301

Triply-charged peptides (31) None 0.86 (68%) 0 (93%) 0 (97%)
No. of hits 72

a) %TP peptide identifications based on the specified criteria and total number of correctly identified peptide hits (see point b below)
b) Total number of correctly identified peptide hits
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clearly highlights the “distraction effect” as a result of an
effective increase in database size due to the increased num-
ber of peptides that must be queried.

The hyperscore thresholds for X!Tandem and Sonar score
thresholds, based on trypsin-constrained searches, are shown
in Table 2C and D, respectively. For X!Tandem (Table 2C), the
thresholds are constant across all charge states, indicating that
singly-charged spectra do not have such a negative effect on
the X!Tandem scoring function. Also, based on these calcula-
tions, a score of 50 (,1% FP) would be more appropriate than
previously suggested (unpublished) score cut-offs of 45 which
equates to ,5% FP rate under these conditions. The Spec-
trum Mill (tag .1 mode) results (see Table 2E) are based on a
five-phase iterative search strategy. Again (similar to
SEQUEST), it can be seen that the scores are dependent on
the charge state of the precursor ion. Finally, the probability
thresholds at the different FP rates for SEQUEST/Peptide-
Prophet are shown in Table 2F.

It is clear from Table 2A–F that the number of TP peptide
identifications is lowest for singly-charged peptide spectra.
This is perhaps not surprising when one considers that sin-
gly-charged precursor ions are inherently smaller, fragment
in a less predictable manner, and generate less fragment
ions. Approximately, 30% of the low-mass ions are not
observed on a 3-D IT due to the low-mass cut-off. Doubly-
and triply-charged peptide spectra are less affected by the
low-mass cut-off, and since the majority of tryptic peptide
spectra are doubly-charged under electrospray conditions
and have a mobile proton [35], more ideal fragmentation is
facilitated and hence identified by current search algorithms.

3.1.4 Benchmarking of the different MS/MS search
algorithms at 1% FP error rate

Based on the results from Table 2A–F, Table 3 provides an
overall comparison and accurate benchmark of the search
algorithms evaluated in this study in terms of the number of
correctly identified peptide spectra (TP) at 1% FP rate. Over-
all, taking into account all charges (first row Table 3) it can be
seen that PeptideProphet when applied to SEQUEST results
identifies 439 peptides whilst Spectrum Mill (used with tag
.1) identifies 276 peptides. However, at the individual
charge state level, especially singly-charged, there appears to
be much variation between the different search algorithms.

3.1.5 Effect of database size and search strategy

In order to investigate the effect of database size as well as
optimal search strategy, the total number of correct hits
(ranked first or in the top ten) reported by both MASCOT
and SEQUEST was tabulated based on searches against the
IPI and NR databases using trypsin-constrained as well as
no-enzyme (unconstrained) searches (see Table 4). First, it
can be seen that the search algorithms lose sensitivity as
the search space is increased (i.e., more peptides have to be
queried) and that MASCOT is affected more than that of
SEQUEST since the correct peptide hit appears more often
in the top ten hits rather than being ranked first. This
indicates that the SEQUEST scoring function is slightly
more sensitive (i.e., better able to rank poorer quality pep-
tide spectra) compared with that of MASCOT, especially
when large protein sequence databases are used and/or
unconstrained searches are carried out. Second, of the
581 correctly identified peptides (top ten considered, no-
enzyme search) for SEQUEST, 89% are true-tryptic,
11% are semitryptic, and none are nonspecific, whereas of
the incorrectly identified peptides, 2% are true-tryptic,
20% are semitryptic, and 78% are nonspecific. These
values are in close agreement with those calculated by
Keller et al. [33] based on tryptic digestion of an 18 stand-
ard protein mixture. Our findings therefore support and
confirm the observation that trypsin is a very specific pro-
tease [36, 37]. In fact, the majority of semitryptic peptides
identified in this analysis were derived from human albu-
min, the most abundant protein in these samples.

3.1.6 Utility of reversed sequence searches

The utility of reversed sequence searches to restrict the
number of FP peptide identifications has been explored by
various groups [25, 38, 39]. The idea is to analyze a particular
data set and identify peptides using both the “normal” for-
ward and “random” reversed protein sequence database
searches. The random database could be appended to the
normal database or searched separately. Our protocol con-
sisted of the following steps: (1) reversed sequence searches
were carried out separately; (2) the search results were then
filtered so as to remove correct matches based on the vali-
dated normal forward search (see Section 3.1.2); (3) the

Table 3. Number of correctly identified peptide spectra (TP rate) based on a 1% FP rate (benchmark) for the different search algorithms for
trypsin-constrained searches against the Human IPI v2.21 protein sequence database

Charge state of
precursor ion

SEQUEST/
PeptideProphet

MASCOT SEQUEST
(DCn 1 Rsp)

X!Tandem Sonar Spectrum Mill
(tag .1)

All 439 385 342 311 299 276
Singly-charged peptides (11) 84 44 97 23 43 22
Doubly-charged peptides (21) 283 278 261 233 216 185
Triply-charged peptides (31) 67 58 65 47 50 60
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Table 4. Number of correctly identified peptide spectra for
SEQUEST and MASCOT based on different search strat-
egies and protein sequence databases

Top hita) Top ten hitsb)

Trypsinc) No-enzymed) Trypsin No-enzyme

SEQUEST IPIe) 526 531 535 581
NRf) 498 418 552 481

MASCOT IPI 492 457 539 526
NR 425 363 508 446

a) Only the correct peptide hits that are ranked first are con-
sidered

b) Correct peptide hits ranked amongst the top ten are con-
sidered

c) Trypsin-constrained search (full tryptic) with two missed
cleavages

d) No-enzyme (unconstrained) search
e) Human IPI v2.21 protein sequence database comprising

,56 000 entries
f) Ludwig Institute NR (nonredundant) protein sequence data-

base comprising ,1.5 million entries

scores were then sorted in descending order and the thresh-
old determined based on the nth ranked score depending on
the specified (acceptable) FP rate. For example, if the FP rate
is 1% and 1000 peptide spectra are scored, the tenth highest
score would be the score threshold. Our findings indicate
that similar score thresholds, albeit slightly higher thresh-
olds, were obtained compared with those from the normal
forward search (Table 2A–F). This appears to be in agree-
ment with others regarding the estimation of FP rates based
on the reverse database model [39]. In order for this approach
to be effective it would have to be repeated for each experi-
ment. The obvious disadvantage of the reverse database
model is the number of false-negative peptide hits (i.e., the
correct peptide identifications below the threshold) but it
demonstrates an improvement on empirically derived pub-
lished score cut-offs.

3.1.7 Consensus scoring between MS/MS search
algorithms

The idea of consensus scoring has previously been raised [40]
and briefly explored here. The basic idea is to merge search
results from two or more algorithms and combine the scores
for peptide spectra where there is consensus between differ-
ent algorithms. The top ranking peptide hit or top ten pep-
tide hits for each spectrum, from the different algorithms,
could be considered. Interestingly, based on the data sets
used in this study, when one compares all the top ranked
peptide sequences returned by both MASCOT (trypsin
search) and SEQUEST (trypsin search), 646 peptide se-
quences are found to be identical, and of these, 465 have been
validated as correct. However, when one compares the top

ranked peptide sequences returned by both MASCOT (tryp-
sin search) and SEQUEST (no-enzyme search), 470 peptide
sequences are found to be identical, and of these, 450 have
been validated as correct (data available from website, see
Section 2.5). A closer inspection of these 20 peptide spectra
(identical sequences but not 1st Pass) reveals that they are
mostly poorer quality (singly-charged) spectra with low
scores and exhibiting less than ideal ladders of sequence
ions. Further examination and observation regarding con-
sensus amongst at least three algorithms reveal that the
MASCOT scoring function generally performs poorer on
singly-charged spectra and/or spectra exhibiting few ions or
spectra exhibiting many ions but with a few very intense
peaks. Indeed when one compares all the top ranked peptide
sequences returned by all the search algorithms and filter out
nonidentical sequences, we find that the remaining peptides
have all been classified by the investigators as correct. This
suggests that the consensus approach based on multiple
scoring functions definitely has merit and that the scores
could be considered as independent and orthogonal. Further
work needs to be carried out to determine exactly how many
search algorithms (or independent scoring functions) are
required so as to allow confident and automated validation of
peptide identifications and therefore accurate protein identi-
fications.

4 Concluding remarks

Our aims in this paper were to assess the strengths and
weaknesses of different MS/MS search algorithms on IT
data, and to provide guidelines to help assess the significance
of peptide identification results obtained from the individual
HUPO-PPP participating laboratories. Important considera-
tions when carrying out MS/MS database searches are the
specified search parameters (i.e., mass tolerance which is
dependent on the instrument and calibration), search strate-
gy (i.e., semitryptic vs. tryptic), chosen protein sequence
database to query (i.e., IPI vs. NCBI NR which is dependent
on the particular experiment), and chosen search engine.
The choice of search engine should not only be guided by the
range of mass spectrometers available but also whether or
not it is restrictive regarding the above choices as well as its
overall sensitivity and specificity, which we have addressed in
this study.

It is clear from this study that the number of correctly
identified peptides that are ranked first by the different algo-
rithms decreases (less sensitive) as the search space is
increased (i.e., no-enzyme search and/or large protein
sequence database). This is particularly notable for MASCOT
compared with SEQUEST, on the basis of the number of
correctly identified peptides that are no longer ranked first
but appear in the top ten. SEQUEST and Spectrum Mill
(using no tag filter) are more sensitive than the other algo-
rithms but MASCOT, Sonar, and X!Tandem are more specific
(i.e., better able to discriminate between correct and incorrect
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peptide hits). Overall, calculating the TP rate at a specified
FP rate shows that MASCOT performs better than the other
algorithms used in this study. Application of a rescoring al-
gorithm, such as PeptideProphet, improves the specificity of
the SEQUEST algorithm and based on these results should
also improve the results of the other algorithms.

Score thresholds, if used, can be determined based on
reverse sequence searches as demonstrated in this study. For
high-confidence peptide identifications these thresholds
could be combined with orthogonal scoring information,
such as scores from other search algorithms. The availability
of open-source algorithms, such as X!Tandem as well as
OMSSA [41] make this process feasible. In this respect, an
algorithm that demonstrates high sensitivity should be used
in conjunction with an algorithm that demonstrates high
specificity. Thresholds, if used, should also be calculated on a
per-experiment basis because the number of spectra gener-
ated and the detectable dynamic range of proteins have a
major influence on the number of potential FP identifica-
tions. For example, at a predefined score threshold, the
number of FP identifications will be higher if a large number
of spectra are generated that do not correctly match anything
in the protein sequence database. This scenario is typical of
human specimens, such as plasma, which exhibits a dis-
proportional dynamic range of protein concentrations.

The MS data, generated for this study, were performed in the
Environmental Molecular Sciences Laboratory, a US national
scientific user facility sponsored by the Department of Energy’s
Office of Biological and Environmental Research and located at
Pacific Northwest National Laboratory. We thank Joel Pounds,
Dick Smith, and Ron Moore for access to the MS data; James
Eddes for the mass spectrum applet used in the web interface;
Robert Moritz for access to the JPSL MASCOT server. Funding
was provided, in part, by the HUPO-PPP and by the Australian
National Health and Medical Research Council (program grant
no. 280912).
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