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It consist of “controlling”.

Maintain between certain levels the value of something

Krogh, Biology, Custom Core Edition, 
Prentice Hall, 3rd ed., 2004

It is a wide branch of knowledge that has been 
studied since the beginning of times.
Kybernetes, Greek word for navigator, steers-
man, related to the Latin gubernator (governor). 
In "The Republic", by Plato (428-347 BC) 
steering a ship was compared to steering a 
community. Aristotle used kybernetike to refer to 
steering a community.
It could be even related to AI.



Control loop examples

Open loop

Closed loop

Open loop

Huygens Hooke

Development of clocks



Closed loop 
Speed regulation in the first steam engines

Central governor



A clear example of closed and 
open loop

Feed-forward

Closed loop

Reduces effects of process disturbances
Makes the system insensitive to process 
variations
Stabilize an unstable system
Create well-defined relations between 
output and reference
Risk for instability



Open loop

Reduces effects of disturbances that can 
be measured
Improve response to reference signals
No risk for instability
Design of feed-forward is simple but it 
requires good models
Beneficial to combine with feedback

Lecture by Wilbur Wright 1901:

Men know how to construct airplanes.
Men also know how to build engines.
Inability to balance and steer still confronts 
students of the flying problem.

When this feature has been worked out, the age of 
flying arrived, because all other difficulties were of 
minor importance.
The Wright Brothers figured it out and flew the Kitty 
Hawk on December 17 1903!



Controller Design Methodology
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System Modeling

On/off control loop

The simplest control.
It is used for almost all the thermostats.



P-controller
Proportional action: 
•Adjustable gain (amplifier)
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PI-controller
Integral Action: 

Eliminates bias steady-state error)
Can cause oscillations
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An important property of PI
Consider a PI controller:

Assume that there is an equilibrium under 
constant e(t)=e0 and constant u(t)=u0. Then we 
must have e0=0.
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A PI controller allows a perfect control of the 
system
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Internal Model Principle (IMP)

Internal Model Principle is a generalization 
of the necessity of an integral control.
Robust tracking of an arbitrary signal 
requires a model of that signal, in the 
controller.
By intuition, the internal model counteracts 
the external signal.



PID
Derivative Action (“rate control”):

Effective in transient periods
Provides faster response (higher sensitivity)
Never used alone
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Example of control:Cruise control

•Control variable: gas pedal (throttle) u
•Process output: velocity v
•Desired output or reference signal vr
•Disturbances: slope θ



Block Diagrams

Pictorially expresses flows and relationships 
between elements in the system
Blocks may recursively be systems
Rules

Cascaded (non-loading) elements: convolution
Summation and difference elements

Can simplify the evaluation

Block Diagram of System
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Example of control: Cruise control
The block diagram gives an overview. 

To draw a block diagram:

Understand how the system works.
Identify the major components and the 
relevant signals.
Key questions:

Where is the essential dynamics?
What are the appropriate abstractions?

Describe the dynamics of the blocks.
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Simplifying assumptions

· Essential dynamics relates velocity and force
· The force responds very fast to a change in the throttle
· Assume that all relations are linear (small perturbations)
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Modelling the system

 mgFvd
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value for the constants

Inserting a PI 
controller
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The closed loop velocity control device is described by:
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In steady state (a constant slope)  e=0 PI Control!!

Small Problem
What is the influence of the PI parameters?
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Spring mass damper

ω : Gives the response speed
Σ : The shape of the response
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http://www.control.lth.se/~kja/

Linearized equations
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Formulate a liniarized model following this form:
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Basic Tool For Continuous 
Time: Laplace Transform

Convert time-domain functions and operations 
into frequency-domain 
f(t) → F(s)  
Linear differential equations (LDE) → algebraic 
expression in Complex plane

Graphical solution for key LDE characteristics
Discrete systems use the analogous z-transform
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Laplace Transforms of Common 
Functions

Name f(t) F(s)

Impulse

Step
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Exponential
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Laplace Transform Properties
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theorem valueFinal

theorem valueInitial

nConvolutio

nIntegratio

ationDifferenti

calingAddition/S

Insights from Laplace Transforms

What the Laplace Transform says about f(t)
Value of f(0)

Initial value theorem

Does f(t) converge to a finite value?
Poles of F(s) 

Does f(t) oscillate?
Poles of F(s) 

Value of f(t) at steady state (if it converges)
Limiting value of F(s) as s->0



Poles and Zeros of a Complex 
Function

A rational complex function f(z) can be written 
as

The zeros are values for which f(z) = 0.
The poles are values for which f(z) is 
undefined.
Together, the zeros and poles nearly provide 
a complete description of f(z).
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The differentiation property makes the Laplace transform 
very convenient for dealing with LTI systems, particularly 
if all initial values are zero. Differentiation of the time 
functions simply corresponds to multiplication of the 
transform with s. Then, we obtain the following recipe for 
linear systems:
Take Laplace transforms of the equations
Take Laplace transforms of the signals acting on the 
system
Solve linear algebraic equations to obtain the transforms 
the interesting signals
Convert the Laplace transform into a time function



Transfer Function

Definition
G(s) = Y(s) / X(s)

Relates the output of a linear system (or 
component) to its input
Describes how a linear system responds 
to an impulse
All linear operations allowed

Scaling, addition, multiplication

H(s)X(s) Y(s)

Model transfer function
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Basic Control Actions: u(t)
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Key Transfer Functions
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Effect of pole locations

Faster Decay Faster Blowup

Oscillations
(higher-freq)

Im(s)

Re(s)(e-at) (eat)

Why to develop this analysis?

In principle, time responses can be computed 
but…
Making order of magnitude is always a good 
rule
Whenever you use software, make sure that 
results are reasonable.
Much insight can be obtained from very simple 
calculations (series expansions and 
factorization).



Example

Consider a signal given by:
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The system will decay after a short time as the time 
function, associated to G(s), has two negative 
exponentials.
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Insight from the transfer function

Derive transfer function
Compute poles αk (roots of A(s))

Free motion of system has component Ceαt

Compute zeros βk (roots of B(s)=0)
The system blocks transmission of the signal Ceβt

Compute static gain G(0)
Look at behavior for small s (large t, low frequencies) 
and large s (small t, high frequencies)
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Scheme of a control strategy

Transform the physical problem into a 
standard model
Pick a controller e.g. PI
Design a controller where the closed loop 
characteristic equation has specified poles 
(pole placement)
Translate results back to the physical 
system

Solve an abstract problem and you will get 
the solution to many concrete problems. 
Solve a specific problem and you will have 
the solution just to that problem.



Controllability and observability

Controllability: Hability of a system to be 
forced to a certain state with the proper
control system. (It is not a synomimous of
stabliblity).
Observability:hability to observe the state
of the system. 

Observability and Detectability

System is observable if the state 
trajectory x(t) can be determined from 
the output trajectory y(t)
System is detectable if: output tending 
to equilibrium implies state tending to 
equilibrium



Frequency domain

A LTI system is completely determined by 
its response to sinusoidal signals.

Frequency Domain: Fourier 
Series



Frequency Domain: Fourier 
Transform

Frequency Response: Bode 
Plots

Superposition: a plot of system response versus 
frequency completely, characterizes the system



Bode’s Sensitivity Integral
S(ω) is the sensitivity function, it is 
represented by the ratio between the 
output signal and the system response
Bode and others showed                            
for linear systems
Termed Waterbed effect.
Doyle and colleagues have extended 
Bode’s formula to nonlinear systems and 
provided a more general interpretation.
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R(s)=Y(s) Perfect tracking

Y(s)=T(s)[R(s)-N(s)]-S(s)W(s)

• |S(jω )| be small for small ω , that means the effect of 
the disturbance input is attenuated. 
• |T(jω )| be small for large ω , that means the effect of 
the sensor noise is attenuated.
• |T(jω )| be unity ( 0 db) for small ω, that means the 
(low-frequency) characteristics of the reference input 
are unaffected.

The typical situation is that R, W are small for large 
frequencies, and N for small frequencies .



Issues for Computer Science

Most systems are non-linear
But linear approximations may do

eg, fluid approximations

First-principles modelling is difficult
Use empirical techniques

Control objectives are different
Optimization rather than regulation

Multiple Controls
State-space techniques
Advanced non-linear techniques (eg, NNs)

Advanced Control

Robust Control
Can the system tolerate noise?

Adaptive Control
Controller changes over time (adapts)

MIMO Control
Multiple inputs and/or outputs

Stochastic Control
Controller minimizes variance

Optimal Control
Controller minimizes cost function of 
error and control energy

Nonlinear systems
Neuro-fuzzy control
Challenging to derive analytic results



Aplications in Biology

Homeostasis is Fundamental to 
Life

Homeostasis is dynamic self-regulation.
Examples: temperature, energy, key 
metabolites, blood pressure, immune 
response, hormone balance, neural 
functioning, etc.
Sensory adaptation is a type of homeostasis.
It depends on robust control.



Living Systems are Closed 
Loop

input output

Living systems to the Naïve Biologist

input output

Living systems to the Systems Biologist

input output

Living systems to the Enlightened Systems Biologist

Nonlinear Control Theory is 
not as Well-Developed
Many advanced techniques in control 
theory are only for linear systems.
One can linearize a nonlinear system.
Control theorists are trying to develop 
nonlinear analogs for linear concepts.
Ideas from linear control provide valuable 
intuition.



Feedback Control and 
Disturbance Attenuation
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Steady-state analysis

Basic Model: Simulations



Implications of this example
Some biological oscillations may be a side-effect 
of noise amplification produced by intense 
regulation.
Glycolytic oscillations may arise from the tight 
regulation of ATP levels by the glycolytic
pathway.
Oscillations in biochemical reaction networks are 
a property of the whole system, not a single 
enzyme.
One would expect that the tightliest regulated 
molecules in the cell (e.g., ATP, calcium, cAMP) 
would be the most susceptible to oscillations.
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