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m It consist of “controlling”.

Maintain between certain levels the value of something

Krogh, Biology, Custom Core Edition,
Prentice Hall, 3rd ed., 2004
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m |t is a wide branch of knowledge that has been
studied since the beginning of times.

m Kybernetes, Greek word for navigator, steers-
man, related to the Latin gubernator (governor).
In "The Republic", by Plato (428-347 BC)
steering a ship was compared to steering a
community. Aristotle used kybernetike to refer to
steering a community.

m |t could be even related to Al.
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Control loop examples

Open loop

Closed loop

"
Open loop

Development of clocks

Huygens Hooke
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Closed loop

Speed regulation in the first steam engines

James Watt Matthew Boulton

Central governor
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A clear example of closed and

__, Feed-forward
Slope of road
Desired Velocity Throttle Velocity
—| Controller Car
Slope of road
Desired Velocity
—, Error ‘Throttle Velocity
4»(2>—> Controller | Car

:
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Closed loop

m Reduces effects of process disturbances

m Makes the system insensitive to process
variations

m Stabilize an unstable system

m Create well-defined relations between
output and reference

m Risk for instability
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Open loop

m Reduces effects of disturbances that can
be measured

m Improve response to reference signals
m No risk for instability

m Design of feed-forward is simple but it
requires good models

m Beneficial to combine with feedback

Lecture by Wilbur Wright 1901:

Men know how to construct airplanes.

Men also know how to build engines.
Inability to balance and steer still confronts
students of the flying problem.

When this feature has been worked out, the age of
flying arrived, because all other difficulties were of
minor importance.

The Wright Brothers figured it out and flew the Kitty
Hawk on December 17 1903!




Controller Design Methodology

System Modeling |, Controller
Block IDEESIET
diagram :
construction
Controller
Transfer function Evaluation

formulation and
validation

Model
. Ok? ~

Objective
achieved?
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On/off control loop

m The simplest control.
m It is used for almost all the thermostats.

Temperatue (C)

I

|
s s
Power (KW)




P-controller

Proportional action:
*Adjustable gain (amplifier)

/ g A u= ke

| emperatun

Tempa

Figura 5.6b — Controlador proporcional.

Pl-controller

Integral Action:

Eliminates bias steady-state error)
Can cause oscillations

Purito establecsdo

Banda proporcicaal Caida comregida

u = ke + kijge(r)dr

Tiemga

Figura 5.7a — Controlador proporcional més integral.
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An important property of Pl
Consider a PI controller:

u=ke+kij.;e(z')dr —— u =key+ keyt

Assume that there is an equilibrium under

constant e(t)=e, and constant u(t)=u,. Then we
must have e;=0.

A PI controller allows a perfect control of the
system

F—
Internal Model Principle (IMP)

m Internal Model Principle is a generalization
of the necessity of an integral control.

m Robust tracking of an arbitrary signal
requires a model of that signal, in the
controller.

m By intuition, the internal model counteracts
the external signal.




PID

m Derivative Action (“rate control”):
Effective in transient periods
Provides faster response (higher sensitivity)
Never used alone

u= ke+kiI;e(r)dr+kd

Figura 5.7b — Controlador PID.

de(7)

Example of control:Cruise control

*Control variable: gas pedal (throttle) u
*Process output: velocity v

+Desired output or reference signal v,
*Disturbances: slope 6
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Block Diagrams

m Pictorially expresses flows and relationships
between elements in the system

m Blocks may recursively be systems

m Rules

Cascaded (non-loading) elements: convolution
Summation and difference elements

m Can simplify the evaluation

Block Diagram of System

Disturbance

Reference Value

R(s)

©)
=i —
@ Y(s)

B(s)

H(s)




Example of control: Cruise control

The block diagram gives an overview.

To draw a block diagram:

m Understand how the system works.

m |dentify the major components and the
relevant signals.

m Key questions:

Where is the essential dynamics?
What are the appropriate abstractions?
m Describe the dynamics of the blocks.

ref

‘?7 Control
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Eng

Ext. F
F Car

wn

peed

Simplifying assumptions

- Essential dynamics relates velocity and force
- The force responds very fast to a change in the throttle
- Assume that all relations are linear (small perturbations)
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Modelling the system

With reasonable  dv 0.02v u 10

mﬂ vd F mg di

dt value for the constants

InsertingaPl ——— u  k(v, v) k, Ot(vr v( )d

controller
The closed loop velocity control device is described by:

2
4 0.024k) % 1 ke=1097
dt dt dt

In steady state (a constant slope) e=0 — > PI Control!!
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Small Problem

What is the influence of the Pl parameters?

d’e de d’x dx

- - -5 —_— X O

- 0.02 %) o ke 0 17 0o O
Spring mass damper

w : Gives the response speed
> : The shape of the response

k, = @, k = 2w,




w=01,¢ =05 (dotted), { = 1 (solid), and { =2 (dashed)

elmel
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|
|

http://www.control.lth.se/~kja/

¢ = 1. @y = 0.05 (dotted), @q = 0.1 (solid) and @, = 0.2
{dashed)
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Linearized equations

Formulate a liniarized model following this form:

dny dn—ly dn—lu
+a,—+..+ta,y=b——+..+bu
dt" b drt Y Z 0 gt "
d & _
%+any:0 dt+a"y b,u
_ —a,t _ —a,t 4 a,(t-1)
y=~Ce y=Ce ™ +b, K u(r)dr
: -a, N — !
yzz C,e . y:Z Ce ’+I0g(t—r)u(r)dr
k=1 k=1
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Basic Tool For Continuous
Time: Laplace Transform

LI/ O]=F(s)=| ) dr

m Convert time-domain functions and operations
into frequency-domain

A1) = Fs)
Linear differential equations (LDE) — algebraic
expression in Complex plane

m Graphical solution for key LDE characteristics
m Discrete systems use the analogous z-transform

" A
Laplace Transforms of Common
Functions

Name A F(s)
_j1 =0
Impulse  f(1) = 0 >0 A— 1
Step f(0)=1 r %
Ramp f@)=t 74 siz
Exponential f)y=e" 74 s fa
Sine f(2) =sin(ar) A\ wZisz
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Laplace Transform Properties

Addition/Scaling Llaf,(t) £ bf, ()] = aF,(s) £ bF,(s)

Differentiation L[jt f (I)} =sF(s)— f(0%)
i _F) 1
Integration LU f (t)dt]— . + g [[ f (t)aItLOi
Convolution jfl(t —7)f,(t)dr = F,(s)F,(s)
Initial-value theorem f(0+)= Ii_)n:! sF(s)
Final-value theorem !ln;] f(@)= 'L"g sF(s)

g
Insights from Laplace Transforms

m What the Laplace Transform says about f(t)
Value of f(0)
= |nitial value theorem
Does f(t) converge to a finite value?
= Poles of F(s)
Does f(t) oscillate?
m Poles of F(s)

Value of f(t) at steady state (if it converges)
= Limiting value of F(s) as s->0
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Poles and Zeros of a Complex

Function

m A rational complex function f(z) can be written
as

a, as - ans”

G(s)
b0 bls bmsm

m The zeros are values for which f(z) = 0.

m The poles are values for which f(z) is
undefined.

m Together, the zeros and poles nearly provide
a complete description of f(z).

m The differentiation property makes the Laplace transform
very convenient for dealing with LTI systems, particularly
if all initial values are zero. Differentiation of the time
functions simply corresponds to multiplication of the
transform with s. Then, we obtain the following recipe for
linear systems:

m Take Laplace transforms of the equations

m Take Laplace transforms of the signals acting on the
system

m Solve linear algebraic equations to obtain the transforms
the interesting signals

m Convert the Laplace transform into a time function




Transfer Function

m Definition X(s) —

H(s)

— Y(s)

G(s) = Y(s) / X(s)

m Relates the output of a linear system (or

component) to its input

m Describes how a linear system responds

to an impulse

m All linear operations allowed
Scaling, addition, multiplication

Model transfer function

2

mdy
dt

=Jku — ms?Y(s) = kU (S)

Y(S) &

G(5)= U(S) ms?




Basic Control Actions: u(t)

: ] U(s)
Proportional control:  u(7) = K ,e(t) £(s) =K,
Integral control:  u(¢) = K,._[e(t)dt uls) _&
5 E(s) s
Differential control:  u(¢) = K, ie(t) Uls) =K,s
dt E(s)

Key Transfer Functions

Reference

R(s e E(s) Gi(s U(s) G,(s
& o

B(s H(s)

Y(s) __ Gi(5)G,(s)

Feedback : =
R(s) 1+G,(s)G,(s)H (s)




Effect of pole locations

Oscillations
(higher-freq)

Im(s) 1

Faster Decay < > Faster Blowup
() e (e)

g
Why to develop this analysis?

m |n principle, time responses can be computed
but...

m Making order of magnitude is always a good
rule

m \Whenever you use software, make sure that
results are reasonable.

m Much insight can be obtained from very simple
calculations (series expansions and
factorization).




" I
Example

m Consider a signal given by:

s+ 3

)= s 1 4)

The system will decay after a short time as the time
function, associated to G(s), has two negative
exponentials.

-2t —4¢
e e

.
Insight from the transfer function

B(s)
A(s)

m Derive transfer function G(s) =
m Compute poles q, (roots of A(s))

Free motion of system has component Ce
m Compute zeros B, (roots of B(s)=0)

The system blocks transmission of the signal Ce#t
m Compute static gain G(0)
m Look at behavior for small s (large t, low frequencies)

and large s (small t, high frequencies)
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Scheme of a control strategy

m Transform the physical problem into a
standard model

m Pick a controller e.g. PI

m Design a controller where the closed loop
characteristic equation has specified poles
(pole placement)

m Translate results back to the physical
system

m Solve an abstract problem and you will get
the solution to many concrete problems.

m Solve a specific problem and you will have
the solution just to that problem.
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Controllability and observability

m Controllability: Hability of a system to be
forced to a certain state with the proper

control system. (It is not a synomimous of
stabliblity).

m Observability:hability to observe the state
of the system.

Observability and Detectability

x =f(x,u) y=h(x)

m System is if the state
trajectory x(t) can be determined from
the output trajectory y(t)

m System is if: output tending
to equilibrium implies state tending to
equilibrium
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Frequency domain

m A LTI system is completely determined by
its response to sinusoidal signals.

s
Frequency Domain: Fourier

Series N N
%sin(t) /s 4 2/ 2 U

7 (sin(@) + =n$0) /[ u;\\}v}/\z/\\i ,\jf/

%(sin(t)-kw_kw) /\/‘J\ 1V\.«—-\/\\ /\
S A T\ d

4«20 sin(2n—1)t r — ,,T 1r_ ...... _ .\1 r_
T Zn=1 2n—1 _.j'ﬁ ) L...:E ] _1‘] 3 L“_ _‘f}




Frequency Domain: Fourier
Transform

g(t) = cos(4at) 512 G (iw)

I
Frequency Response: Bode
Plots

Superposition: a plot of system response versus
frequency completely, characterizes the system

, iw —w?4iw41
H(iw) = - H(iw) = nd
—w2 4 2w+ 10 (W)= 353 + 3iw + 15
! i




Bode's Sensitivity Integral

m S(w) is the sensitivity function, it is
represented by the ratio between the
output signal and the system response

m Bode and others showed [~
) log|S(e)| de >0
for linear systems .
m Termed Waterbed effect.
m Doyle and colleagues have extended

Bode’s formula to nonlinear systems and
provided a more general interpretation.

R(s)=Y(s) Perfect tracking

Y(s)=T(s)[R(s)-N(s)I-S(s)W(s)

J N(s)

The typical situation is that R, W are small for large
frequencies, and N for small frequencies .

* |S(jo )| be small for small ® , that means the effect of
the disturbance input is attenuated.

* |T(jo )| be small for large ® , that means the effect of
the sensor noise is attenuated.

* |T(jo )| be unity ( 0 db) for small ®, that means the
(low-frequency) characteristics of the reference input
are unaffected.
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Issues for Computer Science

m Most systems are non-linear

But linear approximations may do
m eg, fluid approximations

m First-principles modelling is difficult
Use empirical techniques

m Control objectives are different
Optimization rather than regulation

m Multiple Controls
State-space techniques
Advanced non-linear techniques (eg, NNs)
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Advanced Control

m Robust Control
Can the system tolerate noise?
m Adaptive Control
Controller changes over time (adapts)
= MIMO Control
Multiple inputs and/or outputs
m Stochastic Control
Controller minimizes variance
m  Optimal Control

Controller minimizes cost function of
error and control energy

m Nonlinear systems
Neuro-fuzzy control
Challenging to derive analytic results




Aplications in Biology
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Homeostasis is Fundamental to
Life

m Homeostasis is dynamic self-regulation.

m Examples: temperature, energy, key
metabolites, blood pressure, immune
response, hormone balance, neural
functioning, etc.

m Sensory adaptation is a type of homeostasis.
m [t depends on robust control.
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Living Systems are Closed
Loop

Living systems to the Naive Biologist

input output

Living systems to the Systems Biologist

input output

-

Living systems to the Enlightened Systems Biologist

L — 1L—L— L,

input output

[ C

" I
Nonlinear Control Theory is
not as Well-Developed

m Many advanced techniques in control
theory are only for linear systems.

m One can linearize a nonlinear system.

m Control theorists are trying to develop
nonlinear analogs for linear concepts.

m |[deas from linear control provide valuable
intuition.
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Feedback Control and
Disturbance Attenuation

Steady-state analysis d 1 + F

" JEE
Basic Model: Simulations

1.05

|

ATP (mM)

2 4 6 8 10 12 14 16 18 20
Time (minutes)

0.8
]
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Implications of this example

m Some biological oscillations may be a side-effect
of noise amplification produced by intense
regulation.

m Glycolytic oscillations may arise from the tight
regulation of ATP levels by the glycolytic
pathway.

m Oscillations in biochemical reaction networks are
a property of the whole system, not a single
enzyme.

m One would expect that the tightliest regulated
molecules in the cell (e.g., ATP, calcium, cAMP)
would be the most susceptible to oscillations.
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