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Graphene multilayers have received significant theoretical and experimental attention in recent years.
Raman scattering has become a particularly useful way to study these materials, allowing one to
determine the number of monolayers, strains within them, their level of doping, and the concentration
of defects. However, one thing that Raman spectroscopy has not yet been used to study is the stacking
configuration of graphene in multilayers. In this paper, we investigate the shape of the 2D Raman
mode in ABA and ABC stacked graphene trilayers. It was found that the 2D mode is asymmetric in ABC
regions and symmetric in ABA regions. Additionally, we use Raman scanning to find a quantifier that
allows us to map ABA and ABC stacking domains. Using statistical analysis, we find that the most
effective quantifiers are the line width of the 2D mode and the spectrally integrated residual between
the recorded Raman spectrum and the ABC mode. While other parameters that we considered vary
between the different stacking regions also, the changes in them are insignificant compared to the

measurement uncertainty.

Graphene is a one atom-thick sheet of sp2-hybridized
carbon atoms, arranged in a hexagonal lattice. The
material has been of great theoretical interest since the
mid 1900s [1], mainly due to its interesting charge
transport properties. Theoretical studies have shown that
the dispersion relationship for graphene is conical at low
energies, implying that electrons in the material’s lattice
have a zero effective mass. In particular, graphene’s
conduction-band electrons behave like relativistic
particles, whose behavior is governed by the Dirac
equation [2]. Interestingly, it was theorized by Landau that
a 2-dimensional crystal like graphene would be
thermodynamically unstable [3]. Therefore, it was thought
that that the production of the material would be
impossible. However, the successful production of
graphene was accomplished in 2004, by Andre Geim et. al.
[4]. It has since been theorized that corrugations and
ripples on the atomic scale might be responsible for the
thermodynamic stabilization of graphene sheets [5].

Since the initial production of graphene in 2004, many
applications have been realized for both monolayers and
bilayers. The driving force behind monolayer applications
is graphene’s high intrinsic carrier mobility at room
temperature [6]. This has made the material favorable in
many potential technological devices including nano-
ribbon field effect transistors (GNRFETs) [7] and radio-
frequency (RF) transistors [1]. The number of potential
applications involving bilayer graphene is also quite high.
This is a result of the materials interesting band-structure,
which arises from electronic interactions between
graphene layers. In particular, it was found that an electric
field, applied perpendicular to the bilayer, can open a band
gap [8,9]. This makes bilayers useful in gated devices, such
as FETs, which are ubiquitous in modern microelectronics.

While graphene monolayers and bilayers have been
studied quite thoroughly, trilayers have not received much
experimental attention. The main complexity in studying
them arises from the fact that there are two stable stacking
orders: ABA and ABC. Although the difference between
these stacking configurations is quite subtle, theoretical
studies predict that they have completely different band
structures, at low energies. These studies show that ABA-
stacked trilayers are semi-metals, with finite band overlap,
while ABC-stacked trilayers are zero-gap semi conductors
[10]. For consistent results in future studies, it is
important for one to be able to distinguish between these
stacking orders. Therefore, to provide this groundwork,
we must find a method for the effective characterization of
trilayers.

To date, several characterization techniques have been
prominent in monolayer and multilayer studies. Atomic
force microscopy (AFM) has been used to study the
number of layers in few-layer samples, along with their
morphology. Although this technique is useful, it has been
cited as unreliable [11]. Another method, which also
allows us to determine the number of layers, is
transmission electron microscopy (TEM). While TEM is
more reliable than AFM, it requires the sample to be
suspended, which is often impractical. The presence of
optical transitions in the infrared (IR) range for
multilayers offers us a useful new way to study them. IR
spectroscopy allows us to probe the electronic band
structure, which gives us access to a wealth of information
that cannot be determined from either AFM or TEM data.
Recent theoretical studies have shown that high-energy IR
(NIR) measurements can be used to determine the number
of layers in a multilayer, and lower-energy IR (MIR)
measurements can be used to determine the stacking



order [12]. While IR is more reliable and practical than
TEM and AFM, as well as more informative, it is not
available in most research laboratories. Raman scattering,
on the other hand, has not been met with the difficulties
described above. The method is reliable, practical, and is
available in most research laboratories. Therefore, it is
most beneficial for us to study the Raman spectrum of
graphene trilayers, in attempt to find ways to characterize
as many physical features as possible.

To date, the Raman spectrum of graphene, and multilayers,
has been used to characterize many physical features. The
intensity of the D mode has allowed one to determine the
quality of a sample [13]. The shape of the 2D overtone has
been used to determine the number of layers in a
multilayer [13]. The width of the G mode has allowed us to
study the level of doping of a sample [14]. And finally, the
shifts of the 2D and G modes, along with the width of the G
mode, have allowed one to study the strain on a sample
[15]. Although this information tells us a lot, there is still
more to be inferred. To date, there is no clear consensus on
the shape of the 2D mode in trilayer graphene. This mode
is shown to have asymmetric features in some studies [16-
18], and symmetric features in others [19-21]. In this
study, we aim to resolve this inconsistency by considering
the stacking order of trilayer graphene. Additionally, we
look for a quantifier that allows us to map stacking
domains from Raman scanning measurements.

II. Experimental and Analytical Methods

Graphene multilayer samples were produced by the
method of mechanical exfoliation of kish graphite [23]. Our
substrate was Si coated with 300nm SiO,. Samples of
reasonable shape and size were found with an optical
microscope.

Raman spectroscopy was performed using a 532nm laser
as the excitation source, with an 1800 slit/cm grating, and
a resulting spectral resolution of ~0.6cm L. The integration
time per spectrum was set at 8 minutes. Infrared
spectroscopy was performed on a micro-FTIR apparatus
with a Globar source and a HgCdTe detector in
Brookhaven National Laboratory. 2D Raman mapping was
performed using 514.5nm linearly polarized light from an
Argon laser. Raman spatial maps were taken with a spot
size of roughly 500nm, a step size of 500nm, and a
resolution of 8cmt. The integration time was fixed at 5
seconds.

Within the Results and Discussion, we refer to several
parameters. The central frequency (<w>) is given by the
statistical relationship in Eq. 1., where o is the frequency
and [(w) is the Raman intensity at that frequency.
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An asymmetry parameter was calculated by integrating
each half of the 2D mode and then taking their ratio. The
mathematical formulation of this procedure is given in Eq.
(2). Here w1 and wr are the frequencies at which the mode
reaches 15% of its maximum intensity. I, and Ir are the
values of the left and right integrals.
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A so-called residual parameter (n) was also calculated.
This was done by subtracting the spectrum of the ABC
stacked 2D mode (Iagc(w)) from the measured spectra
(I(w)), and then integrating the resulting spectrum over w
(see Eq. 3). The ABC stacked 2D mode will be discussed
within the Results and Discussion section.

N= Ly (@) - Iw)do 3)

The line width (I") was calculated as the width of the 2D
mode at % of maximum intensity. Statistical analysis was
performed in MATLAB using a mixture of original code and
built in functions (see Appendix A5 for complete code).

III. Results and Discussion

In a recent study, it was found that the transmission
plateau in the NIR spectrum of multilayers is quantized
with respect to layer number [12]. This results from the
hyperbolic bands that make up multilayer’s band
structures. In NIR energy ranges, the bands run parallel to
one another, along their respective asymptotes.
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FIG. 1. (a)-(b) Band structures of ABC and ABA stacked trilayers [10]. (c)
The IR spectra of monolayers, bilayers, and trilayers with ABA and ABC
stacking geometry. The NIR tails of the teal and red curves tell us that
both curves are representative of trilayers. The MIR transmission peaks
tell us the stacking type.



Qualitatively, this situation is analogous to having multiple
monolayers with linear bands. Furthermore, in a trilayer
such an arrangement will result in roughly triple the
absorption of a monolayer. After finding trilayers in this
way, we looked to the lower energy transmission
spectrum. In accord with the literature, we found only two
distinctly different MIR transmission patterns, with
converging tails in the NIR range. Theoretical studies have
shown that ABA and ABC stacked trilayers are the most
energetically favorable [23]. To determine which
spectrum corresponds to which stacking geometry, we
studied the trilayer band structure. It turns out that two
strong MIR absorption features are possible with ABC
geometry and only one with ABA geometry. Indeed one
class of spectra had one transmission peak while the other
had two transmission peaks, making it feasible to make the
distinction. These results are summarized in Fig. 1.

A sample was found with both stacking orders, and the
locations of these domains were determined by
performing multiple IR  measurements. Raman
measurements were then taken within each domain, so as
to determine the shapes of the 2D modes in ABA and ABC
stacked regions (see Fig. 2, where we have the averaged
several spectra from ABA and ABC regions). Although both
curves in the figure display some oscillatory noise, they are
clearly distinct. The ABC domain produces an asymmetric
2D mode, with a pronounced peak, while the ABA domain
produces a more symmetric mode with a broad peak.
Additionally it appears that the ABC mode is wider than
the ABA mode by several wavenumbers. As already
mentioned, curves similar to those presented here have
appeared in the literature. However, they have never been
presented simultaneously, and there has not been any
inquiry as to what physical features are responsible for the
variation in their shapes. From the combination of our IR
and Raman data, it becomes clear that these two shapes
are the signatures of ABA and ABC stacking geometries.
After clarifying this fact, it was our goal to quantify these
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FIG. 2. Raman spectra of graphene trilayers with ABA and ABC stacking
geometries. Stacking geometry was confirmed with IR measurements.
The ABC produced mode is asymmetric and has a greater width than the
ABA mode. The ABA produced mode is more symmetric with a smooth
peak.

shape differences, and to map stacking domains.

To facilitate this study, we acquire Raman spectra while
raster-scanning the sample along a 46 by 110 grid. Several
quantities were calculated at each pixel and plotted in the
form of colormaps (each pixel corresponds to a single
spectrum). Each quantity attempts to capture the apparent
difference between the 2D mode in ABA and ABC domains
in a different way. First, we calculated the central
frequency of the mode, by applying Eq. (1). (see Fig. 3(b)).
The leftward asymmetry of the ABC mode should cause
this to register a lower central frequency than a symmetric
mode. Then, we calculated the asymmetry parameter, as
given by Eq. (2). In symmetric modes, such as those that
arise in ABA regions, this quantity should be close to 1.
However, in asymmetric regions, such as those with ABC
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FIG. 3. (a) optical photograph of our trilayer sample. The scale bar represents 10um. (b) The central frequency of the 2D mode. (c) The ratio of the
integrated intensities of the left hand side of the mode to the right hand side (d) The residual at each point. (¢) The line width of the mode at 34
maximum. In these figures, prominently in (c) and (d), we see a sharp boundary, which is representative of stacking. The physical explanation for the
gradually varying features in (b) has not yet been devised. The Blue squares represent areas where data was sampled for statistical analysis. The
stacking in these blue regions was also confirmed by IR spectroscopy.



stacking, this ratio should be noticeably smaller than one.
These results are plotted in Fig. 3(c). Next, the residual
parameter was calculated, as given by Eq. (3) (see Fig.
3(d)). Asymmetric modes will return a small value for this
parameter while symmetric modes will return a large
value. Finally, to account for the apparent broadening in
the ABC mode, we calculated the line width (denoted I';p.
see Fig. 3(b)).

In the obtained maps, we immediately notice the presence
of several domains (see Fig. 3(b)-(e)). Note that the
vertical line on the right-hand side of the sample is a
structural artifact and can be seen in the optical
photograph in Fig. 3(a). In these maps we clearly see a
homogeneous ABC region at the center of the trilayer that
separates two smaller ABA domains at the top and bottom
parts of the sample. Indeed these are the same regions
where IR and Raman measurements were taken, and
where we have confirmed the presence of different
stacking domains. Therefore, it appears that the carefully
chosen parameters are effective. However, we also notice
that some parameters are better than others in this
mapping. In particular, we see a lot of noise in Fig. 3(e),
and gradually varying features, that are not representative
of stacking, in Fig. 3(a).

For further quantitative analysis, we have -carefully
examined 12x12 regions within homogeneous ABA and
ABC domains (these grids are indicated by the blue
squares in Fig. 3(b)-(e)). Histograms representing the
distributions of the studied parameters, for each stacking
domain, are plotted in Fig. 4. Each distribution was
assumed normal and was fit with a Gaussian. See Table 1
in Appendix A4 for the mathematical parameters that
describe these Gaussians. The purpose of this step was to
determine the amount of overlap between the
distributions. Each Gaussian was integrated from their
point of intersection, and the lower limit was denoted ¢,
with subscripts indicating the quantifier. This procedure
returned the following values: e<,> ~ .61, er/~ .71, ¢, ~
.88, and & ~ .89. Note that an ¢ of .5 means that both

Gaussians overlap completely, and an € of .84 means that
the Gaussians overlap at the point where one of them
attains its first standard deviation.

Based on this analysis, the most accurate quantifiers are
the residual parameter and the line width of the 2D mode.
It is surprising that ¢ is so close to .5, for the central
frequency and the asymmetry parameter. This could be the
result of noise due to low integration times or the wide
spectral resolution of 8cm-.

It is important to mention that homogeneously stacked
samples are quite rare. In fact, six out of six scanned
samples contained both ABA and ABC domains.
Additionally, we note that the sample analyzed in this
paper is quite exquisite, in that the stacking domains are
quite large and have nice, rectangular shapes. Other
samples that we studied had many small domains with
complex profiles. We must also note that not all stacking
domains could be resolved. The laser spot in our Raman
setup was 500nm in diameter, which is much larger than
the length of a single hexagonal carbon ring. Furthermore,
it a possibility that small stacking domains are not
displayed in our maps. This finding should be a concern
(though hopefully not a deterrent) in future studies.

One important issue is the mechanism for formation of
different stacking domains. It is rather unlikely that they
arose in the process of cleaving graphite during
mechanical exfoliation. Qualitatively, we must consider
the strength of the van der Waal interactions that hold
graphene layers together in graphite. While these forces
are not strong enough to prevent easy peeling of layers,
they are much stronger in the direction along the layer.
Therefore, this would likely resist the layer-shifting
processes that would presumably form these domains.
Instead, it is more likely that three-dimensional domains
were present in the bulk graphite before exfoliation, and
that in cleaving graphene layers, we are simply exposing
cross-sections of these domains.
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FIG. 4. Histograms and corresponding Gaussians for (a) the central frequency, (b) ratio of the integrated intensities of the right and left halves, (c) the
residual parameter and (d) the line width of the 2D mode in ABA and ABC stacked domains. From these data, it is clear that the best way to map stacking
domains is with the line width, whose histograms experience the least overlap. The amount of overlap in the other quantifiers is too significant to tell
different stacking regions apart, with good confidence. See Table 1 in the Appendix for a summary of data presented here.



Now we must ask how homogeneous trilayers might be
formed. It is possible that methods that involve the
assembly of individual carbon atoms into sheets could
produce homogeneous trilayers. These alternative
synthetic routes are actually topics of intense research
right now, with prominent methods involving chemical
vapor deposition (CVD) [24] and epitaxial growth [25].
However, if such methods could produce homogeneous
trilayers, it would be yet another task to discover a way to
control stacking orders. Another possible way of creating
homogeneous sheets might involve the heating of
inhomogeneous samples. Molecular vibrations due to
thermal excitation might force atoms to break out of their
initial stacking order, and then into a homogeneous order
upon cooling. Now that we have established methods that
can be used to map stacking domains, it would be
interesting to implement them on samples produced and
treated in the ways described above.

Conclusion

In this study it was found that the shape of the 2D mode in
the Raman spectra of graphene trilayers is dependent
upon the stacking geometry of graphene layers. ABC
stacked samples show an asymmetric mode, while ABA
stacked samples produce a more symmetric mode. By
quantifying these shapes and using Raman imaging, it was
possible for us to map stacking domains. A new parameter
(¢) was introduced to measure the amount of overlap in
our quantities of interest within ABA and ABC stacking
domains. By using this parameter, it was found that the
most accurate way to map stacking domains is with
residual parameter (see Eq. (3)) and the line width. In a
future study, it would be very interesting to perform
Raman scanning with a spectral window around the D
mode. It is likely that we could observe this mode in areas
of stacking discontinuity, which could also prove useful in
the mapping of stacking domains.

While we have found a way to map stacking domains, we
have not formulated a theoretical explanation for why
there is a difference in the 2D mode of ABA and ABC
stacked trilayers. In addition, we have not fully understood
the origin of more subtle features, such as the gradual red
shifts that are present in the map representing the central
frequency. Although these might be due to doping or
strains, rigorous quantitative analysis has not been
performed (see Appendix A2 for further discussion).

Future work should extend our findings to higher order
multilayers. Although it was not presented here, we found
that the 2D mode in tetralayers and hexalayers also takes
on different shapes in different stacking regions (see
Appendix A3). While it may seem that studying higher
order multilayers would become more complicated, this
might not actually be the case. After considering mirror
symmetries within the crystal, along with geometrically
equivalent orders, the number of energetically favorable

stacking configurations declines tremendously. In fact, it is
believed that there are only two energetically favorable
tetralayers as well. Therfore, Raman might be effective for
the characterization and mapping of stacking domains in
higher order multilayers as well.
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A1l. G Mode Analysis

In addition to studying the 2D mode, we briefly studied
the G mode. Because the shape looked indistinguishable
in ABA and ABC domains, we only computed the line
width and the frequency of the mode. Although statistical
analysis was not performed, we made several qualitative
observations based on the colormaps presented in Fig. 5.
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A2. Moderate features in the colormaps

In Fig. 3(b), we see the presence of a moderately varying
feature. This is most easily seen in the angled, north-
eastern region of the sample, within the ABA domain. In
attempt to find an explanation for this feature, we briefly
consider the effects of doping and strain on the Raman
spectrum.

Studies in the literature show that doping causes the G
mode to stiffen, while leaving the shape of the 2D mode
unchanged. Therefore, the ratio of the integrated
intensities of the two modes is a good indicator of the
doping level. This calculation was performed with the
result plotted in Fig. 6. Note that the horizontal lines are
representative of instrumental malfunction. Irrespective
of these artifacts, however, we do not see any features
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FIG. 5. (a) linewidth of the G mode and (b) frequency of the G mode,
as determined by center of the Lorentzian function used to fit it. The
horizontal lines in (a) are attributed to instrumental noise.

FIG. 6. Ratio of the integrated intensities of the 2D mode to the G
mode. The horizontal lines may be attributed to instrumental noise.
We do not see the gradually varying feature in Fig. 3(b), suggesting
that doping might not be responsible for it. A color bar is not
presented, as accurate numerical analysis here is not possible due to
apparent laser intensity fluctuations.



shifted (see Fig. 5(b)). In addition, the line width of the G mode does not appear to be wider in that region (see Fig. 5(a)).

From this short, qualitative, analysis, it seems that neither strain nor doping are responsible for the gradually varying
feature seen Fig. 3(b). However, without a rigorous quantitative study, we cannot make any conclusions. This would be an
interesting topic for future studies.

A3. Raman scattering on tetralayers and hexalayers

Raman scattering was also performed on various stacking domains in tetralayers and hexalayers (See Fig. 6). The resulting
data implies that the 2D mode in higher order multilayer samples is also dependent upon the stacking geometry. And in
fact, it appears that it is affected even more than in trilayer samples.
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FIG. 6. 2D mode in differently stacked (a) tetralayers and in (b) hexalayers. The horizontal axis represents wavenumbers (cm-1) and
the vertical axis the intensity (a.u.). Differences in stacking orders were determined by infrared spectroscopy. However, we do not
claim a specific stacking order, as the number of possible configurations is quite large. There is a clear difference in the shapes of the
modes indicating that Raman might prove to be a useful tool in the characterization of these materials.

A4, Tables

TABLE 1. After spectral data was obtained, we determined the width at 34 max (I'), the residual parameter (1), the central frequency
(<w>), and the asymmetry parameter (I1/IR). Histograms were then made for these quantities, and a Gaussian was used to fit them,
assuming normal distributions. The mean (u), the standard deviation (o), the point of intersection of the Gaussians (), and the integral
from the point of intersection, to infinity, were calculated.
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A5. MATLAB Code for data analysis

%% Raman Scanning Analysis Program by PAUL KLIMOV, Summer 2009.
close all; clear all; clc

%% THESE FEW LINES REQUIRE EDITING EVERY TIME A NEW FILE IS USED

load 2D_23X65_25mW_5s.txt;

load wavenumber.txt

Map=cell(46,110);

WN=wavenumber
WNsmooth=linspace(min(WN),max(WN),1000)
DATA=X2D_23X65_25mW_5s';

clear datal data2 wavenumber

xdim=46 % the number of spectra in x direction
ydim=110 % the number of spectra in y direction

¢while i load the data, i will find noise and subtract it out
NoiseInd=find (WN>1800&WN<2300); %this selects a region of noise
for i = l:ydim;
for k = 1l:xdim;

Map{k,i}=DATA(:,k+(i-1)*xdim);

NoiseVals=Map{k,i} (NoiseInd);

MeanNoise=mean(NoiseVals);

Map{k,i}=Map{k,i}-MeanNoise;

Map2{k,i}=spline(WN,Map{k,i},WNsmooth);

$Normalize over 2D mode - this will be used later
NormFactor=max(Map2{k,i} (find (WNsmooth>2500&WNsmooth<3000)));
Normal2DMap{k,i}=Map2{k,i}/NormFactor;

$Normalize over G mode - this will be used later
NormFactorG=max (Map2{k,i} (find(WNsmooth>1000& WNsmooth<2100)));
NormalGMap{k,i}=Map2{k,i}/NormFactorG;

end
end
%% Fitting Lorentzian to the G mode Version 2

GInd=find(WNsmooth>1000& WNsmooth<2100);
PeakG=cell (xdim,ydim);

gamma=cell (xdim,ydim);

WidthG=cell (xdim,ydim);

CenterG=cell (xdim,ydim);
LorG=cell(xdim,ydim);

XG=WNsmooth (GInd)

for i = l:ydim
for k=1:xdim
y=Map2{k,i}(GInd);

[sigma,mu,AG]=mygaussfit(xG,y,.4); %optimized for .4
Gauss=AG*exp( -(xG-mu)."2 / (2*sigma”2) ); % gaussian fit
CenterG=xG(find(Gauss==max(Gauss))); % center of gaussian

$Lorentzian fitting - finding gamma and the amplitude

gammavec=linspace(0,50,200);
peakvec=linspace(AG+5, AG-5,10);
wavenumbervec=linspace(CenterG-3, CenterG+3,10);

$residual=zeros(1,1000)

$ my fitting algorithm. It will scan through gammas, peak heights,
% and frequencies to find the best fit. This part takes a long time
% to run

for u =1:10

for 1 = 1:10



for j = 1:200
testPeakG=peakvec(l);
testgamma=gammavec(j);
testwn=wavenumbervec(u);
testLor=testPeakG*testgamma”2./((xG-testwn)."2+testgamma”2);
residual(j,u,l)=sum(abs(y-testLor)); % residuals in a 3 dim matrix
end
end
end
g¢next line will find the minima of the 3 dimensional residual
gmatrix and then from the indicies, my program will determine the
gcorresponding gamma, frequency, and peak height.
[minj,minu,minl]=ind2sub(size(residual),find(residual==min(min(min(residual)))));

gammaG{k,i}=gammavec(minj); %HWHM of Lorentzian
PeakG{k,i}=peakvec(minl); %Peak intensity of Lorentzian
wnG{k,i}=wavenumbervec (minu); %$frequency of Lorentzian

00

The following lines look for errors and get rid of them without
crashing the program. They look for empty matricies, or matricies
with more than one element, which can result from spectra with
only noise.
if sum(size(gammaG{k,i}))>2

gammaG{k,i}=0;

PeakG{k,i}=0;

wnG{k,1}=0;

errormatG{k,i}=1;
end
if sum(size(gammaG{k,i}))==

gammaG{k,i}=0;

PeakG{k,i}=0;

wnG{k,1}=0;

errormatG{k,i}=1;
end

00 00 o0

FWHMGaussG(k,1)=2.3548*sigma; %The gaussian FWHM. This is not used anymore
LorG{k,i}=PeakG{k,i}*gammaG{k,1i}"2./((xG-wnG{k,i})."2+gammaG{k,i}"2); %the lorentzian fit
WidthG{k,i}=gammaG{k,i}; %HWHM of lorentzian
i
end
end
'done' %tells you when the program has finished running.
%It can take over 30 numbers depending on the resolution

%% run this to clear some unimportant variables and free up memory

clear residual testLor testwn testgamma testPeakG gammavec peakvec wavenumbervec
clear NoiseVals MeanNoise DATA Map

%% run this if you want to save out data to the current directory. You

%% Might want to add to these names to be more specific!

save WidthG2 WidthG

save LorG2 LorG

save PeakG2 PeakG

save gammaG2 gammaG

save wnG2 wnG

%% Run this if you want to load data from the current directory
%% If you changed names earlier, make sure to change these variables
load WidthG WidthG

load LorG LorG

load PeakG PeakG

load gammaG gammaG

load wnG wnG

%% Fitting Lorentzian to the 2D mode. Same code as for G mode.
TwoDInd=find(WNsmooth>2550&WNsmooth<2850) ;

¢fit the 2D mode with a lorentzian

PeakTwoD=cell (xdim, ydim) ;

gamma=cell (xdim,ydim);

WidthTwoD=cell (xdim,ydim);

FWHMGaussTwoD=cell (xdim,ydim);

CenterTwoD=cell (xdim,ydim);

Lor2D=cell (xdim, ydim)

x2D=WNsmooth (TwoDInd)



for i = l:ydim
for k=1:xdim
y=Map2{k,i} (TwoDInd);

[sigma,mu,A2D]=mygaussfit(x2D,y,.4); %optimized for .4
Gauss=A2D*exp( —-(x2D-mu)."2 / (2*sigma”2) );
Center2D=x2D(find(Gauss==max(Gauss)));

$Lorentzian fitting - finding gamma and the amplitude

gammavec=linspace(0,50,200);
peakvec=linspace(A2D+5, A2D-5,10);
wavenumbervec=linspace(Center2D-3, Center2D+3,10);

$residual=zeros(1,1000)
for u =1:10
for 1 = 1:10
for j = 1:200
testPeak2D=peakvec(l);
testgamma=gammavec(j);
testwn=wavenumbervec(u);
testLor=testPeak2D*testgamma”2./( (x2D-testwn).”"2+testgamma”2);
residual(j,u,l)=sum(abs(y-testLor));
end
end
end
[minj,minu,minl ]=ind2sub(size(residual),find(residual==min(min(min(residual)))));

gamma2D{k,i}=gammavec (minj);
Peak2D{k,i}=peakvec(minl);
wn2D{k,i}=wavenumbervec (minu);

if sum(size(gamma2D{k,i}))>2
gamma2D{k,i}=0;
Peak2D{k,1}=0;
wn2D{k,i}=0;
errormat2D{k,i}=1;
end
if sum(size(gamma2D{k,i}))==
gamma2D{k,i}=0;
Peak2D{k,1}=0;
wn2D{k,i}=0;
errormat2D{k,i}=1;
end
FWHMGaussG(k,1)=2.3548*sigma;
Lor2D{k,i}=Peak2D{k,i}*gamma2D{k,i}"2./((x2D-wn2D{k,1i})."2+gamma2D{k,i}"2);
Width2D{k,i}=gamma2D{k,i};
i
end
end
"done’
%% Run this to save out 2D mode information
save Width2D_2 Width2D
save Lor2D 2 Lor2D
save Peak2D_ 2 Peak2D
save gamma2D_2 gamma2D
save wn2D_2 wn2D
%% Run this to load 2D mode information
load Width2D 2 Width2D
load Lor2D 2 Lor2D
load Peak2D_ 2 Peak2D
load gamma2D_2 gamma2D
load wn2D 2 wn2D
%% Run this to clear out some memory
clear A2D DATA Gauss MeanNoise NoiseInd NoiseVals NormFactor NormFactorG
clear testLor sigma residual peakvec testPeak2D testgamma testwn wavenumbervec
%% Integrated intensity Gmode.
Gintegrationind=find(WNsmooth>1570&WNsmooth<1610); %finds region of integration
TwoDintegrationind=find(WNsmooth>2620&WNsmooth<2780); %finds region of integration

for i = l:ydim



for k=1:xdim
IntegratedG(k,i)=sum(abs((Map2{k,i}(Gintegrationind))));
Integrated2D(k,i)=sum(abs(Map2{k,i} (TwoDintegrationind)));
Integrated2DNorm(k,i)=sum( (Normal2DMap{k,i} (TwoDintegrationind)));
end

end

Ratio2DtoG=Integrated2D./IntegratedG; % The integrated intensities ratio

%% Save Integrated Intensity data

save IntegratedG IntegratedG

save Integrated2D Integrated2D

save Ratio2DtoG Ratio2DtoG

%% Moments calculations

WN2DcmInd=find (WNsmooth>2670&WNsmooth<2737)

for i = l:ydim
for k = l:xdim
Intensitysum(k,i)=sum(Normal2DMap{k,i} (WN2DcmInd));

$first moment
WNem(k,i)=sum( (WNsmooth(WN2DcmInd)).*Normal2DMap{k,i}(WN2DcmInd))/Intensitysum(k,i);

end
end

climWNem=[2700 2705]

imagesc (WNcm,climWNcm)

colorbar; axis equal tight
title('first moment 2D')

set(gcf, 'color',[1,1,1]); colormap hot

¢the following plot gives random plots so you can see the region of

%integration

% figure

for p = 1:9
subplot(3,3,p)
plot (WNsmooth (WN2DcmInd), ...
Normal2DMap{floor(100*rand(1l)+1l),floor(40*rand(1l)+1)} (WN2DcmInd))

axis([2670,2737,0,11)

end

% Save Moments

ave WNcm WNcm

% Plots

00 00 00 00 00 o0 o
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% Gmode Plots
subplot(1,2,1)
climwidth=[6.4 8];
imagesc(cell2mat (WidthG)',climwidth)
colormap hot

colorbar

ylabel (texlabel (' Gamma
set(gcf, 'color',[1,1,1]
set(gca, 'YTickLabel',[]
set(gca, 'XTickLabel',[]

G (em™-"1)"))
); axis equal tight
)i
)i
%these next loops get rid of 'broken' data points, so we can plot the G
¢frequencies
for i = l:ydim
for k = l:xdim
if length(find(LorG{k,i}==max(LorG{k,i})))>1
shiftG(k,1i)=0
continue
end
shiftG(k,i)=wnG{find(LorG{k,i}==max(LorG{k,i}))};
end
end

subplot(1,2,2)

climshiftG= [1590.2641 1590.2641]
imagesc(shiftG',climshiftG)
colorbar;set(gcf, 'color',[1,1,1])



colormap hot; axis equal tight
ylabel (texlabel( 'omega G (cm”-="1)"))
set(gca, 'YTickLabel',[1);
set(gca, 'XTickLabel',[1);
figure
climintensity=[1475 1760];
imagesc(cell2mat (PeakG),climintensity)
colorbar

title('G Mode Intensity')

set(gcf, 'color',[1,1,1])

colormap hot

%$2D to G integrated intensity

figure

subplot(3,1,1)

climratio=[1,1.76]1*10"4

imagesc(IntegratedG,climratio)
colorbar;title('IG');colormap hot;set(gcf, 'color',[1,1,1])

subplot(3,1,2)

climratio=[2,5]*10"4

imagesc(Integrated2D,climratio)
colorbar;title('I2D');colormap hot;set(gcf, 'color',[1,1,1])

subplot(3,1,3)

climratio=[2,4]

imagesc(Integrated2D./IntegratedG,climratio)
colorbar;title('I2D/IG');colormap hot;set(gcf, 'color',[1,1,1])
%% 2D mode plots

figure

climswidthD = [ 24 29 ]

imagesc(cell2mat (Width2D),climswidthD)
title('2D Mode Lorentzian Peak Width')
colorbar; colormap hot; axis equal tight
set(gcf, 'color',[1,1,1])

figure

climscenterD=[2690 2705]
imagesc(cell2mat(wn2D),climscenterD)
title('2D Mode Peak Center')

colorbar; colormap hot; axis equal tight
set(gcf, 'color',[1,1,1])

Widths at different heights for 2D mode and one G. This measures the
spectra directly, not the Lorentzians corresponding to the data
TwoDInd=find (WNsmooth>2550&WNsmooth<2850);
GInd2=find(WNsmooth>1570&WNsmooth<1620);
for i = l:ydim
for k = l:xdim
fiftyInd=find(Normal2DMap{k,i}(TwoDInd)>.5);
seventyfiveInd=find(Normal2DMap{k,i} (TwoDInd)>.75);
$eightyInd=find(Normal2DMap{k,i} (TwoDInd)>.80);
seventyfiveIndG=find (NormalGMap{k,i}(GInd2)>.5);

%%
%%

if isempty(seventyfiveInd)==
errorind(k,i)=1
continue
end
if isempty(fiftyInd)==
errorind(k,i)=1
continue
end
if isempty(eightyInd)==
errorind(k,i)=1
continue
end
if isempty(seventyfiveIndG)==1
errorindG(k,i)=1
continue
end

o0 oP 0P oP



fiftywidth(k,i)=abs (WNsmooth(min(fiftyInd))-WNsmooth(max(fiftyInd)));
seventyfivewidth(k,i)=abs(WNsmooth(min(seventyfiveInd))-WNsmooth(max(seventyfiveInd)));
% eightywidth(k,i)=abs (WNsmooth(min(eightyInd))-WNsmooth(max(eightyInd)));
seventyfivewidthG(k,i)=abs (WNsmooth(min(seventyfiveIndG) )-WNsmooth(max(seventyfiveIndG)));
end

end

fiftywidth(find(errorind==1))=100

seventyfivewidth(find(errorind==1))=100

eightywidth(find(errorind==1))=100

figure

climsfifty=[50 77]
imagesc(fiftywidth,climsfifty)
title('fifty width')

colorbar

axis equal tight

set(gcf, 'color',[1,1,1])
colormap hot

% subplot(3,2,2)

% plot(6:1:35, fiftywidth(7,6:end))
% axis tight

figure

climsseventyfive=[34 49]
imagesc(seventyfivewidth,climsseventyfive)
title('seventy five width')

colorbar

axis equal tight; colormap hot

set(gcf, 'color',[1,1,1])

figure
hist(seventyfivewidth);axis ([0 100 0 80])

o0 o0
o0 o0

subplot(3,2,4)
plot(6:1:35, seventyfivewidth(7,6:end))
axis tight

00 00 00 oo
o0 o0

figure

climsseighty=[10 40]
imagesc(eightywidth,climsseighty)
title('eighty width')

colorbar

axis equal tight

set(gcf, 'color',[1,1,1])

colormap winter

% subplot(3,2,6)

% plot(6:1:35, eightywidth(7,6:end))
% axis tight

00 00 00 00 00 00 00 A0 A OO

o0 o0

figure

o0

climsseventyfiveG=[8 19]
imagesc(seventyfivewidthG,climsseventyfiveG)
title('fifty width G')

colorbar

axis equal tight

set(gcf, 'color',[1,1,1])

colormap hot

%% Final Plots

subplot(2,3,1)

WNcm(30:34,32)=0% these types of changes are here to draw a square where data was taken
WNem(30:34,36)=0% in the later part of the program

WNcm(34,32:36)=0

WNcm(30,32:36)=0

WNcm(34:38,43)=0
WNcm(34:38,47)=0
WNcm(34,43:47)=0



WNem(38,43:47)=0

imagesc (WNcm, [2700,2706])

colorbar

set(gcf, 'color',[1,1,1]1); colormap hot
ylabel(texlabel('Omega 2 D (cm”™="1)"))
set(gca, 'YTickLabel',[1])

set(gca, 'XTickLabel',[1])

subplot(2,3,2)
WidthGPlot=cell2mat (WidthG)
WidthGPlot (30:34,32)=0
WidthGPlot(30:34,36)=0
WidthGPlot (34,32:36)=0
WidthGPlot (30,32:36)=0

WidthGPlot(34:38,43)=0
WidthGPlot(34:38,47)=0
WidthGPlot(34,43:47)=0
WidthGPlot(38,43:47)=0

climwidth=[6.8 8.5];
imagesc (WidthGPlot,climwidth)
colormap hot

colorbar

set(gcf, 'color',[1,1,1])

ylabel (texlabel( 'Gamma G (cm”-"1)"))
set(gca, 'YTickLabel',[1])

set(gca, 'XTickLabel',[1])

wnGPlot=cell2mat (wnG)
wnGPlot(30:34,32)=0
wnGPlot(30:34,36)=0
wnGPlot (34,32:36)=0
wnGPlot(30,32:36)=0

wnGPlot (34:38,43)=0
wnGPlot (34:38,47)=0
wnGPlot (34,43:47)=0
wnGPlot (38,43:47)=0
subplot(2,3,3)
climcenter=[1587 1593];
imagesc (wnGPlot,climcenter)
colorbar

set(gcf, 'color',[1,1,1])
colormap hot

ylabel (texlabel ( 'omeg
set(gca, 'YTickLabel'

G (cm™="1)"))
I )
set(gca, 'XTickLabel',[1])

af
[]
[]

subplot(2,3,4)
Width2DPlot=cell2mat (Width2D)
Width2DPlot(30:34,32)=0
Width2DPlot(30:34,36)=0
Width2DPlot(34,32:36)=0
Width2DPlot(30,32:36)=0

Width2DPlot(34:38,43)=0
Width2DPlot(34:38,47)=0
Width2DPlot(34,43:47)=0
Width2DPlot(38,43:47)=0

climswidthD = [ 24 30 ]
imagesc(Width2DPlot,climswidthD)
colorbar; colormap hot

set(gcf, 'color',[1,1,1])
ylabel(texlabel('Gamma 2 D (cm”™="1)"))
set(gca, 'YTickLabel',[1])

set(gca, 'XTickLabel',[1])

subplot(2,3,5)



wn2DPlot=cell2mat (wn2D)
wn2DPlot(30:34,32)=0
wn2DPlot(30:34,36)=0
wn2DPlot(34,32:36)=0
wn2DPlot(30,32:36)=0

wn2DPlot (34:38,43)=0

wn2DPlot (34:38,47)=0

wn2DPlot (34,43:47)=0

wn2DPlot (38,43:47)=0
climscenterD=[2693 2710]
imagesc(wn2DPlot,climscenterD)
colorbar; colormap hot
set(gcf, 'color',[1,1,1])
ylabel(texlabel('omega 2 D (cm”™="1)"))
set(gca, 'YTickLabel',[1])
set(gca, 'XTickLabel',[1])

subplot(2,3,6)

climratio=[2,3.1]

imagesc(Integrated2D./IntegratedG,climratio)

colorbar;ylabel('I 2 D/I G (a.u.)');colormap hot;set(gcf, 'color',[1,1,1])
set(gca, 'YTickLabel',[1])

set(gca, 'XTickLabel',[1])

Calculation of variations of intensity. to determine magnitude of
effect. The grid is shown in the figures above.

DeltaMoment=mean (mean([WNcm(15:20,20:25)- WNcm(20:25,50:55)1))

PercentMoment=mean (mean(DeltaMoment./WNcm(30:34,32:36)*100))
DeltaWidthG=mean(mean([cell2mat (WidthG(30:34,32:36))-cell2mat(WidthG(34:38,43:47))1))
PercentWidthG=mean(mean([cell2mat (WidthG(30:34,32:36))-

cell2mat (WidthG(34:38,43:47))]./cell2mat(WidthG(30:34,32:36))*100))
DeltafregG=mean(mean([cell2mat(wnG(29:33,32:36))-cell2mat(wnG(34:38,43:47))1]))
PercentfreqgG=mean(mean([cell2mat(wnG(29:33,32:36))-
cell2mat(wnG(34:38,43:47))]/cell2mat(wnG(29:33,32:36))%*100))
DeltaWidth2D=mean(mean([cell2mat (Width2D(30:34,32:36))-cell2mat(Width2D(34:38,43:47))1]))
PercentWidth2D=mean (mean([cell2mat (Width2D(30:34,32:36))-

cell2mat (Width2D(34:38,43:47))]./cell2mat(Width2D(30:34,32:36))*100))
Deltafreg2D=mean(mean([cell2mat(wn2D(30:34,32:36))-cell2mat(wn2D(34:38,43:47))1]))
Percentfreqg2D=mean(mean([cell2mat(wn2D(30:34,32:36))-

cell2mat(wn2D(34:38,43:47))]1./cell2mat(wn2D(30:34,32:36))*100))

%% The 2D and G mode averaged in the same regions as shown in the figures
%% above.

$Normal2DMap

%

ABAG=zeros(1,1000)
ABA2D=zeros(1,1000)
%

% ABCG=zeros(1,1000)
ABC2D=zeros(1,1000)

$LorABAG=zeros(1,408)
$LorABCG=zeros(1,408)

$LorABA2D=zeros(1,141)
$LorABC2D=zeros(1,141)

for i = 1:5
for j = 1:10
% ABA stuff
tempspec=NormalGMap{30+(i-1),32+j-1}; %these are the ABA indicies
ABAG = ABAG + tempspec;
tempspec=Normal2DMap{1l1l+(i-1),18+j-1};
ABA2D= ABA2D + tempspec;

o0 oP

tempspec=LorG{30+(i-1),32+j-1};
LorABAG=LorABAG+tempspec
tempspec=Lor2D{30+(i-1),32+j-1};
LorABA2D=LorABA2D+tempspec

o0 o° 0@ ode



o0

% ABC stuff
tempspec=NormalGMap{34+(i-1),43+j-1};
ABCG = ABCG + tempspec;

tempspec=Normal2DMap{15+(i-1),60+j-1};

ABC2D= ABC2D + tempspec;

00 00

00

tempspec=LorG{34+(i-1),43+j-1};
LorABCG=LorABCG+tempspec
tempspec=Lor2D{34+(i-1),43+j-1};
LorABC2D=LorABC2D+tempspec

00 00 oo

end
end

% ABAG=ABAG/max (ABAG);

% ABCG=ABCG/max (ABCG) ;
ABA2D=ABA2D/max (ABA2D) ;
ABC2D=ABC2D/max (ABC2D);
LorABCG=LOrABCG/max (LorABCG) ;
LorABAG=LorABAG/max (LOrABAG) ;
LorABC2D=LorABC2D/max (LorABC2D) ;
LorABA2D=LorABA2D/max (LorABA2D) ;

00 00 00 oo

o0

subplot(1,4,1)

plot (WNsmooth,ABAG,WNsmooth,ABCG, 'm', 'linewidth',2);axis([1560,1620,0,1]);legend('ABA', 'ABC"')
set(gca, 'YTickLabel',[]);xlabel('cm"-"1")

subplot(1,4,2);

plot (xG,LorABAG,xG,LorABCG, 'm', 'linewidth',2);axis([1560,1620,0,1]1);

set(gca, 'YTickLabel',[]);xlabel('cm”-"1")

subplot(1,4,3);

plot (WNsmooth,ABA2D,WNsmooth,ABC2D, 'm', 'linewidth',2);axis([2600,2800,0,171);

set(gca, 'YTickLabel',[]);xlabel('cm”-"1"); legend('ABA', 'ABC")

00 00 o0 00 00 P

plot(x2D,LorABA2D,x2D,LorABC2D, 'm', 'linewidth',2);axis([2600,2800,0,11);
% set(gcf, 'color',[1,1,1]);set(gca, 'YTickLabel',[]);xlabel('cm”-"1")
% Now, load the Lorentzians

%% Statistical analysis for width
AWidth=reshape(seventyfivewidth(10:22,15:27),[prod(size(seventyfivewidth(10:22,15:27))
BWidth=reshape(seventyfivewidth(10:22,53:65), [prod(size(seventyfivewidth(10:22,15:27))
XWidth=linspace(20,60,140)

) 11)
) 11)

[HAWidth,XAWidth]=hist (AWidth,11)
[HBWidth,XBWidth]=hist (BWidth,19)

XAWidth(1)-XAWidth(2)
XBWidth(1)-XBWidth(2)

YAWidth=88%*sqrt(1/2/pi/std(AWidth)"2)*exp(-((XWidth-mean(AWidth))."2)/(2*std(AWidth)"2))
histfit(AWidth,11); hold on

plot(Xwidth, YAWidth, XAWidth, HAWidth, '0');

hold off

YBWidth=88%*sqrt(1/2/pi/std(BWidth)"2)*exp(-((XWidth-mean(BWidth))."2)/(2*std(BWidth)"2))
histfit(BWidth,19); hold on

plot(Xwidth, YBWidth, XBWidth, HBWidth, '0');

hold off

NormAWidth=YAWidth/sum(YAWidth)
NormBWidth=YBWidth/sum(YBWidth)



plot (XWidth,YAWidth,XWidth, YBWidth)
plot (XWidth,NormAWidth, XWidth, NormBWidth)

ABA.widthmean=mean (AWidth)

ABA.widthstd=std(AwWidth)

ABA.widthintersect=41.3376
ABA.widthintegral=sum(NormAWidth(find(XWidth>ABA.widthintersect)))

ABC.widthmean=mean (BWidth)
ABC.widthstd=std(BwWidth)
ABC.widthintegral=sum(NormBWidth(find(XWidth<ABA.widthintersect)))

%% histograms in the grid for first moment

AMom=reshape (WNcm(10:22,15:27), [prod(size(WNcm(10:22,15:27))
BMom=reshape (WNcm(10:22,53:65), [prod(size(WNcm(10:22,15:27))
XMom=linspace(2690,2710,400)

) 11)
) 11)

[HAMom, XAMom]=hist (AMom, 13);
[HBMom, XBMom]=hist (BMom, 10);

XAMom(1)-XAMom(2)
XBMom(1)-XBMom(2)

YAMom=37*sqrt(1/2/pi/std(AMom)"2)*exp(-( (XMom-mean (AMom))."2)/(2*std(AMom)"2))
histfit(AMom,13); hold on

plot (XMom, YAMom, XAMom, HAMom, '0"');

hold off

YBMom=36*sqrt(1/2/pi/std(BMom)"2)*exp(-((XMom-mean(BMom))."2)/(2*std(BMom)"2))
histfit(BMom,10); hold on

plot (XMom, YBMom, XBMom, HBMom, '0"');

hold off

NormAMom=YAMom/sum( YAMom)
NormBMom=YBMom/sum ( YBMom)

plot (XMom, YAMom, XMom, YBMom)
plot (XMom, NormAMom, XMom, NormBMom)

ABA.mommean=mean (AMom)

ABA.momstd=std (AMom)

ABA.momintersect=2701.0637 % this has to be entered manually
ABA.momintegral=sum(NormAMom(find(XMom>ABA.momintersect)))

ABC.mommean=mean (BMom)
ABC.momstd=std(BMom)
ABC.momintegral=sum(NormBMom(find(XMom<ABA.momintersect)))

AFreg=reshape(cell2mat(wn2D(10:22,15:27)),[prod(size(cell2mat(wn2D(10:22,15:27))
BFreqg=reshape(cell2mat(wn2D(10:22,53:65)),[prod(size(cell2mat(wn2D(10:22,15:27))
XFreqg=linspace(2690,2710,400)

oe

)) 11)
)) 11)

[HAFreq,XAFreq]=hist (AFreq, 15);
[HBFreq, XBFreq]=hist (BFreq,11);

XAFreq(l)-XAFreq(2)
XBFreq(l)-XBFreq(2)

YAFreq=89*sqrt(1/2/pi/std(AFreq)"2)*exp(-( (XFreg-mean(AFreq))."2)/(2*std(AFreq)"2))
histfit(AFreq,15); hold on

plot (XFreq,YAFreq,XAFreq,HAFreq, '0');

hold off



YBFreq=89*sqrt(1/2/pi/std(BFreq)"2)*exp(-( (XFreg-mean(BFreq))."2)/(2*std(BFreq)"2))
histfit(BFreq,11); hold on

plot (XFreq,YBFreq,XBFreq,HHBFreq, '0');

hold off

NormAFreq=YAFreq/sum(YAFreq)
NormBFreq=YBFreq/sum(YBFreq)

plot (XFreq,YAFreq,XFreq, YBFreq)
plot (XFreq,NormAFreq,XFreq,NormBFreq)

ABA. fregmean=mean (AFreq)

ABA.fregstd=std(AFreq)

ABA.freqgintersect=2696.1463 % this has to be entered manually
ABA. fregintegral=sum(NormAFreq(find(XFreg>ABA.freqgintersect)))

ABC. fregmean=mean(BFreq)
ABC.fregstd=std(BFreq)
ABC.fregintegral=sum(NormBFreq(find(XFreq<ABA.fregintersect)))

%% Final Histogram plots

subplot(1,4,4)

plot (XwWidth,YAWidth, 'b',XWidth,YBWidth, 'm',XAWidth,HAWidth, 'bo',...
XBWidth,HBWidth, 'mo', 'linewidth', 3)

ylabel( 'counts')

xlabel(texlabel('Gamma 2 D (cm”™="1)"))

subplot(1,4,1)

plot (XMom,YAMom, 'b',XMom,YBMom, 'm',XAMom, HAMom, 'bo"', ...
XBMom, HBMom, 'mo ', 'linewidth',3)

legend( 'ABA', 'ABC')

xlabel (texlabel( '<omega 2 D> (cm”™-="1)"))

subplot(1,4,2)

plot(XRat,YARat, 'b',XRat,YBRat, 'm',XARat,HARat, 'bo',...
XBRat,HBRat, 'mo', 'linewidth',3)

xlabel(texlabel('I R/I L (a.u.)'))

set(gcf, 'color',[1,1,1])

subplot(1,4,3)

plot(XSum,YASum, 'b',XSum,YBSum, 'm',XASum, HASum,
XBSum,HBSum, 'mo', 'linewidth',3)

xlabel (texlabel('eta (a.u.)'))

set(gcf, 'color',[1,1,1])

bo',...

%% Multiple gaussian fits
for i = l:ydim;

for k = 1l:xdim;
Data=Normal2DMap{k,i};
Data=Data(TwoDInd) ;
[u,sig,t,iter]=fit _mix gaussian(Data',2);
U{k,i}=u;
SIG{k,i}=sig;
DIST(k,i)=abs(u(l)-u(2));
i

end

end
%%

imagesc(DIST',[.4,.52]);axis equal tight; colorbar
%% Integrating two halves

for i = l:ydim;
for k=1:xdim

Data=Normal2DMap{k,i} (TwoDInd);
newindicies=find(Data>.15);

newdata=Data(newindicies);



centerindex=round(length(newindicies)/2);
LeftInt=sum(newdata(l:centerindex-3));
if sum(size(newdata))==

continue
end
RightInt=sum(newdata(centerindex+3:end));
Ratio(k,i)=LeftInt/RightInt;

end
end

imagesc(Ratio',[.5,1]); colorbar; axis equal tight; colormap hot

%% histograms in the grid for Ratio
ARat=reshape(Ratio(10:22,15:27),[prod(size(Ratio(10:22,15:27))
BRat=reshape(Ratio(10:22,53:65),[prod(size(Ratio(10:22,15:27))
XRat=linspace(0,2,400);

) 11);
) 11);

[HARat,XARat ]=hist(ARat,10);
[HBRat,XBRat ]=hist(BRat,11);

XARat (1)-XARat (2)
XBRat (1)-XBRat (2)

YARat=4.9*sqrt(1/2/pi/std(ARat)"2)*exp(-((XRat-mean(ARat))."2)/(2*std(ARat)"2))
histfit(ARat,10); hold on

plot(XRat,YARat,XARat,HARat, '0');

hold off

YBRat=5.1*sqrt(1/2/pi/std(BRat)"2)*exp(-((XRat-mean(BRat))."2)/(2*std(BRat)"2))
histfit(BRat,11); hold on

plot(XRat,YBRat,XBRat,HBRat, '0');

hold off

NormARat=YARat/sum(YARat)
NormBRat=YBRat/sum(YBRat)

plot(XRat,YARat,XRat,YBRat)
plot (XRat,NormARat,XRat,NormBRat)

ABA.ratmean=mean (ARat)

ABA.ratstd=std(ARat)

ABA.ratintersect=2.78 % this has to be entered manually
ABA.ratintegral=sum(NormARat (find(XRat>ABA.ratintersect)))

ABC.ratmean=mean (BRat)
ABC.ratstd=std(BRat)
ABC.ratintegral=sum(NormBRat (find(XRat<ABA.ratintersect)))

%% histograms in the grid for SUM

ASum=reshape (SUMDAT(10:22,15:27), [prod(size(SUMDAT(10:22,15:27)))
BSum=reshape (SUMDAT(10:22,53:65), [prod(size(SUMDAT(10:22,15:27)))
XSum=linspace(0,5,400);

=
- -
e =

[HASum, XASum]=hist (ASum,10);
[HBSum, XBSum]=hist (BSum,10);

XASum(1l)-XASum(2)
XBSum(1l)-XBSum(2)

YASum=54*sqrt(1/2/pi/std(ASum)"2)*exp(-((XSum-mean(ASum))."2)/(2*std(ASum)"2))
histfit(ASum,10); hold on

plot (XSum, YASum,XASum,HASum, '0');

hold off

YBSum=52*sqrt(1/2/pi/std(BSum)"2)*exp(-((XSum-mean(BSum))."2)/(2*std(BSum)"2))



histfit(BSum,10); hold on
plot (XSum,YBSum,XBSum,HHBSum, '0');
hold off

NormASum=YASum/sum(YASum)
NormBSum=YBSum/sum(YBSum)

plot (XSum,YASum,XSum, YBSum)
plot (XSum,NormASum,XSum, NormBSum)

ABA.summean=mean (ASum)

ABA.sumstd=std(ASum)

ABA.sumintersect=2.78 % this has to be entered manually
ABA.sumintegral=sum(NormASum(find(XSum>ABA.sumintersect)))

ABC.summean=mean (BSum)
ABC.sumstd=std(BSum)
ABC.sumintegral=sum(NormBSum(find(XSum<ABA.sumintersect)))

%% Divide everything by the smooth 2D Mode
smooth2Dmode=Normal2DMap{15,51} (TwoDInd)

for i = l:ydim;
for k=1:xdim
Data=Normal2DMap{k,i} (TwoDInd);
Ratio(k,i)=sum(abs(Data-smooth2Dmode));
end
end

imagesc (SUMDAT,[0,8]);colorbar; colormap hot

%%

plot (WNsmooth(TwoDInd),Normal2DMap{15,51} (TwoDInd))

%% Plots for long strip 2

subplot(1,4,4)

climsseventyfive=[34 49]
imagesc(seventyfivewidth',climsseventyfive)
colorbar; colormap hot; axis equal tight

set(gcf, 'color',[1,1,1]1);set(gca, 'YTickLabel',[]);
set(gca, 'XTickLabel',[1);
ylabel(texlabel('Gamma 2D (cm”-"1)"))

$set(gca, 'YTickLabel',[]);xlabel('cm"-"1")

subplot(1,4,3)

imagesc (SUMDAT',[0,8]); axis equal tight

colorbar; colormap hot;

set(gcf, 'color',[1,1,1]1);set(gca, 'YTickLabel',[]);
set(gca, 'XTickLabel',[1);

ylabel (texlabel('eta (a.u.)'))

subplot(1,4,1)

climWNem=[2700 2705]

imagesc (WNcm' ,climWNcm)

colorbar; axis equal tight

ylabel (texlabel( '<omega 2D> (cm”-"1)"))

set(gcf, 'color',[1,1,1]1); colormap hot;set(gca, YTickLabel',[1);
set(gca, 'XTickLabel',[1);

subplot(1,4,2)

imagesc(Ratio',[.5,1]); colorbar; axis equal tight; colormap hot
ylabel(texlabel('I R/I L (a.u.)'))

set(gcf, 'color',[1,1,1]1); colormap hot;set(gca, YTickLabel',[1);
set(gca, 'XTickLabel',[1);






