Leong-Keat Chan

115 Lillian Drive, Athens, GA 30606

Athens, GA 30606 Phone: (484) 388-1082 Email: lkchan@uga.edu

EDUCATION AND PROFESSIONAL EXPERIENCE

2009-present Postdoctoral Research Associate, University of Georgia, GA

(Advisor: Dr. Mary Ann Moran)

2009 Ph.D., Marine Biosciences, University of Delaware, DE

(Advisor: Dr. Thomas Hanson)

2002-2003 Laboratory Technician, State University of New York at Albany, NY

(Employer: Dr. Caro-Beth Stewart)

2002 B.S., Biochemistry, State University of New York at Buffalo, NY

SKILLS

Microbial physiology, biochemistry, and molecular biology

- Aerobic and anaerobic culture techniques
- Chemostat
- Transposition mutagenesis
- Recombinant protein expression and in vivo epitope tagging
- Western blot
- Enzymatic assay
- Microarray
- SOLiD deep sequencing
- Basic bioinformatics on genome research

PUBLICATIONS

- 2009 **Chan LK**, Morgan-Kiss RM, and Hanson TE. Functional analysis of three sulfide:quinone oxidoreductase homologs in *Chlorobaculum tepidum*. J Bacteriol. **191:** 1026-34.
- 2009 Morgan-Kiss RM, **Chan LK**, Modla S, Weber TS, Warner M, Czymmek KJ, and Hanson TE. *Chlorobaculum tepidum* regulates chlorosome structure and function in response to temperature and electron donor availability. Photosynth Res. **99:** 11-21.
- 2008 **Chan LK**, Weber TS, Morgan-Kiss RM, and Hanson TE. A genomic region required for phototrophic thiosulfate oxidation in the green sulfur bacterium *Chlorobium tepidum* (syn. *Chlorobaculum tepidum*). Microbiology. **154:** 818-29.

Book chapters

2010 Hanson TE, Morgan-Kiss RM, **Chan LK**, and Hiras J. Beyond the genome: Functional studies of phototrophic sulfur oxidation, p. 109-121. *In* P.C. Hallenbeck (ed.). *Recent Advances in Phototrophic Prokaryotes*, Advances in Experimental Medicine and Biology 675. Springer.

PUBLICATIONS (continued)

Book chapters

- 2008 Chan LK, Morgan-Kiss R, and Hanson TE. Sulfur oxidation in *Chlorobium tepidum* (syn. *Chlorobaculum tepidum*): Genetic and proteomic analyses, p. 117-126. *In* C. Dahl and C. G. Friedrich (ed.). Proceedings of the International Symposium on Microbial Sulfur Metabolism. Springer.
- 2008 Chan LK, Morgan-Kiss R, and Hanson TE. Genetic and proteomic studies of sulfur oxidation in *Chlorobium tepidum* (syn. *Chlorobaculum tepidum*), p. 363-379. *In* R. Hell, C. Dahl, T. Leustek and D. Knaff (Ed.). Sulfur Metabolism in Phototrophic Organisms. Springer.

PRESENTATIONS AND POSTERS

July 18-23, 2010 University of New England, Biddeford, ME Gordon Research Conference in Metabolic Basis of Ecology and Evolution Poster: **Chan LK**, Newton RJ, Sharma S, and Moran MA.

Identifying nutrient limitation inducible genes in a numerically-abundant marine bacterial lineage: Implications from a single-strain microarray study to the global Roseobacter community.

July 20-25, 2008

Bates College, Lewiston, ME

Gordon Research Conference in Molecular Basis of Microbial One-carbon Metabolism (awarded Chair's fund)

Poster: Chan LK, Morgan-Kiss RM and Hanson TE.

Sulfide:quinone oxidoreductase of the green sulfur bacterium *Chlorobium tepidum* (syn. *Chlorobaculum tepidum*): Two of the three orthologs are involved in sulfide oxidation.

May 22-25, 2007 Metro Toronto Convention Centre, Toronto, Canada American Society for Microbiology 107th General Meeting

Poster: **Chan LK**, Morgan-Kiss RM, Weber TS, and Hanson TE.

Sulfide oxidation in the green sulfur bacterium Chlorobium tepidum.

June 05-09, 2005 Georgia World Congress Center, Atlanta, GA American Society for Microbiology 105th General Meeting

Poster: **Chan LK**, Martin JL, Lawani JO, Burbaite EA, and Hanson TE.

Studying sulfur exidation in *Chlorobium tenidum* by in vitro transposition

Studying sulfur oxidation in *Chlorobium tepidum* by in vitro transposition mutagenesis

August 01-06, 2004 Mount Holyoke College, South Hadley, MA Gordon Research Conference in Molecular Basis of Microbial One-carbon Metabolism

Poster: Chan LK and Hanson TE.

Genomes enable the study of sulfur oxidation in *Chlorobium tepidum*.