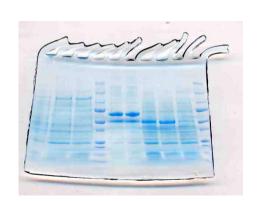
Welcome to 20.109

Laboratory Fundamentals of Biological Engineering


Orientation Lecture
Spring 2013

Introducing 20.109

- Why you're here
 - course mission
 - digression: on learning

- What you'll do
 - three experimental modules
 - assessments/communication
 - course logistics

Course mission for 20.109

- To teach cutting edge research skill and technology through authentic investigation
- To inspire rigorous data analysis and its thoughtful communication
- To prepare students to be the future of Biological Engineering

20.109 faculty introductions

Technical

- Prof. Jon Runstadler (Mod 1)
- Prof. Alan Jasanoff (Mod 2)
- Dr. Agi Stachowiak (Mod 3; T/R section)
- Dr. Shannon Hughes-Alford (W/F section)

Communications

- Leslie Ann Roldan (T/R section, writing)
- Marilee P. Ogren (W/F section, writing)
- Atissa Banuazizi (oral presentations)

Teaching assistants

- Ian Tay (Mod 1)
- Mark Mimee (Mod 2)
- Dr. Thomas Crouzier (Mod 3)

Spring 2011: babies' learning best practices

Baby	109er
Driven by wanting to do	Limits to grade desire
Intuitive experimenter	Your ideas/designs/input
Wants to communicate	Taxing but rewarding
Needs to fail repeatedly	Analysis counts, not lab success; report revision

On investigation: solid food recommendations in the literature

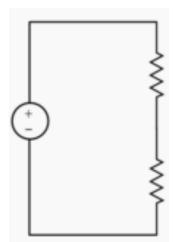
Spring 2012: the terrible twos

Toddlerhood

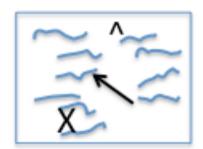
- becoming an individual
- expressing own desires
- ... sometimes unhealthily
- still wants guidance/support...
- ... on his own terms

Sophomores

- academic self-definition
- bioengineer, not frosh core
- still want guidance/support...
- ... but not too much

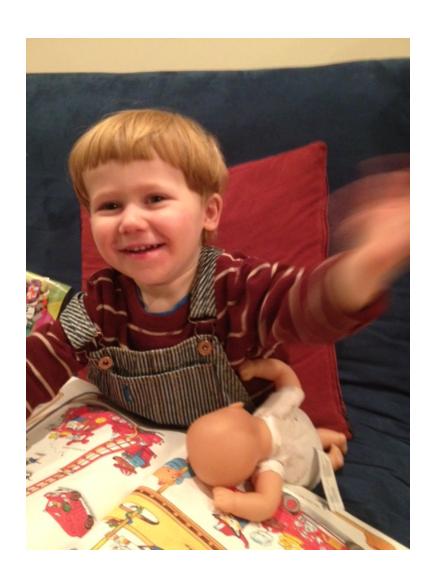

How would we investigate tantrum-control methods?

Now: the language (and conceptual) explosion and independence

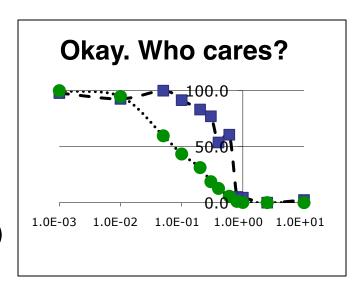

but first

Two recent formative experiences... for me

- Developing materials for 20.309
 - ages (or never) since I thought about this stuff
 - no matter how well-taught... learners' needs vary
 - two phases: exploratory; well-defined project
 - writing electronics primer solidified my thinking



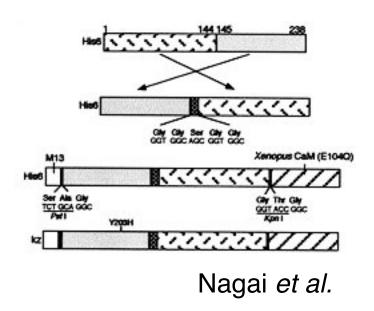
- Co-teaching IAP communications workshop
 - recurring theme: writing ← → thinking
 - George Whitesides: "writing is your research"
 - importance of process

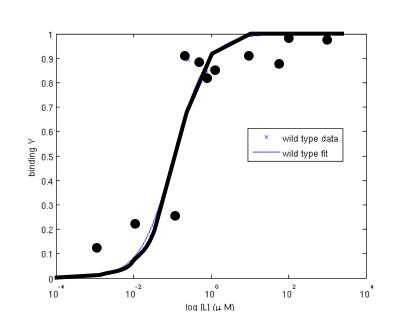

The language (and conceptual) explosion

- Emerging concepts and ?s
 - what's that?
 - what happened?
 - where's grandad go?
 - might be under
 - what's that man doing?
 - no why yet ("ummm")
- Acquiring grammar and tone
 - what lion makes sound?
- Mature thinking spurs desire for independence
 - I want to do it myself!
 - or at least try

109 version of that explosion

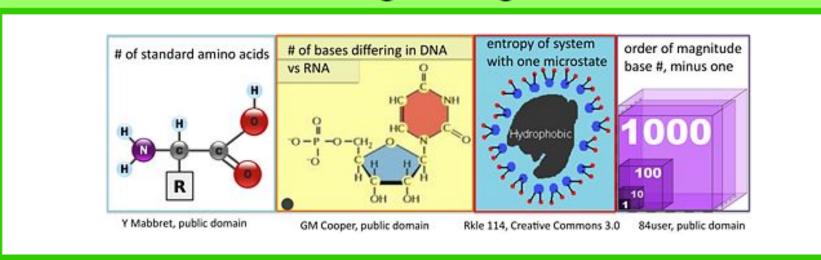
- Evaluating data
 - need to strive for why (not just what)
 - making connections
 - a deep level of abstraction
- Acquiring professional language
 - requires immersion (read, read, read!)
 - requires LOTS of practice
 - requires rich feedback
- Trajectory of independence
 - technical material
 - communications


Course mission for 20.109


- To teach cutting edge research skill and technology through authentic investigation
- To inspire rigorous data analysis and its thoughtful communication
- To prepare students to be the future of Biological Engineering

Engineering principles + modern biology

Manipulate and Make

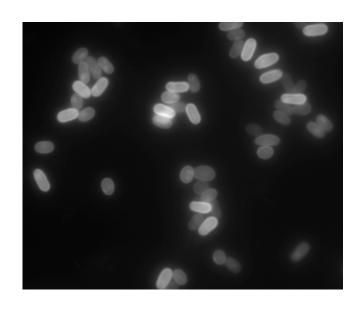

Measure ← → **Model**

Myriad length scales, systems, and applications

20.109(S13): Laboratory Fundamentals of Biological Engineering

Home DNA Engineering Schedule Spring 2013
Protein Engineering

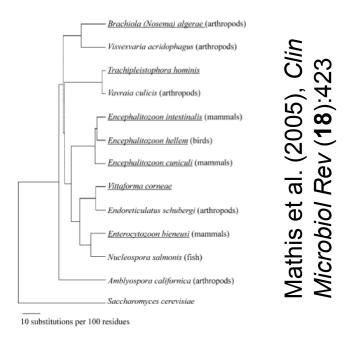
Assignments
Cell Engineering


Module 1 DNA Engineering (J. Runstadler)

Module 2 Protein Engineering (A. Jasanoff)

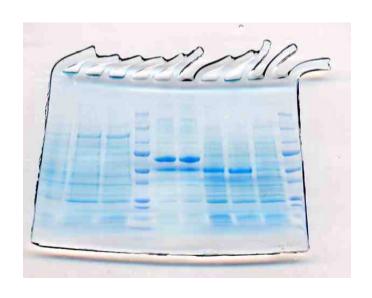
Module 3 Cell Engineering (A. Stachowiak)

openwetware.org/wiki/20.109(S13)


DNA engineering: investigating pathogens

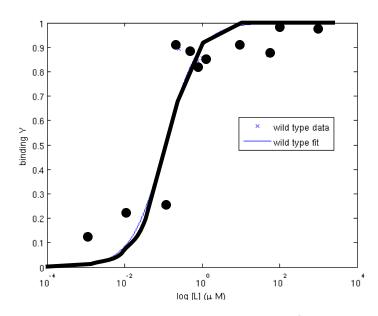
Experimental Goals

Design: diagnostic primers

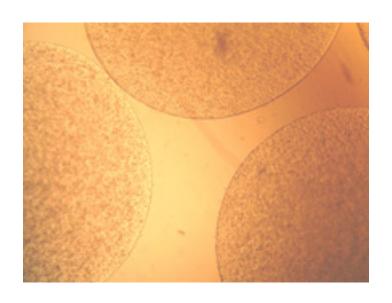

- Assess primer sensitivity/specificity
- Compare pathogen profiles in different bird populations

Lab+Analytical Skills

- Amplify and clone DNA
- Use computational tools: sequence and phylogenetic analyses
- Discuss/present scientific literature

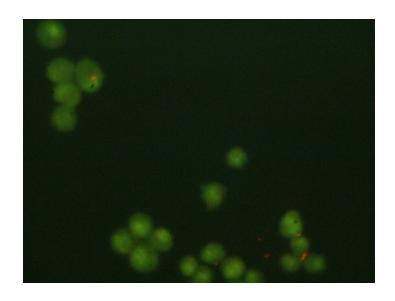

Protein engineering: calcium sensor redesign

Design: Modify DNA + protein


- Mutagenize wild-type plasmid
- Express and purify protein
- Assess effect on protein

Lab+Analytical Skills

- Culture bacteria
- Manipulate and analyze DNA
- Prepare and characterize protein
- Use MATLAB for modeling


Cell engineering: making cartilage

Experimental Goals

Design: Culture conditions

 Study how environment affects cell health, and expression + production of tissue-specific proteins

Lab+Analytical Skills

- Culture mammalian cells
- Fluorescence microscopy
- Measure specific mRNAs
- Identify protein from mixture
- Present a novel research idea

Communication and grading

50% Written Work

Module 1: laboratory report; primer analysis

Module 2: research article

Module 3: data summary

30% Oral Presentations Module 1: published article

Module 3: original proposal

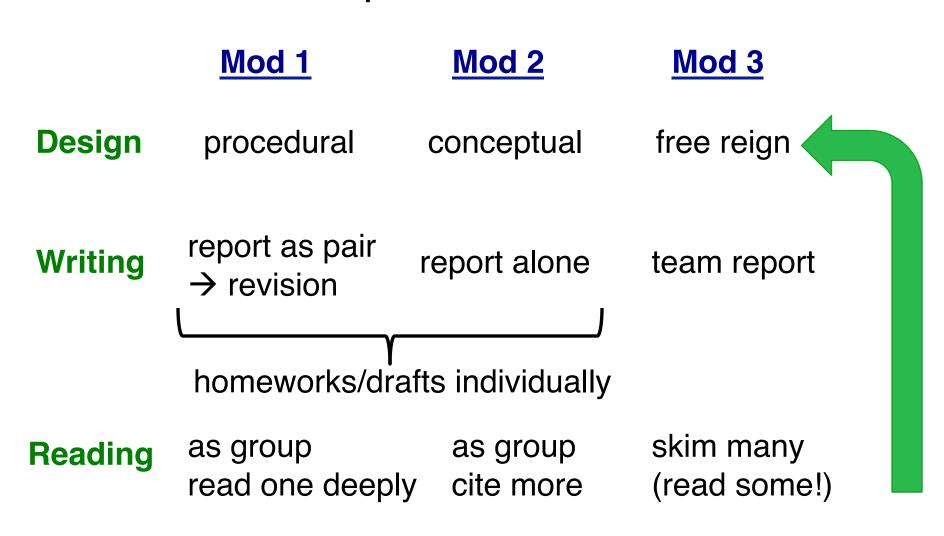
20% Daily(ish) work

7% Homework 5% Quizzes

5% Lab Notebooks 3% Participation

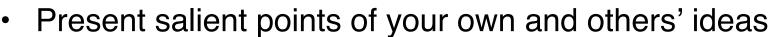
Writing & oral communication faculty

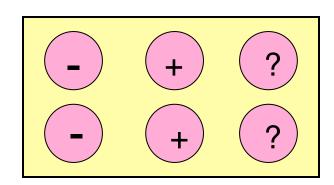
- Marilee P. Ogren and Leslie Ann Roldan
 - Lectures/discussions in class
 - Written feedback on draft report sections
 - Office hours by appointment
- Atissa Banuazizi
 - Lectures/discussions in class
 - One-on-one review of videotaped talk
- BE Writing Lab
 - Writing Fellows provide peer coaching

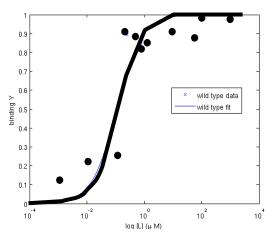

Scientific writing must tell a story

- Stories help us remember
 - Archimedes, Newton, Kekulé
- You discover the narrative that the data tell
- Then convince an audience of your findings
 - logical structure
 - step-by-step explanations
 - repetition of central ideas
 - clear, effective visuals
 - ethical choices

Your data should be true even if your story is wrong


~ Darcy Kelley, Columbia (from The Canon, N. Angier)


Towards independent research and professionalism



After 20.109, you should be able to...

- Organize a lab notebook
- Implement laboratory protocols
- Design novel experiments with appropriate controls
- Interpret qualitative data
- Analyze quantitative data
- Recognize utility of models
- Examine the scientific literature
- Communicate in multiple modes

Course Logistics

Lecture Tuesdays and Thursdays 11-12, 4-237

Lab Tuesdays and Thursdays 1-5, 56-322

Wednesdays and Fridays 1-5, 56-322

There are no(*) make-up labs

Collaboration with integrity is encouraged:

Assignments done together should reflect equal contributions.

Assignments done individually can be discussed together.