DNA hypomethylation reduces homologous pairing of inserted tandem repeat arrays in somatic nuclei of *Arabidopsis thaliana*

Koichi Watanabe^{1,†}, Ales Pecinka^{2,†}, Armin Meister², Ingo Schubert² and Eric Lam^{1,*}

¹Biotech Center for Agriculture and the Environment, Rutgers The State University of New Jersey, 59 Dudley Rd., Foran Hall, New Brunswick, NJ 08901, USA, and

²Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstrasse 3, D-06466 Gatersleben, Germany

Received 14 May 2005; revised 13 July 2005; accepted 29 July 2005.

Summary

Fluorescent chromatin tagging makes possible tracking of specific loci in vivo and in situ. Loci tagged by the lac operator (IacO)/GFP-Lacl/Nuclear Localization Signal (NLS) system show rapid motility and constrained chromatin dynamics in somatic nuclei of a transgenic line, designated EL702C, in Arabidopsis thaliana. The tagged loci associated with each other significantly more often than expected at random, due to homologous pairing of the lacO tandem repeat arrays. Furthermore, these arrays associated significantly more often than average euchromatic regions with heterochromatic chromocenters (CCs). We show now that the inserted lacO array in this transgenic line became strongly methylated at CG sites in the T3 generation, which can be reversed upon transfer into the mutant backgrounds of decrease in DNA methylation 1 (ddm1) and methyltransferase 1 (met1). Concomitantly, the tagged loci showed lower association frequencies as compared with the transgenics in wild-type background, which is correlated with a significant decrease in allelic and ectopic pairing of the lacO repeat arrays as visualized by fluorescence in situ hybridization. In contrast, the preferential association of the lacO arrays with heterochromatin, locus mobility in somatic nuclei and transcription of neighboring transgenes were not altered by reduced DNA methylation in ddm1 and met1 backgrounds. Our results show that repeat arrays can activate hypermethylation of the inserted locus that correlates with high frequencies of homologous pairing in somatic cells. In contrast, the preferential association of these inserted arrays with CCs in plant cells occurs through another mechanism.

Keywords: Arabidopsis, DNA methylation, somatic pairing, heterochromatin, tandem repeat arrays.

Introduction

Gene expression studies in relation to structural and spatial alterations of chromatin within the nucleus may help to understand the mechanisms that regulate cell-type-specific expression patterns during differentiation or in response to environmental stimuli. In interphase nuclei, each chromosome occupies a discrete space called 'chromosome territory' (reviewed by Cremer and Cremer, 2001; Dundr and Misteli, 2001). In chicken and primates, radial positioning places chromosome territories towards either the periphery or the interior of the nucleus depending on the size and gene density of the chromosomes (Boyle *et al.*, 2001; Sun *et al.*, 2000). Cultured chicken and human cell lines revealed

alterations in chromosome territory arrangement during differentiation (Kuroda *et al.*, 2004; Stadler *et al.*, 2004), suggesting that chromatin organization might be linked with gene expression of a particular chromosome.

A chromatin tagging system to analyze the dynamics of tagged chromatin in nuclei of living cells has been adapted to Arabidopsis (Kato and Lam, 2001). The vector of this system (EL702) comprises an inducible *GFP:lacl:NLS* gene, the hygromycin phosphotransferase gene, the gene expressing the fusion protein of Glucocorticoid receptor-VP16 transcription activation domain-Gal4 DNA binding domain (*GVG*) and a tandem array of 256 *lac* operator (*lacO*) repeat

^{*}For correspondence (fax +1 732 932 6535; e-mail lam@aesop.rutgers.edu).

[†]These authors contributed equally to the paper.

units. The transgenic line EL702C carries three copies of this transgene at two loci, 4.2 Mb apart from each other, on the top arm of chromosome 3. The proximal locus contains two transgenes in a tail-to-tail orientation (Kato and Lam, 2003). Within nuclei of the transgenic Arabidopsis line EL702C, we found that homologous pairing occurred more often between the lacO arrays than that between endogenous euchromatic regions (Pecinka et al., 2005). Interactions between homologous DNA sequences in somatic cells might be involved in epigenetic regulation of gene expression responsible for phenomena such as transvection (reviewed in Duncan, 2002) or paramutation (for a review see Chandler and Stam, 2004). Introduction of a high copy number of transgenes in some cases mediates inactivation of the transgenes and of their endogenous homolog together with de novo DNA methylation of the transgene sequences and/or its association with heterochromatin (Csink and Henikoff, 1996; Davies et al., 1997; Dorer and Henikoff, 1997; Garrick et al., 1998; Park et al., 1996). In the Arabidopsis DNA hypomethylation mutants decrease in DNA methylation 1 (ddm1) and methyltransferase 1 (met1), silenced transgenes (Jones et al., 2001; Morel et al., 2000) and endogenous genes (Kankel et al., 2003; Kato et al., 2003; Singer et al., 2001; Soppe et al., 2000; Xiao et al., 2003) become reactivated by epigenetic regulation. Furthermore, dimethylation of histone H3 at lysine 9 (H3K9me2) at pericentromeric regions and the size of these heterochromatic CCs are both reduced in ddm1 and met1 mutant backgrounds as compared with those in wild-type (WT) nuclei (Johnson et al., 2002; Soppe et al., 2002; Tariq et al., 2003). However, it remains unclear whether such chromatin modifications have an impact on the association of homologous sequences and whether chromatin

dynamics could be affected and contributes to the observed changes.

According to the DNA/DNA interaction model (Assaad et al., 1993; Bender, 1998), homologously aligned repetitive sequences are proposed to be susceptible to de novo DNA methylation; however, this has not been proven experimentally in somatic plant nuclei. To understand better the relationship between DNA methylation, association between repetitive sequences and chromatin dynamics, we compared these properties between the transgenic loci of the EL702C line and adjacent euchromatic regions in WT Arabidopsis as well as in the hypomethylated genomic background of ddm1 and met1.

Results

The lacO array is heavily methylated in the EL702C line

To compare the methylation status of the inserted repetitive sequences in EL702C plants between WT and mutant backgrounds, T3 EL702C plants were crossed with the DNA hypomethylation mutants ddm1-2 and met1-1 and the progeny generated as shown in Figure 1. The DNA methylation state of the lacO arrays in the starting T3 EL702C plants and the resultant F2 and F3 progeny from these crosses with various genotypes were analyzed by Southern hybridization with the restriction endonucleases EcoRl and Narl. Both enzymes can potentially cleave lacO repeat arrays into 315 bp fragments. However, Narl is sensitive to methylation at the CpG site within its recognition sequence (GGCGCC) while EcoRl is not. In T3 EL702C plants, EcoRl but not Narl could digest the ElacO arrays of EL702C plants into small DNA fragments (Figure 2), indicating methylation of most of the

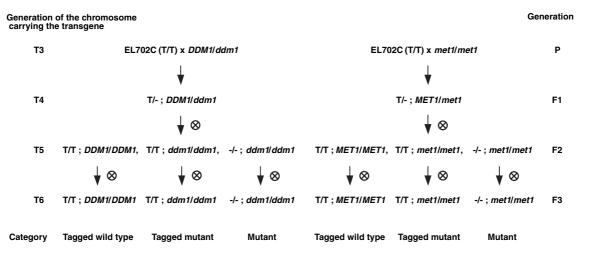


Figure 1. Pedigree of the plants used in this study.

The EL702 transgene was introduced into the mutant plants via crossing of an EL702C plant in the T3 generation with a *decrease in DNA methylation* 1 (DDM1)/ddm1 plant or a *methyltransferase* 1 (*met*1)/*met*1 plant. Plants with the indicated genotypes were identified by restriction fragment length polymorphisms (RFLPs). 'T' on the left side indicates the generation of individuals with the chromosome 3 carrying the EL702 transgenes after transformation has happened. 'T/T' designates the homozygous EL702C transgene loci on chromosome 3.

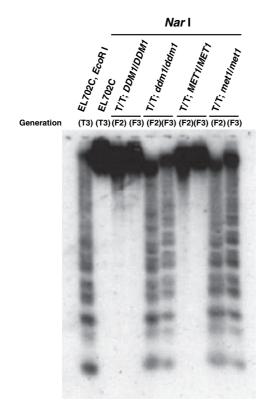


Figure 2. DNA methylation state of the lac operator (lacO) array. Genomic DNA samples were prepared from the EL702C plant in the T3 generation and from homozygous Decrease in DNA Methylation 1 (DDM1), ddm1, Methyltransferase 1 (MET1) and met1 individuals in the F2 and F3 generations, digested with EcoRI (EL702C only) and Narl, and hybridized with the lacO sequences. 'T' = EL702C transgene loci on chromosome 3.

CpG sites in the *lacO* arrays. In contrast, the *lacO* arrays in F2 and F3 ddm1 and met1 mutant backgrounds ('tagged mutants': ddm1 and met1 harboring the transgene) became cleavable by Narl, while the lacO arrays in DDM1 and MET1 sibling plants ('tagged WTs': DDM1 and MET1 lines harboring the transgene) in F2 and F3 generations were not (Figure 2), suggesting that methylation at the inserted lacO repeat arrays was present in the parental EL702C plants, but became lost in *met1* or *ddm1* backgrounds.

Hypomethylation decreases in vivo association of the transgene loci but does not alter the expression of an array-associated gene

In the EL702C line, the transgene is inserted into two loci at the top arm of chromosome 3 (Kato and Lam, 2003). Because these loci are separated by sufficient length of intervening sequences (4.2 Mbp), binding of expressed GFP-Lacl/NLS proteins to the arrays should result in visualization of individual spots. In guard cell nuclei of homozygous EL702C plants, which maintain a relatively constant 2C DNA composition, a maximum of four individual GFP spots might be

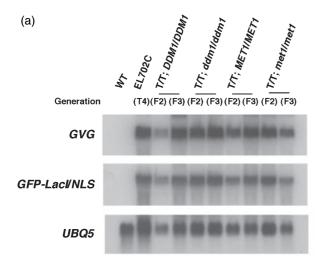
resolved. To examine the effects of DNA methylation on the association between lacO arrays in interphase nuclei of living plants, the number of GFP spots was counted in guard cell nuclei from F2 and F3 plants that are homozygous for the EL702C transgene positions in DDM1, MET1, ddm1 and met1 backgrounds. Significantly more nuclei with higher spot numbers were found in the tagged mutants (P < 0.001; Table 1). The frequency of nuclei with two or more GFP spots is <30% in the tagged WT plants in the F2 and F3 generations; it increases to >60% in the tagged mutants in the F3 generation. Apparently, DNA hypomethylation is correlated with a decrease in the association frequency of the tagged transgene lacO array. Interestingly, the effects of the met1 mutation on GFP spot number significantly increased from F2 to F3 generation in contrast to that of the ddm1 mutation $(P < 0.001; \gamma^2$ -test; Table 1). This observation suggests that the two genes affected in these mutants could modulate association of the inserted arrays via distinct mechanisms, even though both mutations lead to DNA hypomethylation.

For the same plants used for microscopy studies, the activities of the GVG and GFP-Lacl/NLS transgenes were analyzed by northern hybridization after induction of the GFP-Lacl/NLS gene with dexamethasone. Figure 3 demonstrates that the levels of GFP-Lacl/NLS and GVG transcripts in the tagged ddm1 and met1 mutants are similar to that observed for the DDM1 and MET1 siblings. Because the promoter of the GVG gene is located next to the lacO array in the EL702 transgene, this result implies that the activity of the transgene depends neither on the degree of association of the tagged loci nor on the methylation level of the neighboring lacO array.

Homologous pairing of the lacO arrays is reduced in DNA hypomethylation mutants, but is still higher than for average euchromatic regions in wild-type nuclei

Microscopic observations with guard cells of live plants suggest that reduction of DNA methylation in the ddm1 and met1 backgrounds may cause a change in the interaction between the tagged chromosome loci. The decreased number of ddm1 (F2/F3) and met1 (F3) nuclei showing no GFP spot (in comparison with the WT situation, see Table 1) further suggests that reduced DNA methylation in these mutant backgrounds might turn the lacO repeats into more accessible targets for the Lacl-GFP/NLS protein through subsequent changes in chromatin organization. This possible increase in LacI-GFP/NLS binding to the lacO repeats might also contribute to the increase in the percentage of nuclei with higher frequencies of GFP spots and to the apparent loss of the interaction between *lacO* repeat arrays. Previously, in homozygous transgenic EL702C nuclei, we observed allelic pairing significantly more often for the transgenic lacO arrays than for average euchromatic regions in WT nuclei. Furthermore, allelic pairing of lacO arrays

Table 1 Average frequencies (%) of nuclei with different numbers of GFP spots in wild-type (WT) and homozygous hypomethylation backgrounds


Strain (generation)	Average numb					
	0	1	2	3	4	Number of observed nucle
DDM1 (F2)	35.2 ± 1.59	41.7 ± 0.11	14.4 ± 0.91	4.94 ± 0.61	$\textbf{0.813} \pm \textbf{0.21}$	120
DDM1 (F3)	30.8 ± 2.59	40.8 ± 1.7	24.2 ± 0.76	3.33 ± 0.56	$\textbf{0.833}\pm\textbf{0.21}$	120
ddm1 (F2)	12.9 ± 0.69	32.5 ± 0.36	39.0 ± 0.19	10.6 ± 0.24	4.94 ± 0.37	123
ddm1 (F3)	13.3 ± 1.52	22.5 ± 0.97	42.5 ± 0.37	19.2 ± 0.92	$\textbf{5.83}\pm\textbf{1.17}$	120
MET1 (F2)	54.6 ± 0.97	39.7 ± 1.14	5.69 ± 0.38	0	0	156
MET1 (F3)	$\textbf{35.3} \pm \textbf{0.68}$	46.3 ± 1.12	17.6 ± 1.08	0.833 ± 0.21	0	119
met1 (F2)	40.1 ± 0.22	43.2 ± 0.88	15.6 ± 0.88	1.10 ± 0.25	0	147
met1 (F3)	10.8 ± 0.92	27.5 ± 1.46	46.7 ± 1.38	14.2 ± 0.42	0	120

The values observed in living nuclei (\pm confidence interval at a 95% confident level) were obtained for progenies from three independent F1 plants. The proportions of nuclei with two or more spots in F3 progenies of *ddm1* and *met1* mutants were significantly higher (P < 0.001; χ^2 -test) than observed for the corresponding WTs with the transgene (*DDM1*, *MET1*).

enhanced the pairing frequency of endogenous regions flanking the transgene, thus altering the local chromatin arrangement within the tagged nuclei (Pecinka et al., 2005). Thus we analyzed by fluorescence in situ hybridization (FISH) the effects of reduced DNA methylation on somatic pairing frequencies of lacO arrays and of their flanking regions represented by Bacterial Artificial Chromosomes (BACs) MGL6 and F18C1 (Figure 4a) in the ddm1 and met1 mutants harboring the transgenes ('tagged mutants'). The pairing of lacO arrays and of F18C1 and MGL6 insert regions, respectively, was compared: (i) between the 'tagged mutants' (ddm1 and met1 lines harbouring the transgene); (ii) between 'tagged mutants' and 'tagged WTs' (EL702C, DDM1 and MET1 lines harboring the transgene); and (iii) between the former two groups ('tagged mutants' and 'tagged WTs') and 'WT and mutants without transgene' (accession Columbia, met1 and ddm1). All lines were studied in the homozygous condition and without dexamethasone treatment (i.e. in the absence of GFP-Lacl/NLS proteins). Mutant lines and tagged DDM1 and MET1 lines were analyzed in F3 seedlings for the frequencies of homologous pairing using FISH. Flow-sorted 2C nuclei were isolated and probed with lacO, F18C1 and MGL6 sequences in order to discriminate between allelic (Figure 4b, top) and ectopic pairing (Figure 4b, middle) of the two lacO insertion loci. In addition, allelic pairing frequencies for the F18C1 and MGL6 loci were also quantified. The χ^2 -test revealed, in some cases, significant variation in lacO homologous pairing frequencies between individual genotypes within the group of 'tagged WTs'. No such variation was observed within the other groups (i.e. 'tagged mutants', 'WT and mutants without transgene'). To reduce the effects of experimental variation in the apparent pairing frequencies when we ascertain the effects that hypomethylation mutations may have on chromatin pairing, we also present the pooled values for individual lines into the three previously defined groups ('WT and hypomethylation mutants without transgene',

'tagged WTs' and 'tagged hypomethylation mutants'). Next, the mean pairing frequencies of lacO, F18C1 and MGL6 for these groups were compared (Table 2). Allelic pairing of lacO arrays was significantly more frequent (P < 0.001) in 'tagged WT' (30.4%) than in 'tagged mutant' nuclei (15.0%). A similar difference, although to a lesser extent, was observed also for ectopic pairing of lacO loci (36.1 versus 26.5%; P < 0.001). Because ectopic pairing for lacO arrays is more frequent than allelic pairing, intrachromosomal ectopic pairing might be more preferential than pairing between loci on separate chromosomes, in particular within the nuclei of tagged mutants. In spite of a significant reduction compared with 'tagged WTs', allelic pairing of lacO was still significantly more frequent within 'tagged mutant' nuclei (15.0%) than observed for the flanking sequences detected with BACs F18C1 and MGL6 within nuclei of 'WT and mutants without transgene' (approximately 5%; P < 0.001). The same is true when ectopic pairing of *lacO* loci in 'tagged mutant' nuclei (26.5%) is compared with ectopic association of F18C1 and MGL6 in the 'WT and mutants without transgene' (6.1%; P < 0.001). Allelic pairing and ectopic association of F18C1 and MGL6 occurred significantly more often in 'tagged WT' than in nuclei of 'WT and mutants without transgene' (P < 0.001). Within the nuclei of 'tagged mutants', allelic pairing of F18C1 and MGL6 was less frequent than in the 'tagged WTs' (P < 0.001) but still more frequent than in nuclei of 'WT and mutants without transgene'. The association frequency of F18C1 with MGL6 did not significantly differ between the 'tagged mutant' (12.6%) and 'tagged WT' nuclei (10.7%; P > 0.05) but occurred significantly more often in both cases than in nuclei of 'WT and mutants without transgene' (6.1%; P < 0.001).

These data show that, on the one hand, the decreased level of DNA methylation in *ddm1* and *met1* mutants often correlates with lower frequencies of allelic pairing of the *lacO* arrays and with a reduced 'dragging effect' exerted by transgene pairing on the flanking regions in the tagged lines.

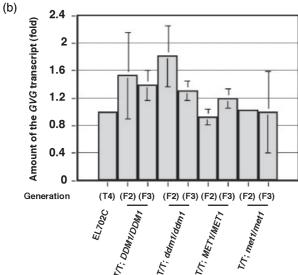


Figure 3. Expression analysis of the EL702 transgene ORFs by Northern hybridization.

(a) Total RNA samples were prepared from the leaves after induction of the GEP-Lacl/NLS gene and hybridized with labeled GVG, GEP-Lacl/NLS, or UBO5 (for control) probes and in (b) the level of GVG transcript in each line was compared with that of the homozygous EL702C plants (T4). The accumulation level of the UBQ5 transcript of each sample was used for normalization. The hybridization experiment was repeated twice with similar results.

On the other hand, decreased DNA methylation has no obvious effect on the pairing of endogenous euchromatic regions because there were no significant differences as to the allelic pairing and ectopic association frequencies for F18C1 and MGL6 between 'WT and mutants without transgene' (for all comparisons P > 0.05).

Hypomethylation does not reduce the co-localization of lacO arrays with heterochromatic chromocenters

Repetitive DNA sequences make up approximately 15% of the Arabidopsis genome and are located primarily at

Nucleolus Organizer Regions (NORs) and (peri-)centromeres (Arabidopsis Genome Initiative, 2000) and form the intensely 4'-6-diamino-2-phenylindole (DAPI)-stained CCs of interphase nuclei (Fransz et al., 2002). The lacO arrays of EL702C nuclei (located within euchromatin) co-localize with heterochromatic CCs approximately fourfold more often than endogenous euchromatic regions (Pecinka et al., 2005). Here, we analyzed the association frequency of *lacO* arrays and of the flanking regions with CCs in ddm1 and met1 mutants by FISH with lacO, F18C1 and MGL6 sequences on flow-sorted 2C nuclei. Because CCs are often not easily distinguished by DAPI staining in flow-sorted nuclei, we applied FISH with 45S rDNA and the Arabidopsis thaliana 180-bp centromeric repeat (pAL) in order to distinguish CCs unambiguously (Fransz et al., 2002; Martinez-Zapater et al., 1986). There were some variations as to the co-localization frequency of lacO arrays with CCs between individual genotypes within the groups of 'tagged WTs' and 'tagged mutants'. Nevertheless, the mean values for lacO co-localization with CCs revealed no significant differences when 'tagged WT' (29.2%) and 'tagged mutant' (36.7%) nuclei were compared (P > 0.05; Table 3). In all tested genotypes, lacO arrays co-localized with CCs significantly (twofold to sevenfold) more often than F18C1 and MGL6 sequences (P < 0.001). The frequency of co-localization of F18C1 and MGL6 with CCs (8.6-9.8%) did not significantly differ between any of the analyzed genotypes (P > 0.05). Thus, the reduced DNA and histone methylation (Johnson et al., 2002; Tariq et al., 2003) and the reduced size of CCs in ddm1 and met1 mutants (Soppe et al., 2002) has no apparent impact on the high co-localization frequency of the tandem repetitive DNA sequences with CCs. This shows that DNA methylation at the inserted lacO arrays is not an important determinant for its frequent association with CCs.

The motility of GFP-tagged loci is not altered in hypomethylation mutants

A constrained movement of the tagged loci with a larger confinement area in 8C than in 2C nuclei of the EL702C line was previously reported (Kato and Lam, 2003). In ddm1 and met1 nuclei, pericentromeric sequences loop out from heterochromatin and acquire euchromatic features, thus reducing the size of CCs (Soppe et al., 2002). To examine whether the decreased methylation of lacO arrays has an effect on their mobility in the interphase nucleus, the GFPtagged loci were observed using time-lapse microscopy and the distances between GFP spots over time were analyzed in nuclei of homozygous EL702C plants in either the ddm1 or met1 mutant background. To characterize chromatin movement of the tagged loci in these mutant backgrounds, the mean square change in distance between two GFP-tagged loci (Δd^2) was plotted as a function of increasing time interval (Δt ; Figure 5). In all cases, we found a plateau was reached

Figure 4. Pairing of the *lac* operator (*lacO*) loci, of the flanking regions F18C1 and MGL6 and their co-localization with heterochromatic chromocenters (CCs).

(a, c) Scheme of chromosome 3 in the tagged lines (a) and in the lines without transgene (c). The inverse arrangement of F18C1 and MGL6 in (a) and (c) is due to a paracentric inversion between the transgene integration sites (Pecinka et al., 2005).

(b) Selected nuclei of the homozygous EL702C/ decrease in DNA methylation 1 (ddm1) line showing allelic pairing of the distal lacO locus (top), ectopic pairing of one distal and one proximal locus (middle) and separation of all loci (bottom).

(d) Examples of homozygous *ddm1* nuclei without transgene showing homologous pairing of MGL6 (top), ectopic association of MGL6 and F18C1 (middle) and separation of both loci (bottom).

(e) Nuclei of the homozygous EL702C/ddm1 line after fluorescence in situ hybridization (FISH) with the 455 rDNA and centromeric repeat (pAL) probes to label the CCs, and the lacO, F18C1 and MGL probes, respectively. Selected nuclei showing: two (arrows) out of four lacO signals co-localized with CCs (left), one (arrow) out of two signals for F18C1 co-localized with a CC (middle) and both signals for MGL6 localized outside CCs (right). Bars, 2 μm .

Table 2 Pairing frequency of inserted *lac* operator (*lacO*) arrays and/or of the flanking BAC insert regions in wild-type (WT) or hypomethylation backgrounds

Group	Genotype	lacO			F18C1		MGL6		F18C1 + MGL6	
		n	Allelic p. (%)	Ectopic p. (%)	n	Allelic p. (%)	n	Allelic p. (%)	n	Ectopic assoc. (%)
WT and mutants	Columbia WT ^a				306	4.6	306	3.9	612	6.0
without transgene	F3 -/- ddm1/ddm1				186	5.4	186	6.4	372	5.9
	F3 -/- met1/met1				186	4.3	186	5.4	372	6.4
	\sum_{i}				678	4.8	678	5.2	1356	6.1
Tagged WTs	T/T EL702C ^a	248	33.9	26.6	124	14.5	124	9.7	248	9.3
	F3 T/T DDM1/DDM1	244	24.6	33.2	122	18.0	122	16.4	244	10.2
	F3 T/T MET1/MET1	248	32.8	48.4	124	16.4	124	18.0	248	12.7
	\sum	740	30.4	36.1	370	16.3	370	14.7	740	10.7
Tagged mutants	F3 T/T ddm1/ddm1	244	15.3	23.8	122	8.1	122	9.7	244	11.7
	F3 T/T met1/met1	256	14.8	29.3	128	6.2	128	7.8	256	13.6
	\sum	500	15.0	26.5	250	7.1	250	8.7	500	12.6

Tagged WTs: transgenic repeats in WT background. Tagged mutants: transgenic repeats in hypomethylated backgrounds. p, pairing; F3, third generation; -, without transgene; T, transgene; n, number of loci analyzed by fluorescence *in situ* hybridization (FISH).

^aPrevious data from Pecinka *et al.* (2005).

after 3 to 4 min, which indicates that movement of the tagged loci is constrained. The height of the plateau reflects the confinement area of chromatin movement, and our results indicate that the nuclear space within which the tagged loci

can move is almost the same between WT and the hypomethylation mutant plants (Figure 5). Thus, the mobility of GFP-spots in mutant nuclei showed no significant difference from that of the EL702C construct in WT nuclei (*t*-test,

Table 3 Co-localization of the lac operator (lacO) arrays and of the flanking BAC insert regions with heterochromatic chromocenters (CCs)

		lacO		F18C1			MGL6		
Group	Genotype	n Co-localized with CCs) n	Co-localized with CCs (%)		Co-localized with CCs (%)		
WT and mutants	Columbia WT ^a			124	10.5	132	11.4		
without transgene	F3 -/- ddm1/ddm1			186	9.7	186	9.1		
	F3 -/- met1/met1			186	9.1	186	8.6		
	\sum			496	9.8	504	9.7		
Tagged WTs	T/T EL702C ^a	164	36.6	82	8.5	82	11.0		
	F3 T/T DDM1/DDM1	376	21.5	180	8.3	170	7.6		
	F3 T/T MET1/MET1	372	29.6	184	9.1	182	8.6		
	\sum	912	29.2	446	8.6	434	9.1		
Tagged mutants	F3 T/T ddm1/ddm1	372	22.6	186	9.8	186	9.3		
	F3 T/T met1/met1	372	50.8	186	8.1	180	8.9		
	\sum	744	36.7	372	8.9	366	9.1		

Tagged wild types (WTs): transgenic repeats in WT background. Tagged mutants: transgenic repeats in hypomethylated backgrounds. Co-localized with CCs: percentage of loci found to be co-localized with heterochromatic CCs (i.e. pericentromeres/NORs). F3, third generation; -, without transgene; T, transgene; n, number of loci analyzed by fluorescence in situ hybridization (FISH). ^aPrevious data from Pecinka et al. (2005).

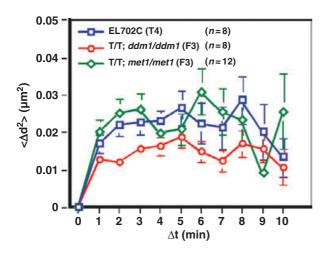


Figure 5. The dynamics of GFP-tagged chromosome loci in nuclei of the hypomethylation mutants.

The distance between two GFP spots per nucleus was monitored by timelapse microscopy. The average value of mean square change of the distance $<\Delta d^2>(\mu m^2)$ was plotted against the time interval (Δt ; min; vertical bars represent the standard error).

P > 0.05). This indicates that the movement of the tagged loci is not significantly affected by the level of DNA methylation, at least in 2C guard cell nuclei of Arabidopsis.

Discussion

Our results show that the inserted lacO repeat arrays, heavily methylated in the WT background, are largely demethylated by the second generation in the ddm1 or met1 backgrounds. In parallel, the appearance of a higher proportion of nuclei with two or more GFP-fusion protein tagged spots indicates decreased association of tagged loci

in living nuclei with decreasing DNA methylation of the repeat arrays. Interestingly, whereas similar demethylation of the lacO arrays was detected in the F2 generation for met1 and ddm1 mutant lines, a higher number of GFP spots per nucleus was not apparent in the met1 mutant until the F3 generation. Because MET1 is a Dnmt1-type DNA methyltransferase (Ronemus et al., 1996), whereas DDM1 is a chromatin remodeling factor (Brzeski and Jerzmanowski, 2003), it seems possible that reduction of 5-methyl cytosine at CpG sites alone is not enough to release the association of allelic repeat arrays. In ddm1 plants, the loss of chromatin remodeling activity of DDM1 may result in an aberrantly organized chromatin, and therefore reduction of DNA methylation and dissociation of the transgene loci may occur rapidly together. In met1 plants, the reorganization of chromatin affecting the interaction between the transgene loci occurs only after the decrease in DNA methylation has occurred. This may explain the difference in behavior of the repeat arrays in the F2 and F3 generations with respect to the two types of mutations that affect DNA methylation.

The arrangement of FISH signals for lacO repeats and for the flanking regions shows that allelic and ectopic pairing of the lacO loci is significantly reduced in the F3 generation of both hypomethylation mutant backgrounds in comparison to the 'tagged WTs'. Nevertheless, lacO pairing in these hypomethylation backgrounds still occurs significantly more often than at random. Random association of average euchromatic regions occurs typically in approximately 5% of WT or mutant nuclei without the transgene (Pecinka et al., 2004, 2005). Therefore, it is likely that, for the lower than maximum number of GPF-spots in living WT nuclei, allelic and ectopic pairing of *lacO* arrays is primarily responsible. The remaining methylated repeat units in ddm1 and met1 background (i.e. the *Narl* insensitive repeat arrays shown in the Southern blot of Figure 2) may explain why homologous pairing of the *lacO* loci is still significantly more frequent than pairing of the flanking regions in 'WT and mutants without transgene'. The flanking regions show an increased pairing frequency (as a consequence of a 'dragging' effect) reflecting the behavior of their neighboring *lacO* repeat arrays. Disruption of allelic and ectopic pairing of multiple homologous transgenes has also been observed in wheat after 5'-azacytidine treatment (Santos *et al.*, 2002) and therefore seems to be a general phenomenon, at least in plants.

Contrary to its effect on allelic association of trangene repeats, reduced methylation of the *lacO* repeat units does not seem to affect the transcriptional activity of the adjacent transgene open reading frames (ORFs) compared with the level observed in tagged WT plants. Also, reduced DNA methylation apparently has no significant impact on the motility of the tagged loci nor does it decrease the (non-homologous) high association frequency of *lacO* arrays with heterochromatic CCs.

In summary, our work demonstrates that inserted repetitive DNA sequences in the Arabidopsis genome lead to their methylation that depends on DDM1 and MET1. This methylation is correlated with a high frequency of allelic and ectopic pairing between these repetitive sequences, although other determining factors affected in ddm1 but not in met1 mutant background are likely contributing to this pairing as well. Because the motility of the inserted repeat loci is apparently not affected by their methylation status, the changes in association frequency of the repeat arrays in the hypomethylation mutant backgrounds is likely not the result of an alteration in the dynamic properties due to reduced DNA methylation of these inserted repeats. The inserted repetitive DNA sequences are also found to frequently associate with CCs, irrespective of their methylation status. This observation clearly indicates that there exist mechanisms, distinct from DNA methylation, through which repetitive sequences, such as the lacO tandem arrays, could be guided to CCs. Further studies with our transgenic system may help to uncover the mechanisms through which repetitive DNA may induce localized DNA methylation along with heightened frequencies of homologous association between these sequences. Studies with this transgenic system may also aid in the future characterization of factors involved in the formation of CCs.

Experimental procedures

Plant material

An EL702C plant (Kato and Lam, 2001) in T3 generation was crossed with a *DDM1/ddm1* plant and a *met1/met1* plant of *Arabidopsis thaliana* in the Columbia accession. The progeny from these crosses (Figure 1) were genotyped on the basis of polymorphic DNA

fragments. To identify the *ddm1-2* and the *met1-1* mutation, the amplified DNA fragments were digested and the restriction fragment length polymorphisms were detected on agarose gels after electrophoresis as described (Kankel *et al.*, 2003). To screen plants carrying the EL702 transgene at the centromere-distal site on chromosome 3, two PCR primers from outside the integration site (EL1202, 5'-GCCAAACGAGATCACATACAATATCTTGAT-3'; EL1204, 5'-AGATTAGGAAAGCGTGAGAGTAAAACCCTA-3') and a third one with homology to the T-DNA of the vector (EL1080, 5'-GGGATCCTGTACTCCACCAAAGAAGAAGAGAG-3') yielded a 1.4-and a 3.2-kb fragment from genomic DNA of plants carrying the transgene loci on chromosome 3 of the line EL702C. A DNA fragment of 2.1 kb is amplified with primers EL1202 and EL1204 from WT plants.

Microscopic observation of living nuclei

A Delta Vision restoration microscope system (Applied Precision, Issaquah, WA, USA) equipped with a TE200 microscope (Nikon, Tokyo, Japan) was used to observe live cell nuclei in true leaves of 2–3 week old plants. Forty images at 0.2 μm z-axis steps were collected using a Nikon PlanApo 60 \times 1.2 NA water-immersion objective lens. The exposure time was 0.3 sec and appropriate filters (Chroma, Rockingham, VT, USA) were used. The images were deconvolved based on a set of point-spread function data.

The sample leaves were treated with $0.3~\mu M$ dexamethasone (DEX) solution on agar plates for 10–12~h to induce the expression of GFP-Lacl/NLS fusion protein. After treatment, the leaves were placed between two coverslips under water for observation. The background-to-signal (free versus bound GFP fusion protein) ratio is important for detection of GFP spots at lacO arrays. GFP spots were defined as before (Kato and Lam; 2003). The stacked images of nuclei were analyzed for GFP spots by SOFTWORX software (Applied Precision, Mountain View, CA, USA) on an Octance Workstation (Silicon Graphics, CA, USA).

Measuring chromatin movement

A single 37-frame z stack, with a 0.2 μ m z interval was collected every minute, for 10 min, with a scan time of 0.3 sec. The distance between two GFP spots was measured by SOFTWORX SOftware. The step size was calculated for the time interval of 1 min and the mean square change in distance, ' Δd^{2t} , was calculated for all time intervals according to the formula: $\Delta d^2 = [d(t) - d(t + \Delta t)]^2$ (Vazquez *et al.*, 2001). As values of the time interval increase, the number of data points used for calculating ' Δd^{2t} ' decreases and results in increasing errors in ' Δd^{2t} ' value (Vazquez *et al.*, 2001).

Southern and Northern hybridization

Genomic DNA was isolated from leaves by using Nucleon Phyto-Pure from Plant DNA Extraction Kit (Amersham, Piscataway, NJ, USA) as described by the manufacturer. Digested DNA samples were electrophoresed on agarose gels and blotted onto a nylon membrane (Zeta-Probe GT Genomic Tested Blotting Membrane; Bio-Rad, Hercules, CA, USA). Total RNA was prepared from leaves treated with 3.0 μ M dexamethasone for 12 h by using the RNeasy plant mini kit (QIAGEN, Valencia, CA, USA) according to manufacturer's instructions. RNA (10 μ g per sample) was electrophoresed and transferred to a Hybond N⁺ nylon membrane (Amersham). Hybridization was performed in ExpressHyb hybridization solution

(Clontech, Mountain View, CA, USA) according to manufacturer's instructions. Hybridization probes were generated from cloned inserts of: lacO repeat, 40mer lacO/SK; GVG gene, pTA7002 (Aoyama and Chua, 1997); GFP-Lacl/NLS gene, pEL700 (Kato and Lam, 2001); ubiquitin 5 (UBQ5) gene, pCH1-002. The intensities of hybridization signals on Northern blots were measured using a PhosphorImager (Molecular Dynamics, Sunnyvale, CA, USA).

Preparation of nuclei, probe labeling and fluorescence in situ hybridization

Young leaves were fixed for 20 min in 4% formaldehyde in TRIS buffer (100 mm TRIS-HCl, pH 7, 5 mm MgCl₂, 85 mm NaCl, 0.1% Triton X100) under vacuum. After homogenization in TRIS buffer, suspension was filtered through a 35-μm nylon mesh and the nuclei were stained with DAPI (1 μg ml⁻¹). 2C nuclei were flow-sorted onto microscopic slides using an FACStarPlus flow cytometer (Becton Dickinson, San Jose, CA, USA) equipped with an Argon-ion laser (Coherent, Santa Clara, CA, USA) emitting UV light as described (Pecinka et al., 2004).

The following DNA clones were used as probes: BAC MGL6 (GenBank accession no. AB022217), BAC F18C1 (accession no. AC011620), BAC T15P10 containing 45S rDNA sequence (accession no. AF167571), plasmid 128x *lacO*-SK (Kato and Lam, 2001) and plasmid pAL1 (Martinez-Zapater et al., 1986). BAC and plasmid DNA was labeled by nick translation (Ward, 2002). The BAC DNA was precipitated and resuspended in 20 µl of hybridization buffer (50% formamide, 10% dextran sulphate, 2× SSC, 50 mm sodium phosphate, pH 7.0) per slide. After mounting the probe, the slides were placed on a heat block at 80°C for 2 min and then incubated in a moist chamber at 37°C for approximately 12 h. Post-hybridization washes and detection steps were as described (Schubert et al., 2001). In brief, biotin-(2'-Deoxiuridine 5'-thiophosphate) (dUTP) was detected by avidin conjugated with Texas Red (1:1000; Vector Laboratories, Burlingame, CA, USA), goat-anti-avidin conjugated with biotin (1:200; Vector Laboratories) and again with avidin conjugated with Texas Red, digoxigenin-dUTP by mouse-antidigoxigenin (1:250; Roche, Mannheim, Germany) and goat-antimouse conjugated with Alexa 488 (1:200; Molecular Probes, Eugene, OR, USA), 2,4-dinitrophenol-dUTP (DNP-dUTP) by rabbitanti-DNP (1:400; Sigma, Saint Louis, MO, USA) and goat-anti-rabbit conjugated with Cy5 (1:100; Jackson Laboratories, West Grove, PA, USA), Cy3-dUTP was observed directly. Nuclei and chromosomes were counterstained with 1 μg ml⁻¹ of DAPI in Vectashield mounting medium (Vector Laboratories).

Microscopic evaluation and image processing

Fluorescence signals in flow-sorted 2C nuclei were analysed using an Axioplan 2 (Zeiss, Jena, Germany) epifluorescence microscope with a 100×/1.4 Zeiss plan apochromat objective. Images were acquired with METAVUE (Universal Imaging) software and a cooled charge-coupled device camera (Spot 2e; Diagnostic Instruments, Sterling Heights, MI, USA) separately for each fluorochrome using the appropriate excitation and emission filters. The monochromatic images were pseudocoloured and merged using Adobe РНОТОЅНОР 6.0 (Adobe Systems) software. A spatial overlap of compact spheric FISH signals of homologous and/or heterologous sequences was regarded as homologous pairing and heterologous association, respectively. Allelic versus ectopic pairing of transgenic loci was distinguished on the basis of FISH signals obtained from differently labeled BACs that contain sequences flanking the respective transgene insertion loci.

Acknowledgements

We thank Drs F. Rosin and N. Watanabe for critical readings of the manuscript, Dr R. Martienssen (Cold Springs Harbor Laboratory, New York) for the ddm1-2 and the met1-1 lines, Dr N. Kato for his input in the early stages of this work, Dr M. Gartenberg for the advice on the data analysis in the chromatin dynamics experiment, and M. Kühne and A. Bruder for technical assistance. This work was supported by a grant from the Plant Genome Research Program of the National Science Foundation (NSF; no. 0077617) to EL and by grants of the Deutsche Forschungsgemeinschaft (Schu 951/8-2 and 10-1) to IS.

References

- Aoyama, T. and Chua, N.H. (1997) A glucocorticoid-mediated transcriptional induction system in transgenic plants. Plant J. 11, 605-612.
- Arabidopsis Genome Initiative (2000) Analysis of the genome sequence of the flowering plant Arabidopsis thaliana. Nature, 408,
- Assaad, F.F., Tucker, K.L. and Signer, E.R. (1993) Epigenetic repeatinduced gene silencing (RIGS) in Arabidopsis. Plant Mol. Biol. 22,
- Bender, J. (1998) Cytosine methylation of repeated sequences in eukaryotes: the role of DNA pairing. Trends Biochem. Sci. 23, 252-256.
- Boyle, S., Gilchrist, S., Brider, J.M., Mahy, N.L., Ellis, J.A. and Bickmore, W.A. (2001) The spatial organization of human chromosomes within the nuclei of normal and emerin-mutant cells. Hum. Mol. Genet. 10, 211-219.
- Brzeski, J. and Jerzmanowski, A. (2003) Deficient in DNA methylation 1 (DDM1) defines a novel family of chromatin-remodeling factors. J. Biol. Chem. 278, 823-828.
- Chandler, V. and Stam, M. (2004) Chromatin conversations: mechanisms and implications of paramutation. Nat. Rev. Genet. 5, 532-
- Cremer, T. and Cremer, C. (2001) Chromosome territories, nuclear architecture and gene regulation in mammalian cells. Nat. Rev. Genet. 2, 292-301.
- Csink, A.K. and Henikoff, S. (1996) Genetic modification of heterochromatic association and nuclear organization in Drosophila. Nature, 381, 529-531.
- Davies, G.J., Sheikh, M.A., Ratcliffe, O.J., Coupland, G. and Furner, I.J. (1997) Genetics of homology-dependent gene silencing in Arabidopsis; a role for methylation. Plant J. 12, 791-804.
- Dorer, D.R. and Henikoff, S. (1997) Transgene repeat arrays interact with distant heterochromatin and cause silencing in cis and trans. Genetics, 147, 1181-1190.
- Duncan, I.W. (2002) Transcection effects in Drosophila. Annu. Rev. Genet. 36, 521-556.
- Dundr, M. and Misteli, T. (2001) Functional architecture in the cell nucleus. Biochem. J. 356, 297-310.
- Fransz, P., De Jong, J.H., Lysak, M., Castiglione, M.R. and Schubert, I. (2002) Interphase chromosomes in Arabidopsis are organized as well defined CCs from which euchromatin loops emanate. Proc. Natl Acad. Sci. USA, 99, 14584-14589.
- Garrick, D., Fiering, S., Martin, D.I.K. and Whitelaw, E. (1998) Repeatinduced gene silencing in mammals. Nat. Genet. 18, 56-59.
- Johnson, L.M., Cao, X. and Jacobsen, S.E. (2002) Interplay between two epigenetic marks: DNA methylation and histone H3 lysine 9 methylation. Curr. Biol. 12, 1360-1367.
- Jones, L., Ratcliff, F. and Baulcombe, D.C. (2001) RNA-directed transcriptional gene silencing in plants can be inherited inde-

- pendently of the RNA trigger and requires Met1 for maintenance. Curr. Biol. 15, 747-757.
- Kankel, M., Ramsey, D.E., Stokes, T.L., Flowers, S.K., Hang, J.R., Jeddeloh, J.A., Riddle, N.C., Verbsky, M.L. and Richards, E.J. (2003) Arabidopsis MET1 cytosine methyltransferase mutants. Genetics, 163, 1109-1122.
- Kato, N. and Lam, E. (2001) Detection of chromosomes tagged with green fluorescent protein in live Arabidopsis thaliana plants. Genome Biol. 2, research0045.1-0045.10.
- Kato, N. and Lam, E. (2003) Chromatin of endoreduplicated pavement cells has greater range of movement than that of diploid guard cells in Arabidopsis thaliana. J. Cell Sci. 116,
- Kato, M., Miura, A., Bender, J., Jacobsen, S.E. and Kakutani, T. (2003) Role of CG and non-CG methylation in immobilization of transposons in Arabidopsis. Curr. Biol. 13, 421-426.
- Kuroda, M., Tanabe, H., Yoshida, K., Oikawa, K., Saito, A., Kuyuna, T., Mizusawa, H. and Mukai, K. (2004) Alteration of chromosome positioning during adipocyte differentiation. J. Cell Sci. 117, 5897-5903.
- Martinez-Zapater, J.M., Estelle, M.A. and Somerville, C.R. (1986) A highly repeated DNA sequence in Arabidopsis thaliana. Mol. Gen. Genet. 204, 417-423.
- Morel, J.-B., Mourrain, P., Béclin, C. and Vaucheret, H. (2000) DNA methylation and chromatin structure affect transcriptional and post-transcriptional transgene silencing in Arabidopsis. Curr. Biol. 10, 1591-1594.
- Park, Y., Papp, I., Moscone, E.A., Iglesias, V.A., Vaucheret, H., Matzke, A.J.M. and Matzke, M.A. (1996) Gene silencing mediated by promoter homology occurs at the level of transcription and results in meiotically heritable alterations in methylation and gene activity. Plant J. 9, 183-194.
- Pecinka, A., Schubert, V., Meister, A., Kreth, G., Klatte, M., Lysak, M.A., Fuchs, J. and Schubert, I. (2004) Chromosome territory arrangement and homologous pairing in nuclei of Arabidopsis thaliana are predominantly random except for NOR-bearing chromosomes. Chromosoma, 113, 258-269.
- Pecinka, A., Kato, N., Meister, A., Probst, A.V., Schubert, I. and Lam, E. (2005) Tandem repetitive transgenes and fluorescent chromatin tags alter the local interphase chromosome arrangement in Arabidopsis thaliana. J. Cell Sci. 118, 3751-3758.

- Ronemus, M.J., Galbiati, M., Ticknor, C., Chen, J. and Dellaporta, S.L. (1996) Demthylation-induced developmental pleiotroph in Arabidopsis. Science, 273, 654-657.
- Santos, A.P., Abranches, R., Stroger, E., Beven, A., Viegas, W. and Shaw, P.J. (2002) The architecture of interphase chromosomes and gene positioning are altered by changes in DNA methylation and histone acetylation. J. Cell Sci. 115, 4597-4605.
- Schubert, I., Fransz, P.F., Fuchs, J. and de Jong, J.H. (2001) Chromosome painting in plants. Methods Cell Sci. 23, 57-69.
- Singer, T., Yordan, C. and Martienssen, R.A. (2001) Robertson's Mutator transposons in A. thaliana are regulated by the chromatin-remodeling gene Decrease in DNA Methylation (DDM1). Genes Dev. 15, 591-602.
- Soppe, W.J.J., Jacobsen, S.E., Alonso-Blanco, C., Jackson, J.P., Kakutani, T., Koornneef, M. and Peeters, J.M. (2000) The late flowering phenotype of fwa mutants is caused by gain-of-function epigenetic alleles of a homeodomain gene. Mol. Cell, 6, 791-802.
- Soppe, W.J.J., Jasencakova, Z., Houben, A., Kakutani, T., Meister, A., Haung, M.S., Jacobsen, S.E., Schubert, I. and Fransz, P. (2002) DNA methylation controls histone H3 lysine 9 methylation and heterochromatin assembly in Arabidopsis. EMBO J. 21, 6549-6559.
- Stadler, S., Schnapp, V., Mayer, R., Stein, S., Cremer, C., Bonifer, C., Cremer, T. and Dietzel, S. (2004) The architecture of chicken chromosome territories changes during differentiation. BMC Cell
- Sun, H.B., Shen, J. and Yokota, H. (2000) Size-dependent positioning of human chromosomes in interphase nuclei. Biophys. J. 79, 184-190
- Tariq, M., Saze, H., Probst, A., Lichota, J., Habu, Y. and Paszkowski, J. (2003) Erasure of CpG methylation in Arabidopsis alters patterns of histone H3 methylation in heterochromatin. Proc. Natl Acad. Sci. USA, 100, 8823-8827.
- Vazquez, J., Belmont, A.S. and Sedat, J.W. (2001) Multiple regimes of constrained chromosome motion are regulated in the interphase Drosophila nucleus. Curr. Biol. 11, 1227-1239.
- Ward, P.B. (2002). A practical approach. In FISH, Vol. 260 (Squire, J., ed.). Oxford: Oxford University Press, pp. 5-28.
- Xiao, W., Gehring, M., Choi, Y., Margossian, L., Pu, H., Harada, J.J., Goldberg, R.B., Pennell, R.I. and Fischer, R.L. (2003) Imprinting of the MEA polycomb gene is controlled by antagonism between MET1 methyltransferase and DME glycosylase. Dev. Cell, 5, 891-901.