

Antibodies Targeting the Envelope of HIV-1

LUZIA M. MAYR1 and SUSAN ZOLLA-PAZNER2,3

¹INSERM U1109, Université de Strasbourg, 67000 Strasbourg, France; ²New York Veterans Affairs Harbor Healthcare System, New York, NY 10010; ³New York University School of Medicine, New York, NY 10016

ABSTRACT Antibodies (Abs) are a critical component of the human immune response against viral infections. In HIV-infected patients, a robust Ab response against the virus develops within months of infection; however, due to numerous strategies, the virus usually escapes the biological effects of the various Abs. Here we provide an overview of the different viral evasion mechanisms, including glycosylation, high mutation rate, and conformational masking by the envelope glycoproteins of the virus. In response to virus infection and to its evolution within a host, "conventional Abs" are generated, and these can also be induced by immunization; generally, these Abs are limited in their neutralization breadth and potency. In contrast, "exceptional Abs" require extended exposure to virus to generate the required hypermutation in the immunoglobulin variable regions, and they occur only in rare HIV-infected individuals, but they display impressive breadth and potency. In this review, we describe the major regions of the HIV envelope spike that are targeted by conventional and exceptional Abs. These include the first, second, and third variable loops (V1, V2, and V3) located at the apex of the envelope trimer, the CD4 binding site, and the membrane-proximal external region of the gp41 ectodomain. Lastly, we discuss the challenging task of HIV immunogen design and approaches for choosing which immunogens might be used to elicit protective Abs.

INTRODUCTION

HIV continues to be a major global public health issue, with an estimated 35 million people living with the virus and more than 2 million new infections occurring yearly (1). As part of the natural immune response, antibodies (Abs) exert immune pressure on HIV and play a key role both in controlling the virus and in driving escape mutations in the viral envelope glycoproteins. Therefore, and because the elicitation of Abs is believed to be

crucial for an effective vaccine against HIV, Abs targeting HIV have been the focus of intense research in the past years.

ANTIBODY RESPONSE TO HIV

Upon infection with HIV, a strong Ab response occurs in essentially all infected individuals. These Abs are directed against several viral proteins, including the gp120 and gp41 envelope proteins that are found on the surface of the virus particles. While in many viral diseases, such as influenza and polio, the Abs against surface antigens can establish protective immunity, many HIV envelope-specific Abs have little neutralizing capacity due to the many complex escape mechanisms employed by the surface viral glycoproteins that occur as sparse trimeric spikes in the virus envelope (2). These virus escape mechanisms include the following.

Glycan Shield

One of the reasons why HIV is a difficult target for Abs that prevent infection is the dense glycosylation of the envelope proteins gp120 and gp41. With approximately

Received: 10 November 2014, Accepted: 15 November 2014, Published: 16 January 2015

Editors: James E. Crowe, Jr., Vanderbilt University School of Medicine, Nashville, TN; Diana Boraschi, National Research Council, Pisa, Italy; and Rino Rappuoli, Novartis Vaccines, Siena, Italy

Citation: Mayr LM, Zolla-Pazner S. 2015. Antibodies targeting the envelope of HIV-1. *Microbiol Spectrum* 3(1):AID-0025-2014. doi:10.1128/microbiolspec.AID-0025-2014.

Correspondence: Susan Zolla-Pazner, <u>zollas01@med.nyu.edu</u> © 2015 American Society for Microbiology. All rights reserved.

25 N-linked glycosylation sites, gp120 is one of the most heavily glycosylated viral proteins described. These glycans are large, complex carbohydrate structures that shield vulnerable epitopes on the surface of HIV, leading to viral escape from Abs ($\underline{3}$). The function of glycans can be demonstrated by the removal of certain glycosylation sites, leading to a significant increase in neutralization sensitivity of the virus ($\underline{4}$, $\underline{5}$).

High Mutation Rate

The high mutation rate of HIV-1 is another obstacle for the development of immune protection by neutralizing Abs. With an *in vitro* mutation rate of approximately 2.2×10^{-5} to 5.4×10^{-5} per nucleotide base per replication cycle, the virus continuously and rapidly evolves to escape neutralization (6). In an attempt to recognize the mutated virus, neutralizing Abs (nAbs) evolve in tandem with the virus, resulting in successive waves of nAb maturation followed by viral escape. This leads to the phenomenon of nAbs often being able to neutralize virus from months earlier, but not concurrent circulating variants (7-2).

The high mutation rate and the fact that billions of new viral particles are produced daily within each patient leads to an enormous diversity of HIV-1 variants. Based on their sequence, the variants have been divided into nine distinct subtypes, or clades, designated by the letters A, B, C, D, F, G, H, J, and K. Overall, the amino acid sequence of the different subtypes can vary by as much as 30% from one clade to another, but in certain genomic regions the genetic variability can be as high as 42%. Further complicating the HIV landscape are recombinant forms of the virus in which heterologous virus strains combine segments of their genome during reverse transcription to produce genetically divergent new virus forms. Countless recombinants of virtually every virus strain combination have been identified worldwide, and their prevalence differs by geographic regions (10). A protective vaccine will need to induce Abs that target this tremendous viral diversity.

Conformational Masking

The envelope spike is a heterotrimer consisting of three gp120 molecules noncovalently anchored to the viral membrane via three gp41 molecules. In an attempt to shield neutralization-sensitive domains, the elements of the envelope spike adopt a quaternary conformation where domains of neighboring gp120 subunits can interact. For example, it was suggested that in the apex of the three-dimensional envelope spike, intersubunit contact between the V1, V2, and V3 loops occurs, protecting adjacent regions from recognition by Abs (11).

To enter its target cells, HIV must bind sequentially to cellular receptors, including CD4 and one of two chemokine receptors (CXCR4 or CCR5). The regions of gp120 that are involved with binding to these receptors must, therefore, be conserved to maintain the infectious potential of the virus. The CD4 binding site (CD4bs) and chemokine receptor binding sites on gp120 would thus appear to be good targets for Abs; however, while able to bind to some exceptional Abs (9, 12, 13), the CD4bs is partially obscured by glycans and variable regions and undergoes conformational reorganization, allowing it to evade neutralization by conventional CD4bs-specific Abs. Thus, the virus places an energetic barrier to Ab binding (14).

It is believed that dynamic conformational changes also play a role in masking conserved epitopes on chemokine receptor binding sites (15); regions of gp120 that are involved in binding to the chemokine receptor—the V3 loop and the β 20/ β 21 strands of the bridging sheet—form an exposed surface only after binding to CD4 and are thus exposed to Abs only transiently (16).

TYPES OF ANTIBODIES

Conventional Abs

Abs that commonly occur during HIV infection and that are present in the majority of infected individuals are here defined as "conventional Abs." These Abs do not exhibit unusual structural or genetic characteristics, and their immunoglobulin genes undergo relatively little somatic hypermutation from germline (17, 18). Conventional Abs have long been known to protect against infection in animal systems. This was established with passive immunization of chimpanzees using IgG preparations from the blood of HIV-infected individuals (19). Thus, the proof of principle was established more than two decades ago that Abs alone from unselected HIV-infected individuals could provide sterilizing immunity.

Conventional Abs are elicited as early as two weeks after seroconversion in acutely infected individuals; however, they display very limited neutralization breadth (20): using a standardized reference pseudovirus panel that represents genetically diverse subsets of viruses, conventional Abs targeting gp120 were shown to neutralize up to 50% of tier 1 pseudoviruses, but \leq 9% of tier 2 pseudoviruses, suggesting that these Abs target epitopes exposed on a minority of viruses and tend to be specific for the virus infecting the host. Conventional neutralizing Abs (nAbs) also have a limited neutralizing potency *in vitro*, and while most tier 1 pseudoviruses are

neutralized with low levels of nAbs (<<1 to 10 μ g/ml), often >10 μ g/ml are required to neutralize tier 2 pseudoviruses (21, 22).

The Thai clinical HIV-1 vaccine trial RV144 provided additional support for the role of conventional Abs in protection: high levels of V1V2 and V3 IgG Ab levels, especially those of the IgG3 subclass, were found to be significantly associated with the reduced infection rate (estimated 31% vaccine efficacy) in vaccine recipients (23–28). Monoclonal Abs isolated from the RV144 vaccinees showed very low mutation rates from germline genes encoding the variable region of the heavy chain (VH)—mutation rate range of 1.5 to 4.5% (29, 30), which is even lower than that noted after influenza immunization (mean VH mutation rate of 8.1% [31]). These data further uphold the concept that conventional Abs can be associated with reduced infection rates.

Thus, even though conventional nAbs are limited in their breadth and potency, they are commonly made by HIV-positive individuals (32), by immunized humans (24), and by immunized animals (33, 34), and the previously mentioned studies suggest that they can reduce infection rates. Therefore, such Abs, induced by vaccines, have substantial potential for influencing the course of the HIV epidemic.

Exceptional, Broadly Neutralizing Abs

Unlike conventional HIV Abs, broadly neutralizing Abs (bNAbs) are found in relatively rare HIV-infected subjects (35), with the most broad and potent serum Abs being identified in only $\sim 1\%$ of "elite neutralizers" (36). Most of the broadly neutralizing monoclonal Abs (bNmAbs) have been developed in the last few years (37–41). In addition to wide breadth (neutralization of 100% of tier 1 viruses and 72 to 100% of tier 2 viruses), bNmAbs are very potent, and *in vitro* assays have shown that very small amounts are sufficient for neutralization of tier 1 and tier 2 viruses (<1 μ g/ml and 0.02 to 27.0 μ g/ml, respectively) (17).

For bNAbs to acquire their impressive breadth and potency, extensive somatic hypermutation is required—particularly in the variable heavy chain (VH) genes and in some framework regions—a process that usually requires more than a year of exposure to the virus after HIV infection (42, 43). Several additional unique characteristics of bNmAbs have been described, such as frequent auto- and/or poly-reactivity for host antigens and long heavy chain complementarity-determining region 3 (HCDR3) sequences composed of 20 to 34 residues, which stand in stark contrast to the length of HCDR3s produced by human B cells, which averages 16 residues (44–47). These features contribute to the rarity of bNAbs

and pose a major challenge for the development of an HIV-1 vaccine designed to induce such Abs.

While bNmAbs are exceptionally potent and provide protection in animal models (48–51), all attempts to elicit bNAb responses by vaccination have so far been unsuccessful, and it is believed that a panel of special immunogens which will both stimulate suitable naïve B cells and guide them through lineage maturation will be required to achieve this goal (52); this process of Ab maturation appears to be long and complex.

To design these immunogens, bNmAbs from infected donors are being isolated and sequenced to reconstruct the lineage of the Abs, including the sequence of the probable common unmutated ancestor of a given bNmAb. The envelope glycoproteins recognized by the Abs in the bNmAb lineage are being expressed, and these will serve as immunogens to be used sequentially to engage the naïve B cell receptor and to stimulate and guide the evolution of the nAb response (44).

While the ultimate success of this path toward the design of a prophylactic vaccine is unknowable at this point, there is, nevertheless, great potential for the use of bNmAbs for passive immunization to protect against and treat HIV infection. Thus, treatment of macaques with bNmAbs has been shown to completely protect against infection with simian/HIV when these Abs are present at serum concentrations as low as 30 µg/ml (53–55). Broadly neutralizing mAbs are also being developed for treatment of established HIV infection, a process in which bNmAbs will be infused into HIV-infected individuals to decrease and/or eliminate virus. Success has already been achieved in this area as demonstrated by treatment of humanized mice and macaques infected with HIV and simian/HIV, respectively (56–58).

There is also great interest in whether passively transferred bNmAbs can contribute to the prevention of mother-to-child-transmission of HIV-1, the continuing cause of a significant percentage of new infections in the developing world. During pregnancy, HIV-specific Abs can pass from an HIV-infected mother to the fetus through the placenta. These Abs, however, are not effective against later HIV infection, for example, during the breast feeding phase. Moreover, the transmitted virus variants have fewer potential N-linked glycosylation sites, a fact that could impact positively on the interaction of glycan-dependent bNAb with transmitter/founder viruses recognition (59). Indeed, transmitted HIV variants were shown to be susceptible to various bNmAbs, but a combination of potent bNmAbs targeting diverse epitopes might be needed to successfully protect against HIV infection in the mother-to-child-transmission context (60).

VACCINE DEVELOPMENT AND IMMUNOGEN DESIGN

As a result of the extensive data summarized above, the elicitation of Abs is clearly indicated as a requirement for a successful HIV vaccine. As noted, this is a challenging task. The effort to develop vaccine candidates capable of inducing protective Abs has accelerated dramatically since the Thai vaccine trial RV144 revealed that Abs were associated with a reduced rate of infection (24–26, 28).

Several envelope-based immunogens have been tested for their ability to induce nAbs. Monomeric gp120 is relatively easy to produce and has been widely used in animal studies. Initial human vaccine trials elicited only weak nAbs, and no protection against HIV infection was achieved (61, 62). The RV144 vaccine trial, however, demonstrated a beneficial effect of monomeric gp120 in combination with a canarypox prime (63). It was suggested that the epitopes exposed on monomeric gp120 are poor neutralization targets because they are occluded on the native envelope trimer (64), and therefore immunogens were designed that better mimic the native envelope spike. Since the trimeric envelope is highly unstable and difficult to produce, a variety of different immunogens using gp140, the ectodomain of trimeric gp160, have been made $(\underline{65}-\underline{67})$. To date, immunizations using trimeric envelope immunogens have not been successful in the induction of potent nAbs (68, 69). Recent studies, monitoring the coevolution of virus and bNAbs in patients during natural infection, demonstrated that a tight interplay between Ab maturation and subsequent viral escape drives the development of bNAb responses (9, 70, 71). These studies provide important new insights into the elicitation of bNAbs and will advance the development of better immunogens.

Rather than using whole Env monomers or trimers, another approach to vaccine design is the use of recombinant immunogens that target the Ab response to particular epitopes. Computationally designed vaccines that mimic viral and bacterial epitopes have been shown to induce potent conventional protective nAbs against various viruses and bacterial pathogens (72, 73). This same approach is being applied to the design of recombinant vaccines that target specific HIV epitopes. At the present time, the type of epitopes to be targeted by conventional Abs include the glycan-independent V1V2 and V3 regions of the HIV envelope, whereas the type of epitopes to be targeted by bNAbs include "sites of vulnerability" (74) defined as the glycan-dependent V2 epitope (see "V2q epitope" in the list below), the glycan-dependent epitope at the base of V3, the CD4 binding site in gp120, and the membrane proximal external region (MPER) in gp41.

Abs Targeting Variable Loops 1 and 2 (V1V2)

Electron tomography, cryo-electron microscopy, and biochemical studies have shown that the V1V2 domain is localized at the apex of the trimeric HIV-1 Env structures, and therefore at least some of the V1V2 epitopes are accessible to Abs (75, 76). V2 loop sequences differ in length, but the majority of amino acids are highly conserved, suggesting conserved structural elements (77). The V1V2 region forms four antiparallel β-strands (A, B, C, and D) which are linked via disulfide bonds (78). Via a conserved tri-peptide, the 179 LDV/ 181 binding motif, V2 can bind to α4β7, an integrin expressed on activated CD4+ T cells that is required for the homing of CD4+ T cells to the gut mucosa (79).

Abs targeting the V1V2 region were associated with a lower risk of infection in the RV144 clinical vaccine trial, thus making this area a promising target for vaccine development and the focus of intense research (24–26). To date, three different epitope types have been defined in the V1V2 region:

V2i epitope. A group of seven human mAbs recognizes a conformation-dependent epitope, designated V2i since these Abs target the disordered region in V2 that connects the C and D strands and includes the α4β7-integrin binding site (hence the term "V2i") (80, 81). The structure of this region has so far not been solved, suggesting that it is highly flexible and dynamic. Abs targeting V2i are highly cross-reactive in binding to monomeric gp120 but do not neutralize HIV well (18), suggesting that the epitope is mostly occluded from Ab recognition in the trimeric envelope.

V2p epitope. This epitope is defined by two mAbs (CH58 and CH59) that were isolated from an RV144 vaccinee. The epitope is glycan-independent, and these mAbs bind V2 peptides (thus, "V2p") and selected monomeric gp120, recognizing an epitope composed of helical or helical-coil structures in the C strand of V1V2 (30, 82).

V2q epitope. This is a quaternary epitope, which is preferentially expressed on the trimeric structure of the gp120 spike. Crystallographic studies with a V1V2-fusion protein show that broad and potently neutralizing V2q mAbs bind to relatively conserved residues within V2 as well as to N-linked glycans—most importantly the N160 glycan. Earlier studies also showed that the binding of V2q-specific mAbs was influenced by residues in V3 (37, 83, 84). V2q-specific bNmAbs, including PG9, PG16, and CH01, are extremely potent and broad

in their reactivity and have long CDRH3 loops that interact with N-linked glycans and reach around them to contact amino acids of V2. These V2q mAbs are highly mutated from germline (44).

Abs Targeting Variable Loop 3 (V3)

The V3 loop is located in close proximity to the V1V2 domain at the apex of the envelope trimer (85) and is involved in CCR5 or CXCR4 coreceptor tropism and binding. It thus plays an important role in virus entry into the host cell, and it is required for infectivity since V3-deleted mutants are noninfectious (86).

While, by definition, there is considerable amino acid sequence variation in V3, about 60% of the amino acids are conserved, and the variation occurs at restricted positions (87, 88). The region is characterized by a conserved length of 34 to 35 amino acids, the presence of N-linked glycosylation sites at its N- and C-terminal ends, and several conserved structural features. The V3 loop can be divided into three structural regions: (i) a base region that is located in the gp120 core and includes a disulfide bond, (ii) a flexible stem region, and (iii) a distal crown that contains the highly conserved GPGR/Q motif at its tip. The recognition of conserved V3 elements contributes to the broad cross-reactivity of V3-specific Abs (89, 90).

V3 Abs are present in essentially all infected individuals (91), and V3 Abs have been elicited by several types of vaccines (4, 92, 93). Moreover, the first demonstration of the successful use of "reverse vaccinology," i.e., the design of vaccines based on epitopes recognized by biologically active mAbs, was achieved using V3scaffold immunogens which targeted the immune response to this single epitope of the HIV envelope. For this, the V3 loop was spliced into a conformationally correct site on the highly immunogenic protein, cholera toxin subunit B, a protein which forms a pentameric structure and therefore presents five copies of V3 (94), serving as a particularly strong antigen for induction of Abs (95). High anti-V3 Ab titers were elicited in rabbits with one or a combination of V3-cholera toxin subunit B immunogens, and these immune sera were able to neutralize numerous diverse HIV strains (33, 94).

Just as Abs to V2 target three regions (V2i, V2p, and V2q), three types of V3 Abs have been described.

Glycan-independent "ladle-like" V3 Abs

The V3 crown is an immunodominant region, and Abs targeting the epitopes in the crown are made by essentially all HIV-infected individuals (91). Abs to this region are

glycan-independent. The ladle-like anti-V3 mAbs bind to the tip of the V3 crown which sits in the "bowl" of the ladle while the N-terminal V3 beta-strand adheres to the "handle" of the ladle. Representative mAbs of this type include 447-52D, where the long CDRH3 forms the handle of the ladle that interacts with the main chain of the N-terminal beta-chain of the V3 crown.

Glycan-independent "cradle-like" V3 Abs

The second type of V3 Ab uses an antigen-binding mode typified by mAb 2557. In such cradle-like Abs the antigen binding site consists of a groove in the Fab fragment, and the epitope lies in this groove, resembling a baby in a cradle; in this case, the major binding site is the hydrophobic core of the V3 crown, usually composed of hydrophobic, conserved residues 307, 309, and 317 (89, 96, 97).

Both types of glycan-independent Abs specific for the V3 crown can neutralize most laboratory-adapted HIV-1 strains and tier 1 viruses but neutralize relatively few tier 2 viruses using standard neutralization assays (21, 98, 99). This is largely due to masking of the V3 loop by glycans (100) and by the V1V2 domain that is situated atop the trimer. Deletion of V1V2 leads to a better exposure of V3 epitopes and thus better neutralization by V3 mAbs (101, 102). Importantly, it was recently shown that anti-V3 Abs are effective against tier 2 viruses if the Ab and virus are coincubated for several hours rather than for 1 to 2 hours, which is the norm in standard neutralization assays (103). These results suggest that the V3 loop is meta-stable on the virus surface, flickering between a cryptic and exposed conformation, the latter being both required for interaction with the chemokine receptor and available for Ab binding leading to neutralization. Additionally, CD4 binding induces a conformational change in gp120, releasing the V3 crown from the surface of the envelope trimer and thus augmenting V3 epitope exposure and sensitivity to V3 Ab neutralization (90).

Glycan-dependent V3 Abs

The base of V3 is poorly immunogenic, eliciting Abs in a relatively small proportion of infected individuals. Nonetheless, mAbs that target this region, such as the PGT121-like and the PGT128-like Ab families, are extremely potent and broadly reactive. These mAbs are highly somatically mutated and require specific glycan interactions, particularly at position N332 (38, 104). The crystal structure of PGT128 in complex with an engineered outer domain of gp120 recently showed that this Ab also interacts with the N301 oligomannose glycan, a position that is not recognized by PGT121-like

Abs (104). Even though the two Ab families are suggested to approach gp120 from different angles, both block HIV-1 infection by interfering with CD4 binding through allosteric mechanisms (105).

Abs Targeting the CD4 Binding Site (CD4bs)

The CD4bs is functionally highly conserved and thus seems to be an ideal target for Abs. However, it is well hidden by surrounding glycans and variable regions (74), and Abs are obstructed from binding due to steric and conformational hindrance (see section on conformational masking, above). Studies have shown that many CD4bs mAbs can bind with high affinity to recombinant gp120 but cannot access the CD4bs on the envelope trimer. The mAb b12 was the first neutralizing mAb discovered to successfully target the CD4bs, but its breadth and potency are restricted due to amino acid variation both within and outside of the CD4bs (44, 106, 107).

More recently, several bNmAbs have been isolated that mimic binding of CD4 to gp120 and as a result neutralize HIV-1 potently and with broad reactivity. These CD4bs-specific bNmAbs, isolated from various HIVinfected individuals, share several genetic and structural characteristics. First, their heavy chains all derive from the VH1-2 or the closely related VH1-46 germline genes. These Abs are also highly somatically mutated, with ~ 20 to 30% of nucleotide changes in their heavy chains compared to germline. However, attempts to induce these CD4bs bNAbs have been problematic, even using "engineered gp120" and recombinant "designer immunogens" modeled on the structure of the epitopes contacted by the very effective bNmAbs (108–110). Cross-clade nAbs were induced in rabbits via the reverse vaccinology approach. Immunogens were designed based on the epitope recognized by the mAb IgG1b12. Thus, fragments of gp120 containing 70% of the b12 epitope were used for priming of rabbits. The animals received a boost with full-length gp120 after 16 and 51 weeks. Cross-clade neutralizing HIV-specific Abs were elicited in the rabbits, which neutralized tier 1, 2, and 3 viruses (111), providing a maximum geometric mean of IC50 titers against five tier 2 and 3 viruses of 1:134.

Abs Targeting the Membrane-Proximal External Region (MPER)

The MPER consists of the last 24 C-terminal amino acids of the gp41 ectodomain. Its sequence is highly conserved, contains many hydrophobic residues, and is usually rich in tryptophans. It is believed that the MPER undergoes significant conformational changes during viral entry (112–114).

Different epitopes have been described in the MPER: the very potent human mAb 10E8 recognizes an α -helix in this region, while other human mAbs, including 2F5 and 4E10, target an overlapping region that additionally includes residues of the transmembrane spanning domain. As opposed to mAbs 2F5 and 4E10, bNmAb 10E8 can neutralize ~95% of viruses tested and lacks detectable reactivity with self-antigens, a feature of the less potent 2F5 and 4E10 (40, 44).

Like the bNAbs targeting gp120, bNAbs specific for the MPER of gp41 have been extremely difficult to induce with vaccines (115). They are present in only a minority of HIV-infected individuals (35, 116), suggesting that this is a poorly immunogenic region. This is supported by the finding that MPER mAbs such as 2F5 and 4E10 appear to mimic self antigens, and therefore the responses of B cells with MPER specificity are downmodulated (46).

CONCLUSIONS

Three decades of study have established the important role of Abs in protecting against HIV infection. However, it has become quite clear that HIV uses many mechanisms to protect itself from the biologic effects of Abs that would block infectivity. Design of an effective vaccine must take into account the presence of glycans and masking phenomena to induce Abs that can penetrate or circumvent these protective shields employed by the virion. Current immunogen design is affected profoundly by whether the aim is to induce conventional Abs or exceptional broadly neutralizing Abs. Induction of exceptional Abs with a vaccine may require the use of a series of immunogens that "guide" the immune response through the mutations required for the specificities displayed by broad and potent neutralizing Abs. However desirable this goal is, whether it is achievable has yet to be established. Alternatively, conventional Abs, while not as broad or as potent as exceptional Abs have already been elicited by vaccine trials and are correlated with a reduced rate of infection in the RV144 phase III clinical vaccine trial. Induction of conventional protective Abs is therefore possible. The vaccine regimens and reagents to be used in vaccine development are many, ranging from DNA and viral vector priming immunogens to proteins representing the trimeric envelope proteins or portions thereof spliced onto immunogenic scaffolds. Many more clinical trials for safety, immunogenicity, and protection are required to establish which of these many regimens and reagents will result in a prophylactic vaccine.

ACKNOWLEDGMENTS

Conflicts of interest: We disclose no conflicts.

REFERENCES

- 1. UNAIDS. 2013. UNAIDS report on the global AIDS epidemic. http://www.unaids.org/sites/default/files/en/media/unaids/contentassets/documents/epidemiology/2013/gr2013/UNAIDS_Global_Report_2013_en.pdf.
- 2. Mascola JR, Montefiori DC. 2003. HIV-1: nature's master of disguise. *Nat Med* 9:393–394.
- 3. Wei X, Decker JM, Wang S, Hui H, Kappes JC, Wu X, Salazar-Gonzalez JF, Salazar MG, Kilby JM, Saag MS, Komarova NL, Nowak MA, Hahn BH, Kwong PD, Shaw GM. 2003. Antibody neutralization and escape by HIV-1. *Nature* 422:307–312.
- **4.** Kumar R, Tuen M, Liu J, Nadas A, Pan R, Kong X, Hioe CE. 2013. Elicitation of broadly reactive antibodies against glycan-modulated neutralizing V3 epitopes of HIV-1 by immune complex vaccines. *Vaccine* **31**:5413–5421.
- **5. Hioe CE, Kumar R, Hu S-L.** 2014. The influence of HIV envelope glycosylation on adaptive immune response, p. 59–83. *In* Pantophlet R (ed), *HIV Glycans in Infection and Immunity*. Springer Science + Business Media, New York, NY.
- 6. Robertson DL, Sharp PM, McCutchan FE, Hahn BH. 1995. Recombination in HIV-1. *Nature* 374:124–126.
- 7. Richman DD, Wrin T, Little SJ, Petropoulos CJ. 2003. Rapid evolution of the neutralizing antibody response to HIV type 1 infection. *Proc Natl Acad Sci USA* 100:4144–4149.
- 8. Moore PL, Ranchobe N, Lambson BE, Gray ES, Cave E, Abrahams MR, Bandawe G, Mlisana K, Abdool Karim SS, Williamson C, Morris L. 2009. Limited neutralizing antibody specificities drive neutralization escape in early HIV-1 subtype C infection. *PLoS Pathog* 5:e1000598. doi:10.1371/journal.ppat.1000598.
- 9. Liao HX, Lynch R, Zhou T, Gao F, Alam SM, Boyd SD, Fire AZ, Roskin KM, Schramm CA, Zhang Z, Zhu J, Shapiro L, Mullikin JC, Gnanakaran S, Hraber P, Wiehe K, Kelsoe G, Yang G, Xia SM, Montefiori DC, Parks R, Lloyd KE, Scearce RM, Soderberg KA, Cohen M, Kamanga G, Louder MK, Tran LM, Chen Y, Cai F, Chen S, Moquin S, Du X, Joyce MG, Srivatsan S, Zhang B, Zheng A, Shaw GM, Hahn BH, Kepler TB, Korber BT, Kwong PD, Mascola JR, Haynes BF. 2013. Co-evolution of a broadly neutralizing HIV-1 antibody and founder virus. *Nature* 496:469–476.
- 10. Hemelaar J. 2012. Implications of HIV diversity for the HIV-1 pandemic. *J Infect* 66:391–400.
- 11. Rusert P, Krarup A, Magnus C, Brandenberg OF, Weber J, Ehlert AK, Regoes RR, Gunthard HF, Trkola A. 2011. Interaction of the gp120 V1V2 loop with a neighboring gp120 unit shields the HIV envelope trimer against cross-neutralizing antibodies. *J Exp Med* 208:1419–1433.
- 12. Zhou T, Georgiev I, Wu X, Yang ZY, Dai K, Finzi A, Kwon YD, Scheid JF, Shi W, Xu L, Yang Y, Zhu J, Nussenzweig MC, Sodroski J, Shapiro L, Nabel GJ, Mascola JR, Kwong PD. 2010. Structural basis for broad and potent neutralization of HIV-1 by antibody VRC01. *Science* 329:811–817.
- 13. Wu X, Zhou T, Zhu J, Zhang B, Georgiev I, Wang C, Chen X, Longo NS, Louder M, McKee K, O'Dell S, Perfetto S, Schmidt SD, Shi W, Wu L, Yang Y, Yang ZY, Yang Z, Zhang Z, Bonsignori M, Crump JA, Kapiga SH, Sam NE, Haynes BF, Simek M, Burton DR, Koff WC, Doria-Rose NA, Connors M, Mullikin JC, Nabel GJ, Roederer M, Shapiro L, Kwong PD, Mascola JR. 2011. Focused evolution of HIV-1 neutralizing antibodies revealed by structures and deep sequencing. *Science* 333:1593–1602.
- 14. Kwong PD, Doyle ML, Casper DJ, Cicala C, Leavitt SA, Majeed S, Steenbeke TD, Venturi M, Chaiken I, Fung M, Katinger H, Parren PW, Robinson J, Van Ryk D, Wang L, Burton DR, Freire E, Wyatt R, Sodroski J, Hendrickson WA, Arthos J. 2002. HIV-1 evades antibody-mediated neutralization through conformational masking of receptor-binding sites. *Nature* 420:678–682.

- 15. Korkut A, Hendrickson WA. 2012. Structural plasticity and conformational transitions of HIV envelope glycoprotein gp120. *PloS One* 7:e52170. doi:10.1371/journal.pone.0052170.
- **16.** Shrivastava IH, Wendel K, LaLonde JM. 2012. Spontaneous rearrangement of the beta20/beta21 strands in simulations of unliganded HIV-1 glycoprotein, gp120. *Biochemistry* **51:**7783–7793.
- 17. Zolla-Pazner S. 2014. A critical question for HIV vaccine development: which antibodies to induce? *Science* 345:167–168.
- 18. Gorny MK, Pan R, Williams C, Wang XH, Volsky B, O'Neal T, Spurrier B, Sampson JM, Li L, Seaman MS, Kong XP, Zolla-Pazner S. 2012. Functional and immunochemical cross-reactivity of V2-specific monoclonal antibodies from HIV-1-infected individuals. *Virology* 427: 198–207.
- 19. Prince AM, Reesink H, Pascual D, Horowitz B, Hewlett I, Murthy KK, Cobb KE, Eichberg JW. 1991. Prevention of HIV infection by passive immunization with HIV immunoglobulin. *AIDS Res Hum Retroviruses* 7:971–973.
- 20. Bar KJ, Tsao CY, Iyer SS, Decker JM, Yang Y, Bonsignori M, Chen X, Hwang KK, Montefiori DC, Liao HX, Hraber P, Fischer W, Li H, Wang S, Sterrett S, Keele BF, Ganusov VV, Perelson AS, Korber BT, Georgiev I, McLellan JS, Pavlicek JW, Gao F, Haynes BF, Hahn BH, Kwong PD, Shaw GM. 2012. Early low-titer neutralizing antibodies impede HIV-1 replication and select for virus escape. *PLoS Pathog* 8:e1002721. doi:10.1371/journal.ppat.1002721.
- 21. Hioe CE, Wrin T, Seaman MS, Yu X, Wood B, Self S, Williams C, Gorny MK, Zolla-Pazner S. 2010. Anti-V3 monoclonal antibodies display broad neutralizing activities against multiple HIV-1 subtypes. *PloS One* 5:e10254. doi:10.1371/journal.pone.0010254.
- 22. Li L, Wang XH, Banerjee S, Volsky B, Williams C, Virland D, Nadas A, Seaman MS, Chen X, Spearman P, Zolla-Pazner S, Gorny MK. 2012. Different pattern of immunoglobulin gene usage by HIV-1 compared to non-HIV-1 antibodies derived from the same infected subject. *PloS One* 7:e39534. doi:10.1371/journal.pone.0039534.
- 23. Karasavvas N, Billings E, Rao M, Williams C, Zolla-Pazner S, Bailer RT, Koup RA, Madnote S, Arworn D, Shen X, Tomaras GD, Currier JR, Jiang M, Magaret C, Andrews C, Gottardo R, Gilbert P, Cardozo TJ, Rerks-Ngarm S, Nitayaphan S, Pitisuttithum P, Kaewkungwal J, Paris R, Greene K, Gao H, Gurunathan S, Tartaglia J, Sinangil F, Korber BT, Montefiori DC, Mascola JR, Robb ML, Haynes BF, Ngauy V, Michael NL, Kim JH, de Souza MS. 2012. The Thai Phase III HIV Type 1 Vaccine trial (RV144) regimen induces antibodies that target conserved regions within the V2 loop of gp120. *AIDS Res Hum Retroviruses* 28:1444–1457.
- 24. Haynes BF, Gilbert PB, McElrath MJ, Zolla-Pazner S, Tomaras GD, Alam SM, Evans DT, Montefiori DC, Karnasuta C, Sutthent R, Liao HX, DeVico AL, Lewis GK, Williams C, Pinter A, Fong Y, Janes H, DeCamp A, Huang Y, Rao M, Billings E, Karasavvas N, Robb ML, Ngauy V, de Souza MS, Paris R, Ferrari G, Bailer RT, Soderberg KA, Andrews C, Berman PW, Frahm N, De Rosa SC, Alpert MD, Yates NL, Shen X, Koup RA, Pitisuttithum P, Kaewkungwal J, Nitayaphan S, Rerks-Ngarm S, Michael NL, Kim JH. 2012. Immune-correlates analysis of an HIV-1 vaccine efficacy trial. *N Engl J Med* 366:1275–1286.
- 25. Zolla-Pazner S, deCamp AC, Cardozo T, Karasavvas N, Gottardo R, Williams C, Morris DE, Tomaras G, Rao M, Billings E, Berman P, Shen X, Andrews C, O'Connell RJ, Ngauy V, Nitayaphan S, de Souza M, Korber B, Koup R, Bailer RT, Mascola JR, Pinter A, Montefiori D, Haynes BF, Robb ML, Rerks-Ngarm S, Michael NL, Gilbert PB, Kim JH. 2013. Analysis of V2 antibody responses induced in vaccinees in the ALVAC/AIDSVAX HIV-1 vaccine efficacy trial. *PloS One* 8:e53629. doi:10.1371/journal.pone.0053629.
- 26. Zolla-Pazner S, deCamp A, Gilbert PB, Williams C, Yates NL, Williams WT, Howington R, Fong Y, Morris DE, Soderberg KA, Irene C, Reichman C, Pinter A, Parks R, Pitisuttithum P, Kaewkungwal J, Rerks-Ngarm S, Nitayaphan S, Andrews C, O'Connell RJ, Yang ZY, Nabel GJ, Kim JH, Michael NL, Montefiori DC, Liao HX, Haynes BF, Tomaras GD. 2014. Vaccine-induced IgG antibodies to V1V2 regions of

- multiple HIV-1 subtypes correlate with decreased risk of HIV-1 infection. *PloS One* **9:**e87572. doi:10.1371/journal.pone.0087572.
- 27. Yates NL, Liao HX, Fong Y, deCamp A, Vandergrift NA, Williams WT, Alam SM, Ferrari G, Yang ZY, Seaton KE, Berman PW, Alpert MD, Evans DT, O'Connell RJ, Francis D, Sinangil F, Lee C, Nitayaphan S, Rerks-Ngarm S, Kaewkungwal J, Pitisuttithum P, Tartaglia J, Pinter A, Zolla-Pazner S, Gilbert PB, Nabel GJ, Michael NL, Kim JH, Montefiori DC, Haynes BF, Tomaras GD. 2014. Vaccine-induced Env V1-V2 IgG3 correlates with lower HIV-1 infection risk and declines soon after vaccination. *Science Trans Med* 6:228–239.
- 28. Gottardo R, Bailer RT, Korber BT, Gnanakaran S, Phillips J, Shen X, Tomaras GD, Turk E, Imholte G, Eckler L, Wenschuh H, Zerweck J, Greene K, Gao H, Berman PW, Francis D, Sinangil F, Lee C, Nitayaphan S, Rerks-Ngarm S, Kaewkungwal J, Pitisuttithum P, Tartaglia J, Robb ML, Michael NL, Kim JH, Zolla-Pazner S, Haynes BF, Mascola JR, Self S, Gilbert P, Montefiori DC. 2013. Plasma IgG to linear epitopes in the V2 and V3 regions of HIV-1 gp120 correlate with a reduced risk of infection in the RV144 vaccine efficacy trial. *PloS One* 8:e75665. doi:10.1371/journal.pone.0075665.
- 29. Montefiori DC, Karnasuta C, Huang Y, Ahmed H, Gilbert P, de Souza MS, McLinden R, Tovanabutra S, Laurence-Chenine A, Sanders-Buell E, Moody MA, Bonsignori M, Ochsenbauer C, Kappes J, Tang H, Greene K, Gao H, LaBranche CC, Andrews C, Polonis VR, Rerks-Ngarm S, Pitisuttithum P, Nitayaphan S, Kaewkungwal J, Self SG, Berman PW, Francis D, Sinangil F, Lee C, Tartaglia J, Robb ML, Haynes BF, Michael NL, Kim JH. 2012. Magnitude and breadth of the neutralizing antibody response in the RV144 and Vax003 HIV-1 vaccine efficacy trials. *J Infect Dis* 206:431–441.
- 30. Liao HX, Bonsignori M, Alam SM, McLellan JS, Tomaras GD, Moody MA, Kozink DM, Hwang KK, Chen X, Tsao CY, Liu P, Lu X, Parks RJ, Montefiori DC, Ferrari G, Pollara J, Rao M, Peachman KK, Santra S, Letvin NL, Karasavvas N, Yang ZY, Dai K, Pancera M, Gorman J, Wiehe K, Nicely NI, Rerks-Ngarm S, Nitayaphan S, Kaewkungwal J, Pitisuttithum P, Tartaglia J, Sinangil F, Kim JH, Michael NL, Kepler TB, Kwong PD, Mascola JR, Nabel GJ, Pinter A, Zolla-Pazner S, Haynes BF. 2013. Vaccine induction of antibodies against a structurally heterogeneous site of immune pressure within HIV-1 envelope protein variable regions 1 and 2. *Immunity* 38:176–186.
- 31. Moody MA, Zhang R, Walter EB, Woods CW, Ginsburg GS, McClain MT, Denny TN, Chen X, Munshaw S, Marshall DJ, Whitesides JF, Drinker MS, Amos JD, Gurley TC, Eudailey JA, Foulger A, DeRosa KR, Parks R, Meyerhoff RR, Yu JS, Kozink DM, Barefoot BE, Ramsburg EA, Khurana S, Golding H, Vandergrift NA, Alam SM, Tomaras GD, Kepler TB, Kelsoe G, Liao HX, Haynes BF. 2011. H3N2 influenza infection elicits more cross-reactive and less clonally expanded anti-hemagglutinin antibodies than influenza vaccination. *PloS One* 6:e25797. doi:10.1371/journal.pone.0025797.
- 32. Seaman MS, Janes H, Hawkins N, Grandpre LE, Devoy C, Giri A, Coffey RT, Harris L, Wood B, Daniels MG, Bhattacharya T, Lapedes A, Polonis VR, McCutchan FE, Gilbert PB, Self SG, Korber BT, Montefiori DC, Mascola JR. 2010. Tiered categorization of a diverse panel of HIV-1 Env pseudoviruses for assessment of neutralizing antibodies. *J Virol* 84:1439–1452.
- 33. Zolla-Pazner S, Kong XP, Jiang X, Cardozo T, Nadas A, Cohen S, Totrov M, Seaman MS, Wang S, Lu S. 2011. Cross-clade HIV-1 neutralizing antibodies induced with V3-scaffold protein immunogens following priming with gp120 DNA. *J Virol* 85:9887–9898.
- 34. Cardozo T, Wang S, Jiang X, Kong XP, Hioe C, Krachmarov C. 2014. Vaccine focusing to cross-subtype HIV-1 gp120 variable loop epitopes. *Vaccine* 32:4916–4924.
- 35. Sather DN, Armann J, Ching LK, Mavrantoni A, Sellhorn G, Caldwell Z, Yu X, Wood B, Self S, Kalams S, Stamatatos L. 2009. Factors associated with the development of cross-reactive neutralizing antibodies during human immunodeficiency virus type 1 infection. *J Virol* 83:757–769.

- 36. Simek MD, Rida W, Priddy FH, Pung P, Carrow E, Laufer DS, Lehrman JK, Boaz M, Tarragona-Fiol T, Miiro G, Birungi J, Pozniak A, McPhee DA, Manigart O, Karita E, Inwoley A, Jaoko W, Dehovitz J, Bekker LG, Pitisuttithum P, Paris R, Walker LM, Poignard P, Wrin T, Fast PE, Burton DR, Koff WC. 2009. Human immunodeficiency virus type 1 elite neutralizers: individuals with broad and potent neutralizing activity identified by using a high-throughput neutralization assay together with an analytical selection algorithm. *J Virol* 83:7337–7348.
- 37. Walker LM, Phogat SK, Chan-Hui PY, Wagner D, Phung P, Goss JL, Wrin T, Simek MD, Fling S, Mitcham JL, Lehrman JK, Priddy FH, Olsen OA, Frey SM, Hammond PW, Kaminsky S, Zamb T, Moyle M, Koff WC, Poignard P, Burton DR. 2009. Broad and potent neutralizing antibodies from an African donor reveal a new HIV-1 vaccine target. *Science* 326:285–289.
- 38. Walker LM, Huber M, Doores KJ, Falkowska E, Pejchal R, Julien JP, Wang SK, Ramos A, Chan-Hui PY, Moyle M, Mitcham JL, Hammond PW, Olsen OA, Phung P, Fling S, Wong CH, Phogat S, Wrin T, Simek MD, Koff WC, Wilson IA, Burton DR, Poignard P. 2011. Broad neutralization coverage of HIV by multiple highly potent antibodies. *Nature* 477:466–470.
- 39. Wu X, Yang ZY, Li Y, Hogerkorp CM, Schief WR, Seaman MS, Zhou T, Schmidt SD, Wu L, Xu L, Longo NS, McKee K, O'Dell S, Louder MK, Wycuff DL, Feng Y, Nason M, Doria-Rose N, Connors M, Kwong PD, Roederer M, Wyatt RT, Nabel GJ, Mascola JR. 2010. Rational design of envelope identifies broadly neutralizing human monoclonal antibodies to HIV-1. *Science* 329:856–861.
- 40. Huang J, Ofek G, Laub L, Louder MK, Doria-Rose NA, Longo NS, Imamichi H, Bailer RT, Chakrabarti B, Sharma SK, Alam SM, Wang T, Yang Y, Zhang B, Migueles SA, Wyatt R, Haynes BF, Kwong PD, Mascola JR, Connors M. 2012. Broad and potent neutralization of HIV-1 by a gp41-specific human antibody. *Nature* 491:406–412.
- 41. Morris L, Chen X, Alam M, Tomaras G, Zhang R, Marshall DJ, Chen B, Parks R, Foulger A, Jaeger F, Donathan M, Bilska M, Gray ES, Abdool Karim SS, Kepler TB, Whitesides J, Montefiori D, Moody MA, Liao HX, Haynes BF. 2011. Isolation of a human anti-HIV gp41 membrane proximal region neutralizing antibody by antigen-specific single B cell sorting. *PloS One* 6:e23532. doi:10.1371/journal.pone.0023532.
- 42. Klein F, Diskin R, Scheid JF, Gaebler C, Mouquet H, Georgiev IS, Pancera M, Zhou T, Incesu RB, Fu BZ, Gnanapragasam PN, Oliveira TY, Seaman MS, Kwong PD, Bjorkman PJ, Nussenzweig MC. 2013. Somatic mutations of the immunoglobulin framework are generally required for broad and potent HIV-1 neutralization. *Cell* 153:126–138.
- 43. Sok D, Laserson U, Laserson J, Liu Y, Vigneault F, Julien JP, Briney B, Ramos A, Saye KF, Le K, Mahan A, Wang S, Kardar M, Yaari G, Walker LM, Simen BB, St John EP, Chan-Hui PY, Swiderek K, Kleinstein SH, Alter G, Seaman MS, Chakraborty AK, Koller D, Wilson IA, Church GM, Burton DR, Poignard P. 2013. The effects of somatic hypermutation on neutralization and binding in the PGT121 family of broadly neutralizing HIV antibodies. *PLoS Pathog* 9:e1003754. doi:10.1371/journal.ppat.1003754.
- **44. Mascola JR, Haynes BF.** 2013. HIV-1 neutralizing antibodies: understanding nature's pathways. *Immunol Rev* **254**:225–244.
- **45.** Yu L, Guan Y. 2014. Immunologic basis for long HCDR3s in broadly neutralizing antibodies against HIV-1. *Front Immunol* 5:250.
- **46. Verkoczy L, Diaz M.** 2014. Autoreactivity in HIV-1 broadly neutralizing antibodies: implications for their function and induction by vaccination. *Curr Opin HIV AIDS* 9:224–234.
- 47. Haynes BF, Fleming J, St Clair EW, Katinger H, Stiegler G, Kunert R, Robinson J, Scearce RM, Plonk K, Staats HF, Ortel TL, Liao HX, Alam SM. 2005. Cardiolipin polyspecific autoreactivity in two broadly neutralizing HIV-1 antibodies. *Science* 308:1906–1908.
- 48. Moldt B, Rakasz EG, Schultz N, Chan-Hui PY, Swiderek K, Weisgrau KL, Piaskowski SM, Bergman Z, Watkins DI, Poignard P, Burton DR. 2012. Highly potent HIV-specific antibody neutralization *in vitro* translates into effective protection against mucosal SHIV challenge *in vivo*. *Proc Natl Acad Sci USA* 109:18921–18925.

- 49. Parren PW, Marx PA, Hessell AJ, Luckay A, Harouse J, Cheng-Mayer C, Moore JP, Burton DR. 2001. Antibody protects macaques against vaginal challenge with a pathogenic R5 simian/human immunodeficiency virus at serum levels giving complete neutralization *in vitro*. *J Virol* 75:8340–8347.
- 50. Hessell AJ, Rakasz EG, Poignard P, Hangartner L, Landucci G, Forthal DN, Koff WC, Watkins DI, Burton DR. 2009. Broadly neutralizing human anti-HIV antibody 2G12 is effective in protection against mucosal SHIV challenge even at low serum neutralizing titers. *PLoS Pathog* 5:e1000433. doi:10.1371/journal.ppat.1000433.
- 51. Hessell AJ, Rakasz EG, Tehrani DM, Huber M, Weisgrau KL, Landucci G, Forthal DN, Koff WC, Poignard P, Watkins DI, Burton DR. 2010. Broadly neutralizing monoclonal antibodies 2F5 and 4E10 directed against the human immunodeficiency virus type 1 gp41 membrane-proximal external region protect against mucosal challenge by simian-human immunodeficiency virus SHIVBa-L. *J Virol* 84:1302–1313.
- **52. Haynes BF, Verkoczy L.** 2014. AIDS/HIV. Host controls of HIV neutralizing antibodies. *Science* **344**:588–589.
- 53. Pegu A, Yang ZY, Boyington JC, Wu L, Ko SY, Schmidt SD, McKee K, Kong WP, Shi W, Chen X, Todd JP, Letvin NL, Huang J, Nason MC, Hoxie JA, Kwong PD, Connors M, Rao SS, Mascola JR, Nabel GJ. 2014. Neutralizing antibodies to HIV-1 envelope protect more effectively *in vivo* than those to the CD4 receptor. *Sci Trans Med* 6:243–288.
- 54. Shingai M, Donau OK, Plishka RJ, Buckler-White A, Mascola JR, Nabel GJ, Nason MC, Montefiori D, Moldt B, Poignard P, Diskin R, Bjorkman PJ, Eckhaus MA, Klein F, Mouquet H, Cetrulo Lorenzi JC, Gazumyan A, Burton DR, Nussenzweig MC, Martin MA, Nishimura Y. 2014. Passive transfer of modest titers of potent and broadly neutralizing anti-HIV monoclonal antibodies block SHIV infection in macaques. *J Exp Med* 211:2061–2074.
- 55. Watkins JD, Siddappa NB, Lakhashe SK, Humbert M, Sholukh A, Hemashettar G, Wong YL, Yoon JK, Wang W, Novembre FJ, Villinger F, Ibegbu C, Patel K, Corti D, Agatic G, Vanzetta F, Bianchi S, Heeney JL, Sallusto F, Lanzavecchia A, Ruprecht RM. 2011. An anti-HIV-1 V3 loop antibody fully protects cross-clade and elicits T-cell immunity in macaques mucosally challenged with an R5 clade C SHIV. *PloS One* 6:e18207. doi:10.1371/journal.pone.0018207.
- 56. Halper-Stromberg A, Lu CL, Klein F, Horwitz JA, Bournazos S, Nogueira L, Eisenreich TR, Liu C, Gazumyan A, Schaefer U, Furze RC, Seaman MS, Prinjha R, Tarakhovsky A, Ravetch JV, Nussenzweig MC. 2014. Broadly neutralizing antibodies and viral inducers decrease rebound from HIV-1 latent reservoirs in humanized mice. *Cell* 158:989–999.
- 57. Barouch DH, Whitney JB, Moldt B, Klein F, Oliveira TY, Liu J, Stephenson KE, Chang HW, Shekhar K, Gupta S, Nkolola JP, Seaman MS, Smith KM, Borducchi EN, Cabral C, Smith JY, Blackmore S, Sanisetty S, Perry JR, Beck M, Lewis MG, Rinaldi W, Chakraborty AK, Poignard P, Nussenzweig MC, Burton DR. 2013. Therapeutic efficacy of potent neutralizing HIV-1-specific monoclonal antibodies in SHIV-infected rhesus monkeys. *Nature* 503:224–228.
- 58. Klein F, Nogueira L, Nishimura Y, Phad G, West AP, Jr, Halper-Stromberg A, Horwitz JA, Gazumyan A, Liu C, Eisenreich TR, Lehmann C, Fatkenheuer G, Shingai M, Martin M, Bjorkman PJ, Seaman MS, Zolla-Pazner S, Hedestam G, Nussenzweig MC. 2014. Enhanced HIV-1 immunotherapy by naturally arising antibodies targeting resistant variants. *J Exp Med* 211:2361–2372.
- 59. Wu X, Parast AB, Richardson BA, Nduati R, John-Stewart G, Mbori-Ngacha D, Rainwater SM, Overbaugh J. 2006. Neutralization escape variants of human immunodeficiency virus type 1 are transmitted from mother to infant. *J Virol* 80:835–844.
- **60.** Mabuka J, Goo L, Omenda MM, Nduati R, Overbaugh J. 2013. HIV-1 maternal and infant variants show similar sensitivity to broadly neutralizing antibodies, but sensitivity varies by subtype. *AIDS* **27:**1535–1544.
- **61.** Flynn NM, Forthal DN, Harro CD, Judson FN, Mayer KH, Para MF. 2005. Placebo-controlled phase 3 trial of a recombinant glycoprotein 120 vaccine to prevent HIV-1 infection. *J Infect Dis* **191:**654–665.

- 62. Pitisuttithum P, Gilbert P, Gurwith M, Heyward W, Martin M, van Griensven F, Hu D, Tappero JW, Choopanya K. 2006. Randomized, double-blind, placebo-controlled efficacy trial of a bivalent recombinant glycoprotein 120 HIV-1 vaccine among injection drug users in Bangkok, Thailand. *J Infect Dis* 194:1661–1671.
- 63. Rerks-Ngarm S, Pitisuttithum P, Nitayaphan S, Kaewkungwal J, Chiu J, Paris R, Premsri N, Namwat C, de Souza M, Adams E, Benenson M, Gurunathan S, Tartaglia J, McNeil JG, Francis DP, Stablein D, Birx DL, Chunsuttiwat S, Khamboonruang C, Thongcharoen P, Robb ML, Michael NL, Kunasol P, Kim JH. 2009. Vaccination with ALVAC and AIDSVAX to prevent HIV-1 infection in Thailand. N Engl J Med 361:2209–2220.
- 64. Burton DR, Desrosiers RC, Doms RW, Koff WC, Kwong PD, Moore JP, Nabel GJ, Sodroski J, Wilson IA, Wyatt RT. 2004. HIV vaccine design and the neutralizing antibody problem. *Nat Immunol* 5:233–236.
- 65. Sanders RW, Vesanen M, Schuelke N, Master A, Schiffner L, Kalyanaraman R, Paluch M, Berkhout B, Maddon PJ, Olson WC, Lu M, Moore JP. 2002. Stabilization of the soluble, cleaved, trimeric form of the envelope glycoprotein complex of human immunodeficiency virus type 1. *J Virol* 76:8875–8889.
- 66. Binley JM, Sanders RW, Clas B, Schuelke N, Master A, Guo Y, Kajumo F, Anselma DJ, Maddon PJ, Olson WC, Moore JP. 2000. A recombinant human immunodeficiency virus type 1 envelope glycoprotein complex stabilized by an intermolecular disulfide bond between the gp120 and gp41 subunits is an antigenic mimic of the trimeric virion-associated structure. *J Virol* 74:627–643.
- 67. Yang X, Lee J, Mahony EM, Kwong PD, Wyatt R, Sodroski J. 2002. Highly stable trimers formed by human immunodeficiency virus type 1 envelope glycoproteins fused with the trimeric motif of T4 bacteriophage fibritin. *J Virol* 76:4634–4642.
- 68. Spearman P, Lally MA, Elizaga M, Montefiori D, Tomaras GD, McElrath MJ, Hural J, De Rosa SC, Sato A, Huang Y, Frey SE, Sato P, Donnelly J, Barnett S, Corey LJ. 2011. A trimeric, V2-deleted HIV-1 envelope glycoprotein vaccine elicits potent neutralizing antibodies but limited breadth of neutralization in human volunteers. *J Infect Dis* 203: 1165–1173.
- **69. Forsell MN, Schief WR, Wyatt RT.** 2009. Immunogenicity of HIV-1 envelope glycoprotein oligomers. *Curr Opin HIV AIDS* **4**:380–387.
- 70. Sather DN, Carbonetti S, Malherbe D, Pissani F, Stuart AB, Hessell AJ, Gray MD, Mikell I, Kalams SA, Haigwood NL, Stamatatos L. 2014. Emergence of broadly neutralizing antibodies and viral co-evolution in two subjects during the early stages of infection with the human immunodeficiency virus type 1. *J Virol* 88:12968–12981.
- 71. Doria-Rose NA, Schramm CA, Gorman J, Moore PL, Bhiman JN, DeKosky BJ, Ernandes MJ, Georgiev IS, Kim HJ, Pancera M, Staupe RP, Altae-Tran HR, Bailer RT, Crooks ET, Cupo A, Druz A, Garrett NJ, Hoi KH, Kong R, Louder MK, Longo NS, McKee K, Nonyane M, O'Dell S, Roark RS, Rudicell RS, Schmidt SD, Sheward DJ, Soto C, Wibmer CK, Yang Y, Zhang Z, Mullikin JC, Binley JM, Sanders RW, Wilson IA, Moore JP, Ward AB, Georgiou G, Williamson C, Abdool Karim SS, Morris L, Kwong PD, Shapiro L, Mascola JR. 2014. Developmental pathway for potent V1V2-directed HIV-neutralizing antibodies. *Nature* 509:55–62.
- 72. Correia BE, Bates JT, Loomis RJ, Baneyx G, Carrico C, Jardine JG, Rupert P, Correnti C, Kalyuzhniy O, Vittal V, Connell MJ, Stevens E, Schroeter A, Chen M, Macpherson S, Serra AM, Adachi Y, Holmes MA, Li Y, Klevit RE, Graham BS, Wyatt RT, Baker D, Strong RK, Crowe JE, Jr, Johnson PR, Schief WR. 2014. Proof of principle for epitope-focused vaccine design. *Nature* 507:201–206.
- 73. Delany I, Rappuoli R, Seib KL. 2013. Vaccines, reverse vaccinology, and bacterial pathogenesis. *Cold Spring Harbor Perspect Med* 3:a012476.
 74. Zhou T, Xu L, Dey B, Hessell AJ, Van Ryk D, Xiang SH, Yang X, Zhang MY, Zwick MB, Arthos J, Burton DR, Dimitrov DS, Sodroski J, Wyatt R, Nabel GJ, Kwong PD. 2007. Structural definition of a conserved neutralization epitope on HIV-1 gp120. *Nature* 445:732–737.

- 75. Cimbro R, Gallant TR, Dolan MA, Guzzo C, Zhang P, Lin Y, Miao H, Van Ryk D, Arthos J, Gorshkova I, Brown PH, Hurt DE, Lusso P. 2014. Tyrosine sulfation in the second variable loop (V2) of HIV-1 gp120 stabilizes V2-V3 interaction and modulates neutralization sensitivity. *Proc Natl Acad Sci USA* 111:3152–3157.
- 76. White TA, Bartesaghi A, Borgnia MJ, Meyerson JR, de la Cruz MJ, Bess JW, Nandwani R, Hoxie JA, Lifson JD, Milne JL, Subramaniam S. 2010. Molecular architectures of trimeric SIV and HIV-1 envelope glycoproteins on intact viruses: strain-dependent variation in quaternary structure. *PLoS Pathog* 6:e1001249. doi:10.1371/journal.ppat.1001249.
- 77. Zolla-Pazner S, Cardozo T. 2011. Structure-function relationships of HIV-1 envelope sequence-variable regions refocus vaccine design. *Nat Rev* 10:527–535.
- 78. McLellan JS, Pancera M, Carrico C, Gorman J, Julien JP, Khayat R, Louder R, Pejchal R, Sastry M, Dai K, O'Dell S, Patel N, Shahzad-ul-Hussan S, Yang Y, Zhang B, Zhou T, Zhu J, Boyington JC, Chuang GY, Diwanji D, Georgiev I, Kwon YD, Lee D, Louder MK, Moquin S, Schmidt SD, Yang ZY, Bonsignori M, Crump JA, Kapiga SH, Sam NE, Haynes BF, Burton DR, Koff WC, Walker LM, Phogat S, Wyatt R, Orwenyo J, Wang LX, Arthos J, Bewley CA, Mascola JR, Nabel GJ, Schief WR, Ward AB, Wilson IA, Kwong PD. 2011. Structure of HIV-1 gp120 V1/V2 domain with broadly neutralizing antibody PG9. *Nature* 480:336–343.
- 79. Arthos J, Cicala C, Martinelli E, Macleod K, Van Ryk D, Wei D, Xiao Z, Veenstra TD, Conrad TP, Lempicki RA, McLaughlin S, Pascuccio M, Gopaul R, McNally J, Cruz CC, Censoplano N, Chung E, Reitano KN, Kottilil S, Goode DJ, Fauci AS. 2008. HIV-1 envelope protein binds to and signals through integrin alpha4beta7, the gut mucosal homing receptor for peripheral T cells. *Nat Immunol* 9:301–309.
- 80. Gorny MK, Moore JP, Conley AJ, Karwowska S, Sodroski J, Williams C, Burda S, Boots LJ, Zolla-Pazner S. 1994. Human anti-V2 monoclonal antibody that neutralizes primary but not laboratory isolates of human immunodeficiency virus type 1. *J Virol* 68:8312–8320.
- 81. Mayr LM, Cohen S, Spurrier B, Kong XP, Zolla-Pazner S. 2013. Epitope mapping of conformational V2-specific anti-HIV human monoclonal antibodies reveals an immunodominant site in V2. *PloS One* 8:e70859. doi:10.1371/journal.pone.0070859.
- 82. Bonsignori M, Pollara J, Moody MA, Alpert MD, Chen X, Hwang KK, Gilbert PB, Huang Y, Gurley TC, Kozink DM, Marshall DJ, Whitesides JF, Tsao CY, Kaewkungwal J, Nitayaphan S, Pitisuttithum P, Rerks-Ngarm S, Kim JH, Michael NL, Tomaras GD, Montefiori DC, Lewis GK, DeVico A, Evans DT, Ferrari G, Liao HX, Haynes BF. 2012. Antibody-dependent cellular cytotoxicity-mediating antibodies from an HIV-1 vaccine efficacy trial target multiple epitopes and preferentially use the VH1 gene family. *I Virol* 86:11521–11532.
- 83. Gorny MK, Stamatatos L, Volsky B, Revesz K, Williams C, Wang XH, Cohen S, Staudinger R, Zolla-Pazner S. 2005. Identification of a new quaternary neutralizing epitope on human immunodeficiency virus type 1 virus particles. *J Virol* 79:5232–5237.
- 84. Bonsignori M, Hwang KK, Chen X, Tsao CY, Morris L, Gray E, Marshall DJ, Crump JA, Kapiga SH, Sam NE, Sinangil F, Pancera M, Yongping Y, Zhang B, Zhu J, Kwong PD, O'Dell S, Mascola JR, Wu L, Nabel GJ, Phogat S, Seaman MS, Whitesides JF, Moody MA, Kelsoe G, Yang X, Sodroski J, Shaw GM, Montefiori DC, Kepler TB, Tomaras GD, Alam SM, Liao HX, Haynes BF. 2011. Analysis of a clonal lineage of HIV-1 envelope V2/V3 conformational epitope-specific broadly neutralizing antibodies and their inferred unmutated common ancestors. *J Virol* 85:9998–10009.
- 85. Julien JP, Cupo A, Sok D, Stanfield RL, Lyumkis D, Deller MC, Klasse PJ, Burton DR, Sanders RW, Moore JP, Ward AB, Wilson IA. 2013. Crystal structure of a soluble cleaved HIV-1 envelope trimer. *Science* 342:1477–1483.
- 86. Ivanoff LA, Dubay JW, Morris JF, Roberts SJ, Gutshall L, Sternberg EJ, Hunter E, Matthews TJ, Petteway SR, Jr. 1992. V3 loop region of the HIV-1 gp120 envelope protein is essential for virus infectivity. *Virology* 187:423–432.

- 87. Zolla-Pazner S. 2004. Identifying epitopes of HIV-1 that induce protective antibodies. *Nat Rev* 4:199–210.
- **88. Zolla-Pazner S, Cardozo T.** 2010. Structure-function relationships of HIV-1 envelope sequence-variable regions refocus vaccine design. *Nat Rev* 10:527–535.
- 89. Jiang X, Burke V, Totrov M, Williams C, Cardozo T, Gorny MK, Zolla-Pazner S, Kong XP. 2010. Conserved structural elements in the V3 crown of HIV-1 gp120. *Nat Struct Mol Biol* 17:955–961.
- 90. Huang CC, Tang M, Zhang MY, Majeed S, Montabana E, Stanfield RL, Dimitrov DS, Korber B, Sodroski J, Wilson IA, Wyatt R, Kwong PD. 2005. Structure of a V3-containing HIV-1 gp120 core. *Science* 310:1025–1028.
- **91.** Zolla-Pazner S. 2005. Improving on nature: focusing the immune response on the V3 loop. *Hum Antibodies* 14:69–72.
- 92. Crooks ET, Moore PL, Franti M, Cayanan CS, Zhu P, Jiang P, de Vries RP, Wiley C, Zharkikh I, Schulke N, Roux KH, Montefiori DC, Burton DR, Binley JM. 2007. A comparative immunogenicity study of HIV-1 virus-like particles bearing various forms of envelope proteins, particles bearing no envelope and soluble monomeric gp120. *Virology* 366:245–262.
- 93. Visciano ML, Tagliamonte M, Stewart-Jones G, Heyndrickx L, Vanham G, Jansson M, Fomsgaard A, Grevstad B, Ramaswamy M, Buonaguro FM, Tornesello ML, Biswas P, Scarlatti G, Buonaguro L. 2013. Characterization of humoral responses to soluble trimeric HIV gp140 from a clade A Ugandan field isolate. *J Transl Med* 11:165.
- 94. Totrov M, Jiang X, Kong XP, Cohen S, Krachmarov C, Salomon A, Williams C, Seaman MS, Abagyan R, Cardozo T, Gorny MK, Wang S, Lu S, Pinter A, Zolla-Pazner S. 2010. Structure-guided design and immunological characterization of immunogens presenting the HIV-1 gp120 V3 loop on a CTB scaffold. *Virology* 405:513–523.
- 95. Zolla-Pazner S, Cohen S, Pinter A, Krachmarov C, Wrin T, Wang S, Lu S. 2009. Cross-clade neutralizing antibodies against HIV-1 induced in rabbits by focusing the immune response on a neutralizing epitope. *Virology* 392:82–93.
- 96. Pan R, Sampson JM, Chen Y, Vaine M, Wang S, Lu S, Kong XP. 2013. Rabbit anti-HIV-1 monoclonal antibodies raised by immunization can mimic the antigen-binding modes of antibodies derived from HIV-1-infected humans. *J Virol* 87:10221–10231.
- 97. Burke V, Williams C, Sukumaran M, Kim SS, Li H, Wang XH, Gorny MK, Zolla-Pazner S, Kong XP. 2009. Structural basis of the cross-reactivity of genetically related human anti-HIV-1 mAbs: implications for design of V3-based immunogens. *Structure* 17:1538–1546.
- 98. Mouquet H, Klein F, Scheid JF, Warncke M, Pietzsch J, Oliveira TY, Velinzon K, Seaman MS, Nussenzweig MC. 2011. Memory B cell antibodies to HIV-1 gp140 cloned from individuals infected with clade Aand B viruses. *PloS One* 6:e24078. doi:10.1371/journal.pone.0024078.
- 99. Corti D, Langedijk JP, Hinz A, Seaman MS, Vanzetta F, Fernandez-Rodriguez BM, Silacci C, Pinna D, Jarrossay D, Balla-Jhagjhoorsingh S, Willems B, Zekveld MJ, Dreja H, O'Sullivan E, Pade C, Orkin C, Jeffs SA, Montefiori DC, Davis D, Weissenhorn W, McKnight A, Heeney JL, Sallusto F, Sattentau QJ, Weiss RA, Lanzavecchia A. 2010. Analysis of memory B cell responses and isolation of novel monoclonal antibodies with neutralizing breadth from HIV-1-infected individuals. *PloS One* 5:e8805. doi:10.1371/journal.pone.0008805.
- **100.** McCaffrey RA, Saunders C, Hensel M, Stamatatos L. 2004. N-linked glycosylation of the V3 loop and the immunologically silent face of gp120 protects human immunodeficiency virus type 1 SF162 from neutralization by anti-gp120 and anti-gp41 antibodies. *J Virol* **78**:3279–3295.
- 101. Wyatt R, Moore J, Accola M, Desjardin E, Robinson J, Sodroski J. 1995. Involvement of the V1/V2 variable loop structure in the exposure of human immunodeficiency virus type 1 gp120 epitopes induced by receptor binding. *J Virol* 69:5723–5733.
- 102. Gzyl J, Bolesta E, Wierzbicki A, Kmieciak D, Naito T, Honda M, Komuro K, Kaneko Y, Kozbor D. 2004. Effect of partial and complete

- variable loop deletions of the human immunodeficiency virus type 1 envelope glycoprotein on the breadth of gp160-specific immune responses. *Virology* 318:493–506.
- 103. Upadhyay C, Mayr LM, Zhang J, Kumar R, Gorny MK, Nadas A, Zolla-Pazner S, Hioe CE. 2014. Distinct mechanisms regulate exposure of neutralizing epitopes in the V2 and V3 loops of HIV-1 envelope. *J Virol* 88:12853–12865.
- 104. Pejchal R, Doores KJ, Walker LM, Khayat R, Huang PS, Wang SK, Stanfield RL, Julien JP, Ramos A, Crispin M, Depetris R, Katpally U, Marozsan A, Cupo A, Maloveste S, Liu Y, McBride R, Ito Y, Sanders RW, Ogohara C, Paulson JC, Feizi T, Scanlan CN, Wong CH, Moore JP, Olson WC, Ward AB, Poignard P, Schief WR, Burton DR, Wilson IA. 2011. A potent and broad neutralizing antibody recognizes and penetrates the HIV glycan shield. *Science* 334:1097–1103.
- 105. Julien JP, Sok D, Khayat R, Lee JH, Doores KJ, Walker LM, Ramos A, Diwanji DC, Pejchal R, Cupo A, Katpally U, Depetris RS, Stanfield RL, McBride R, Marozsan AJ, Paulson JC, Sanders RW, Moore JP, Burton DR, Poignard P, Ward AB, Wilson IA. 2013. Broadly neutralizing antibody PGT121 allosterically modulates CD4 binding via recognition of the HIV-1 gp120 V3 base and multiple surrounding glycans. *PLoS Pathog* 9:e1003342. doi:10.1371/journal.ppat .1003342.
- 106. Wu X, Zhou T, O'Dell S, Wyatt RT, Kwong PD, Mascola JR. 2009. Mechanism of human immunodeficiency virus type 1 resistance to monoclonal antibody B12 that effectively targets the site of CD4 attachment. *J Virol* 83:10892–10907.
- 107. Chen L, Kwon YD, Zhou T, Wu X, O'Dell S, Cavacini L, Hessell AJ, Pancera M, Tang M, Xu L, Yang ZY, Zhang MY, Arthos J, Burton DR, Dimitrov DS, Nabel GJ, Posner MR, Sodroski J, Wyatt R, Mascola JR, Kwong PD. 2009. Structural basis of immune evasion at the site of CD4 attachment on HIV-1 gp120. *Science* 326:1123–1127.
- 108. Selvarajah S, Puffer B, Pantophlet R, Law M, Doms RW, Burton DR. 2005. Comparing antigenicity and immunogenicity of engineered gp120. *J Virol* 79:12148–12163.
- 109. Ahmed FK, Clark BE, Burton DR, Pantophlet R. 2012. An engineered mutant of HIV-1 gp120 formulated with adjuvant Quil A

- promotes elicitation of antibody responses overlapping the CD4-binding site. *Vaccine* 30:922–930.
- 110. Yasmeen A, Ringe R, Derking R, Cupo A, Julien JP, Burton DR, Ward AB, Wilson IA, Sanders RW, Moore JP, Klasse PJ. 2014. Differential binding of neutralizing and non-neutralizing antibodies to native-like soluble HIV-1 Env trimers, uncleaved Env proteins, and monomeric subunits. *Retrovirology* 11:41.
- 111. Bhattacharyya S, Singh P, Rathore U, Purwar M, Wagner D, Arendt H, DeStefano J, LaBranche CC, Montefiori DC, Phogat S, Varadarajan R. 2013. Design of an *Escherichia coli* expressed HIV-1 gp120 fragment immunogen that binds to b12 and induces broad and potent neutralizing antibodies. *J Biol Chem* 288:9815–9825.
- 112. Montero M, van Houten NE, Wang X, Scott JK. 2008. The membrane-proximal external region of the human immunodeficiency virus type 1 envelope: dominant site of antibody neutralization and target for vaccine design. *Microbiol Mol Biol Rev* 72:54–84.
- 113. Kim M, Sun ZY, Rand KD, Shi X, Song L, Cheng Y, Fahmy AF, Majumdar S, Ofek G, Yang Y, Kwong PD, Wang JH, Engen JR, Wagner G, Reinherz EL. 2011. Antibody mechanics on a membrane-bound HIV segment essential for GP41-targeted viral neutralization. *Nat Struct Mol Biol* 18:1235–1243.
- 114. Song L, Sun ZY, Coleman KE, Zwick MB, Gach JS, Wang JH, Reinherz EL, Wagner G, Kim M. 2009. Broadly neutralizing anti-HIV-1 antibodies disrupt a hinge-related function of gp41 at the membrane interface. *Proc Natl Acad Sci USA* 106:9057–9062.
- 115. Dennison SM, Sutherland LL, Jaeger FH, Anasti KM, Parks R, Stewart S, Bowman C, Xia SM, Zhang R, Shen X, Scearce RM, Ofek G, Yang Y, Kwong PD, Santra S, Liao HX, Tomaras G, Letvin NL, Chen B, Alam SM, Haynes BF. 2011. Induction of antibodies in rhesus macaques that recognize a fusion-intermediate conformation of HIV-1 gp41. *PloS One* 6:e27824. doi:10.1371/journal.pone.0027824.
- 116. Shen X, Parks RJ, Montefiori DC, Kirchherr JL, Keele BF, Decker JM, Blattner WA, Gao F, Weinhold KJ, Hicks CB, Greenberg ML, Hahn BH, Shaw GM, Haynes BF, Tomaras GD. 2009. *In vivo* gp41 antibodies targeting the 2F5 monoclonal antibody epitope mediate human immunodeficiency virus type 1 neutralization breadth. *J Virol* 83:3617–3625.