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ABSTRACT Antibodies (Abs) are a critical component of the
human immune response against viral infections. In HIV-infected
patients, a robust Ab response against the virus develops within
months of infection; however, due to numerous strategies,

the virus usually escapes the biological effects of the various
Abs. Here we provide an overview of the different viral evasion
mechanisms, including glycosylation, high mutation rate, and
conformational masking by the envelope glycoproteins of the
virus. In response to virus infection and to its evolution within
a host, “conventional Abs” are generated, and these can also
be induced by immunization; generally, these Abs are limited

in their neutralization breadth and potency. In contrast,
“exceptional Abs” require extended exposure to virus to
generate the required hypermutation in the immunoglobulin
variable regions, and they occur only in rare HIV-infected
individuals, but they display impressive breadth and potency.

In this review, we describe the major regions of the HIV envelope
spike that are targeted by conventional and exceptional Abs.
These include the first, second, and third variable loops

(V1, V2, and V3) located at the apex of the envelope trimer,

the CD4 binding site, and the membrane-proximal external
region of the gp41 ectodomain. Lastly, we discuss the
challenging task of HIV immunogen design and approaches

for choosing which immunogens might be used to elicit
protective Abs.

INTRODUCTION

HIV continues to be a major global public health issue,
with an estimated 35 million people living with the virus
and more than 2 million new infections occurring yearly
(1). As part of the natural immune response, antibodies
(Abs) exert immune pressure on HIV and play a key role
both in controlling the virus and in driving escape mu-
tations in the viral envelope glycoproteins. Therefore,
and because the elicitation of Abs is believed to be
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crucial for an effective vaccine against HIV, Abs tar-
geting HIV have been the focus of intense research in the
past years.

ANTIBODY RESPONSE TO HIV

Upon infection with HIV, a strong Ab response occurs
in essentially all infected individuals. These Abs are di-
rected against several viral proteins, including the gp120
and gp41 envelope proteins that are found on the surface
of the virus particles. While in many viral diseases, such
as influenza and polio, the Abs against surface antigens
can establish protective immunity, many HIV envelope-
specific Abs have little neutralizing capacity due to the
many complex escape mechanisms employed by the sur-
face viral glycoproteins that occur as sparse trimeric
spikes in the virus envelope (2). These virus escape mech-
anisms include the following.

Glycan Shield

One of the reasons why HIV is a difficult target for Abs
that prevent infection is the dense glycosylation of the
envelope proteins gp120 and gp41. With approximately
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25 N-linked glycosylation sites, gp120 is one of the most
heavily glycosylated viral proteins described. These gly-
cans are large, complex carbohydrate structures that
shield vulnerable epitopes on the surface of HIV, leading
to viral escape from Abs (3). The function of glycans can
be demonstrated by the removal of certain glycosylation
sites, leading to a significant increase in neutralization
sensitivity of the virus (4, 5).

High Mutation Rate

The high mutation rate of HIV-1 is another obstacle for
the development of immune protection by neutralizing
Abs. With an in vitro mutation rate of approximately
2.2 x 107 to 5.4 x 10~ per nucleotide base per repli-
cation cycle, the virus continuously and rapidly evolves
to escape neutralization (6). In an attempt to recognize
the mutated virus, neutralizing Abs (nAbs) evolve in tan-
dem with the virus, resulting in successive waves of nAb
maturation followed by viral escape. This leads to the
phenomenon of nAbs often being able to neutralize virus
from months earlier, but not concurrent circulating
variants (7-9).

The high mutation rate and the fact that billions of new
viral particles are produced daily within each patient leads
to an enormous diversity of HIV-1 variants. Based on their
sequence, the variants have been divided into nine distinct
subtypes, or clades, designated by the letters A, B, C, D, F,
G, H, J, and K. Overall, the amino acid sequence of the
different subtypes can vary by as much as 30% from one
clade to another, but in certain genomic regions the genetic
variability can be as high as 42%. Further complicating
the HIV landscape are recombinant forms of the virus in
which heterologous virus strains combine segments of
their genome during reverse transcription to produce ge-
netically divergent new virus forms. Countless recombi-
nants of virtually every virus strain combination have been
identified worldwide, and their prevalence differs by geo-
graphic regions (10). A protective vaccine will need to
induce Abs that target this tremendous viral diversity.

Conformational Masking

The envelope spike is a heterotrimer consisting of three
gp120 molecules noncovalently anchored to the viral
membrane via three gp41 molecules. In an attempt to
shield neutralization-sensitive domains, the elements of
the envelope spike adopt a quaternary conformation
where domains of neighboring gp120 subunits can in-
teract. For example, it was suggested that in the apex of
the three-dimensional envelope spike, intersubunit con-
tact between the V1, V2, and V3 loops occurs, protecting
adjacent regions from recognition by Abs (11).

To enter its target cells, HIV must bind sequentially to
cellular receptors, including CD4 and one of two chemo-
kine receptors (CXCR4 or CCRS). The regions of gp120
that are involved with binding to these receptors must,
therefore, be conserved to maintain the infectious poten-
tial of the virus. The CD4 binding site (CD4bs) and chemo-
kine receptor binding sites on gp120 would thus appear
to be good targets for Abs; however, while able to bind to
some exceptional Abs (9, 12, 13), the CD4bs is partially
obscured by glycans and variable regions and undergoes
conformational reorganization, allowing it to evade neu-
tralization by conventional CD4bs-specific Abs. Thus, the
virus places an energetic barrier to Ab binding (14).

Itis believed that dynamic conformational changes also
play a role in masking conserved epitopes on chemokine
receptor binding sites (15); regions of gp120 that are in-
volved in binding to the chemokine receptor—the V3 loop
and the p20/B21 strands of the bridging sheet—form an
exposed surface only after binding to CD4 and are thus
exposed to Abs only transiently (16).

TYPES OF ANTIBODIES

Conventional Abs

Abs that commonly occur during HIV infection and
that are present in the majority of infected individuals
are here defined as “conventional Abs.” These Abs do
not exhibit unusual structural or genetic characteristics,
and their immunoglobulin genes undergo relatively little
somatic hypermutation from germline (17, 18). Con-
ventional Abs have long been known to protect against
infection in animal systems. This was established with
passive immunization of chimpanzees using IgG
preparations from the blood of HIV-infected individuals
(19). Thus, the proof of principle was established more
than two decades ago that Abs alone from unselected
HIV-infected individuals could provide sterilizing im-
munity.

Conventional Abs are elicited as early as two weeks
after seroconversion in acutely infected individuals;
however, they display very limited neutralization breadth
(20): using a standardized reference pseudovirus panel
that represents genetically diverse subsets of viruses,
conventional Abs targeting gp120 were shown to neu-
tralize up to 50% of tier 1 pseudoviruses, but < 9% of
tier 2 pseudoviruses, suggesting that these Abs target epi-
topes exposed on a minority of viruses and tend to be
specific for the virus infecting the host. Conventional
neutralizing Abs (nAbs) also have a limited neutralizing
potency iz vitro, and while most tier 1 pseudoviruses are
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neutralized with low levels of nAbs (<<1 to 10 pg/ml),
often >10 pg/ml are required to neutralize tier 2 pseu-
doviruses (21, 22).

The Thai clinical HIV-1 vaccine trial RV144 provided
additional support for the role of conventional Abs in
protection: high levels of V1V2 and V3 IgG Ab levels,
especially those of the IgG3 subclass, were found to be
significantly associated with the reduced infection rate
(estimated 31% vaccine efficacy) in vaccine recipients
(23-28). Monoclonal Abs isolated from the RV144 vac-
cinees showed very low mutation rates from germline
genes encoding the variable region of the heavy chain
(VH)—mutation rate range of 1.5 to 4.5% (29, 30),
which is even lower than that noted after influenza im-
munization (mean VH mutation rate of 8.1% [31]).
These data further uphold the concept that conventional
Abs can be associated with reduced infection rates.

Thus, even though conventional nAbs are limited in
their breadth and potency, they are commonly made by
HIV-positive individuals (32), by immunized humans
(24), and by immunized animals (33, 34), and the pre-
viously mentioned studies suggest that they can reduce
infection rates. Therefore, such Abs, induced by vac-
cines, have substantial potential for influencing the
course of the HIV epidemic.

Exceptional, Broadly Neutralizing Abs

Unlike conventional HIV Abs, broadly neutralizing Abs
(bNADbs) are found in relatively rare HIV-infected subjects
(35), with the most broad and potent serum Abs being
identified in only ~1% of “elite neutralizers” (36). Most of
the broadly neutralizing monoclonal Abs ((NmAbs) have
been developed in the last few years (37—41). In addition to
wide breadth (neutralization of 100% of tier 1 viruses and
72 to 100% of tier 2 viruses), bBNmAbs are very potent,
and in vitro assays have shown that very small amounts
are sufficient for neutralization of tier 1 and tier 2 viruses
(<1 pg/ml and 0.02 to 27.0 pg/ml, respectively) (17).

For bNAbs to acquire their impressive breadth and
potency, extensive somatic hypermutation is required—
particularly in the variable heavy chain (VH) genes and
in some framework regions—a process that usually re-
quires more than a year of exposure to the virus after
HIV infection (42, 43). Several additional unique char-
acteristics of bNmAbs have been described, such as fre-
quent auto- and/or poly-reactivity for host antigens and
long heavy chain complementarity-determining region
3 (HCDR3) sequences composed of 20 to 34 residues,
which stand in stark contrast to the length of HCDR3s
produced by human B cells, which averages 16 residues
(44-47). These features contribute to the rarity of bNAbs
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and pose a major challenge for the development of an
HIV-1 vaccine designed to induce such Abs.

While bNmAbs are exceptionally potent and provide
protection in animal models (48-51), all attempts to
elicit bNAb responses by vaccination have so far been
unsuccessful, and it is believed that a panel of special
immunogens which will both stimulate suitable naive B
cells and guide them through lineage maturation will be
required to achieve this goal (52); this process of Ab
maturation appears to be long and complex.

To design these immunogens, bNmAbs from infected
donors are being isolated and sequenced to reconstruct
the lineage of the Abs, including the sequence of the prob-
able common unmutated ancestor of a given bNmADb.
The envelope glycoproteins recognized by the Abs in the
bNmAD lineage are being expressed, and these will serve
as immunogens to be used sequentially to engage the naive
B cell receptor and to stimulate and guide the evolution of
the nAb response (44).

While the ultimate success of this path toward the de-
sign of a prophylactic vaccine is unknowable at this
point, there is, nevertheless, great potential for the use of
bNmAbs for passive immunization to protect against
and treat HIV infection. Thus, treatment of macaques
with bNmADbs has been shown to completely protect
against infection with simian/HIV when these Abs are
present at serum concentrations as low as 30 pg/ml (53—
55). Broadly neutralizing mAbs are also being developed
for treatment of established HIV infection, a process in
which bNmAbs will be infused into HIV-infected indi-
viduals to decrease and/or eliminate virus. Success has
already been achieved in this area as demonstrated by
treatment of humanized mice and macaques infected
with HIV and simian/HIV, respectively (56—58).

There is also great interest in whether passively trans-
ferred bNmAbs can contribute to the prevention of
mother-to-child-transmission of HIV-1, the continuing
cause of a significant percentage of new infections in the
developing world. During pregnancy, HIV-specific Abs
can pass from an HIV-infected mother to the fetus
through the placenta. These Abs, however, are not ef-
fective against later HIV infection, for example, during
the breast feeding phase. Moreover, the transmitted virus
variants have fewer potential N-linked glycosylation sites,
a fact that could impact positively on the interaction of
glycan-dependent bNAD with transmitter/founder viruses
recognition (59). Indeed, transmitted HIV variants were
shown to be susceptible to various bNmAbs, but a com-
bination of potent bNmAbs targeting diverse epitopes
might be needed to successfully protect against HIV in-
fection in the mother-to-child-transmission context (60).
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VACCINE DEVELOPMENT AND
IMMUNOGEN DESIGN

As a result of the extensive data summarized above, the
elicitation of Abs is clearly indicated as a requirement for
a successful HIV vaccine. As noted, this is a challenging
task. The effort to develop vaccine candidates capable of
inducing protective Abs has accelerated dramatically
since the Thai vaccine trial RV144 revealed that Abs were
associated with a reduced rate of infection (24-26, 28).

Several envelope-based immunogens have been tested
for their ability to induce nAbs. Monomeric gp120 is
relatively easy to produce and has been widely used in
animal studies. Initial human vaccine trials elicited only
weak nAbs, and no protection against HIV infection was
achieved (61, 62). The RV144 vaccine trial, however,
demonstrated a beneficial effect of monomeric gp120 in
combination with a canarypox prime (63). It was sug-
gested that the epitopes exposed on monomeric gp120
are poor neutralization targets because they are occluded
on the native envelope trimer (64), and therefore
immunogens were designed that better mimic the native
envelope spike. Since the trimeric envelope is highly un-
stable and difficult to produce, a variety of different im-
munogens using gp140, the ectodomain of trimeric
gp160, have been made (65-67). To date, immunizations
using trimeric envelope immunogens have not been suc-
cessful in the induction of potent nAbs (68, 69). Recent
studies, monitoring the coevolution of virus and bNAbs
in patients during natural infection, demonstrated that a
tight interplay between Ab maturation and subsequent
viral escape drives the development of bNAD responses
(9, 70, 71). These studies provide important new insights
into the elicitation of bNAbs and will advance the de-
velopment of better immunogens.

Rather than using whole Env monomers or trimers,
another approach to vaccine design is the use of recom-
binant immunogens that target the Ab response to par-
ticular epitopes. Computationally designed vaccines that
mimic viral and bacterial epitopes have been shown to
induce potent conventional protective nAbs against var-
ious viruses and bacterial pathogens (72, 73). This same
approach is being applied to the design of recombinant
vaccines that target specific HIV epitopes. At the present
time, the type of epitopes to be targeted by conventional
Abs include the glycan-independent V1V2 and V3 re-
gions of the HIV envelope, whereas the type of epitopes to
be targeted by bNAbs include “sites of vulnerability” (74)
defined as the glycan-dependent V2 epitope (see “V2q
epitope” in the list below), the glycan-dependent epitope
at the base of V3, the CD4 binding site in gp120, and the
membrane proximal external region (MPER) in gp41.

Abs Targeting Variable Loops 1 and 2 (V1V2)

Electron tomography, cryo-electron microscopy, and bio-
chemical studies have shown that the V1V2 domain is
localized at the apex of the trimeric HIV-1 Env struc-
tures, and therefore at least some of the V1V2 epitopes
are accessible to Abs (75, 76). V2 loop sequences differ
in length, but the majority of amino acids are highly con-
served, suggesting conserved structural elements (77).
The V1V2 region forms four antiparallel -strands (A, B,
C, and D) which are linked via disulfide bonds (78). Via
a conserved tri-peptide, the '”’LDV/I'®! binding motif,
V2 can bind to a4B7, an integrin expressed on activated
CD4* T cells that is required for the homing of CD4*
T cells to the gut mucosa (79).

Abs targeting the V1V2 region were associated with a
lower risk of infection in the RV144 clinical vaccine
trial, thus making this area a promising target for vac-
cine development and the focus of intense research (24—
26). To date, three different epitope types have been
defined in the V1V2 region:

V2i epitope. A group of seven human mAbs recog-
nizes a conformation-dependent epitope, desig-
nated V2i since these Abs target the disordered
region in V2 that connects the C and D strands and
includes the o4B7-integrin binding site (hence
the term “V2i”) (80, 81). The structure of this re-
gion has so far not been solved, suggesting that it
is highly flexible and dynamic. Abs targeting V2i
are highly cross-reactive in binding to monomeric
gp120 but do not neutralize HIV well (18), sug-
gesting that the epitope is mostly occluded from
Ab recognition in the trimeric envelope.

V2p epitope. This epitope is defined by two mAbs
(CHS8 and CHS59) that were isolated from an
RV 144 vaccinee. The epitope is glycan-independent,
and these mAbs bind V2 peptides (thus, “V2p”) and
selected monomeric gp120, recognizing an epitope
composed of helical or helical-coil structures in the
C strand of V1V2 (30, 82).

V2q epitope. This is a quaternary epitope, which is
preferentially expressed on the trimeric structure
of the gp120 spike. Crystallographic studies with
a V1V2-fusion protein show that broad and po-
tently neutralizing V2q mAbs bind to relatively
conserved residues within V2 as well as to N-linked
glycans—most importantly the N160 glycan. Ear-
lier studies also showed that the binding of V2g-
specific mAbs was influenced by residues in V3 (37,
83, 84). V2g-specific bNmAbs, including PG9,
PG16, and CHO1, are extremely potent and broad
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in their reactivity and have long CDRH3 loops that
interact with N-linked glycans and reach around
them to contact amino acids of V2. These V2q
mADbs are highly mutated from germline (44).

Abs Targeting Variable Loop 3 (V3)

The V3 loop is located in close proximity to the V1V2
domain at the apex of the envelope trimer (85) and is
involved in CCRS or CXCR4 coreceptor tropism and
binding. It thus plays an important role in virus entry
into the host cell, and it is required for infectivity since
V3-deleted mutants are noninfectious (86).

While, by definition, there is considerable amino acid
sequence variation in V3, about 60% of the amino acids
are conserved, and the variation occurs at restricted po-
sitions (87, 88). The region is characterized by a con-
served length of 34 to 35 amino acids, the presence of
N-linked glycosylation sites at its N- and C-terminal
ends, and several conserved structural features. The V3
loop can be divided into three structural regions: (i) a
base region that is located in the gp120 core and includes
a disulfide bond, (ii) a flexible stem region, and (iii) a
distal crown that contains the highly conserved GPGR/
Q motif at its tip. The recognition of conserved V3
elements contributes to the broad cross-reactivity of
V3-specific Abs (89, 90).

V3 Abs are present in essentially all infected indi-
viduals (91), and V3 Abs have been elicited by several
types of vaccines (4, 92, 93). Moreover, the first dem-
onstration of the successful use of “reverse vaccinology,”
i.e., the design of vaccines based on epitopes recognized
by biologically active mAbs, was achieved using V3-
scaffold immunogens which targeted the immune re-
sponse to this single epitope of the HIV envelope. For
this, the V3 loop was spliced into a conformationally
correct site on the highly immunogenic protein, cholera
toxin subunit B, a protein which forms a pentameric
structure and therefore presents five copies of V3 (94),
serving as a particularly strong antigen for induction of
Abs (95). High anti-V3 Ab titers were elicited in rabbits
with one or a combination of V3-cholera toxin subunit
B immunogens, and these immune sera were able to
neutralize numerous diverse HIV strains (33, 94).

Just as Abs to V2 target three regions (V2i, V2p, and
V2q), three types of V3 Abs have been described.

Glycan-independent “ladle-like” V3 Abs
The V3 crown is an immunodominant region, and Abs

targeting the epitopes in the crown are made by essentially
all HIV-infected individuals (91). Abs to this region are
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glycan-independent. The ladle-like anti-V3 mAbs bind
to the tip of the V3 crown which sits in the “bowl” of
the ladle while the N-terminal V3 beta-strand adheres
to the “handle” of the ladle. Representative mAbs of this
type include 447-52D, where the long CDRH3 forms
the handle of the ladle that interacts with the main chain
of the N-terminal beta-chain of the V3 crown.

Glycan-independent “cradle-like” V3 Abs

The second type of V3 Ab uses an antigen-binding mode
typified by mAb 2557. In such cradle-like Abs the antigen
binding site consists of a groove in the Fab fragment, and
the epitope lies in this groove, resembling a baby in a cradle;
in this case, the major binding site is the hydrophobic core
of the V3 crown, usually composed of hydrophobic, con-
served residues 307, 309, and 317 (89, 96, 97).

Both types of glycan-independent Abs specific for the
V3 crown can neutralize most laboratory-adapted HIV-
1 strains and tier 1 viruses but neutralize relatively few
tier 2 viruses using standard neutralization assays (21,
98, 99). This is largely due to masking of the V3 loop by
glycans (100) and by the V1V2 domain that is situated
atop the trimer. Deletion of V1V2 leads to a better ex-
posure of V3 epitopes and thus better neutralization by
V3 mAbs (101, 102). Importantly, it was recently shown
that anti-V3 Abs are effective against tier 2 viruses if the
Ab and virus are coincubated for several hours rather
than for 1 to 2 hours, which is the norm in standard
neutralization assays (103). These results suggest that
the V3 loop is meta-stable on the virus surface, flickering
between a cryptic and exposed conformation, the latter
being both required for interaction with the chemokine
receptor and available for Ab binding leading to neu-
tralization. Additionally, CD4 binding induces a con-
formational change in gp120, releasing the V3 crown
from the surface of the envelope trimer and thus aug-
menting V3 epitope exposure and sensitivity to V3 Ab
neutralization (90).

Glycan-dependent V3 Abs

The base of V3 is poorly immunogenic, eliciting Abs
in a relatively small proportion of infected individuals.
Nonetheless, mAbs that target this region, such as the
PGT121-like and the PGT128-like Ab families, are ex-
tremely potent and broadly reactive. These mAbs are
highly somatically mutated and require specific glycan
interactions, particularly at position N332 (38, 104).
The crystal structure of PGT128 in complex with an
engineered outer domain of gp120 recently showed
that this Ab also interacts with the N301 oligomannose
glycan, a position that is not recognized by PGT121-like
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Abs (104). Even though the two Ab families are sug-
gested to approach gp120 from different angles, both
block HIV-1 infection by interfering with CD4 binding
through allosteric mechanisms (105).

Abs Targeting the CD4 Binding Site (CD4bs)
The CD4bs is functionally highly conserved and thus
seems to be an ideal target for Abs. However, it is well
hidden by surrounding glycans and variable regions (74),
and Abs are obstructed from binding due to steric and
conformational hindrance (see section on conforma-
tional masking, above). Studies have shown that many
CD4bs mAbs can bind with high affinity to recombinant
gp120 but cannot access the CD4bs on the envelope tri-
mer. The mAb b12 was the first neutralizing mAb dis-
covered to successfully target the CD4bs, but its breadth
and potency are restricted due to amino acid variation
both within and outside of the CD4bs (44, 106, 107).
More recently, several bNmAbs have been isolated
that mimic binding of CD4 to gp120 and as a result neu-
tralize HIV-1 potently and with broad reactivity. These
CD4bs-specific bNmAbs, isolated from various HIV-
infected individuals, share several genetic and structural
characteristics. First, their heavy chains all derive from
the VH1-2 or the closely related VH1-46 germline genes.
These Abs are also highly somatically mutated, with ~20
to 30% of nucleotide changes in their heavy chains com-
pared to germline. However, attempts to induce these
CD4bs bNAbs have been problematic, even using “en-
gineered gp120” and recombinant “designer immuno-
gens” modeled on the structure of the epitopes contacted
by the very effective bNmAbs (108-110). Cross-clade
nAbs were induced in rabbits via the reverse vaccinology
approach. Immunogens were designed based on the epi-
tope recognized by the mAb IgG1b12. Thus, fragments of
gp120 containing 70% of the b12 epitope were used for
priming of rabbits. The animals received a boost with
full-length gp120 after 16 and 51 weeks. Cross-clade
neutralizing HIV-specific Abs were elicited in the rabbits,
which neutralized tier 1, 2, and 3 viruses (111), providing

a maximum geometric mean of IC50 titers against five
tier 2 and 3 viruses of 1:134.

Abs Targeting the Membrane-Proximal
External Region (MPER)

The MPER consists of the last 24 C-terminal amino
acids of the gp41 ectodomain. Its sequence is highly
conserved, contains many hydrophobic residues, and is
usually rich in tryptophans. It is believed that the MPER
undergoes significant conformational changes during
viral entry (112-114).

Different epitopes have been described in the MPER:
the very potent human mAb 10E8 recognizes an a-helix
in this region, while other human mAbs, including 2F5
and 4E10, target an overlapping region that additionally
includes residues of the transmembrane spanning do-
main. As opposed to mAbs 2F5 and 4E10, bNmAb 10E8
can neutralize ~95% of viruses tested and lacks detect-
able reactivity with self-antigens, a feature of the less
potent 2F5 and 4E10 (40, 44).

Like the bNADbs targeting gp120, bNAbs specific for
the MPER of gp41 have been extremely difficult to in-
duce with vaccines (115). They are present in only a
minority of HIV-infected individuals (35, 116), suggest-
ing that this is a poorly immunogenic region. This is
supported by the finding that MPER mAbs such as 2F5
and 4E10 appear to mimic self antigens, and therefore
the responses of B cells with MPER specificity are down-
modulated (46).

CONCLUSIONS

Three decades of study have established the important
role of Abs in protecting against HIV infection. How-
ever, it has become quite clear that HIV uses many
mechanisms to protect itself from the biologic effects of
Abs that would block infectivity. Design of an effective
vaccine must take into account the presence of glycans
and masking phenomena to induce Abs that can pene-
trate or circumvent these protective shields employed
by the virion. Current immunogen design is affected
profoundly by whether the aim is to induce conventional
Abs or exceptional broadly neutralizing Abs. Induction
of exceptional Abs with a vaccine may require the use
of a series of immunogens that “guide” the immune re-
sponse through the mutations required for the speci-
ficities displayed by broad and potent neutralizing Abs.
However desirable this goal is, whether it is achieva-
ble has yet to be established. Alternatively, conventional
Abs, while not as broad or as potent as exceptional
Abs have already been elicited by vaccine trials and are
correlated with a reduced rate of infection in the RV144
phase III clinical vaccine trial. Induction of conven-
tional protective Abs is therefore possible. The vaccine
regimens and reagents to be used in vaccine development
are many, ranging from DNA and viral vector priming
immunogens to proteins representing the trimeric enve-
lope proteins or portions thereof spliced onto immuno-
genic scaffolds. Many more clinical trials for safety,
immunogenicity, and protection are required to estab-
lish which of these many regimens and reagents will re-
sult in a prophylactic vaccine.
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