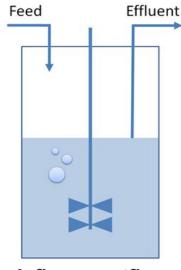
# Investigating the Temperature Dependency and Efficiency of *S. cerevisiae* Using MatLab


Angela Abarquez and Ava Lekander

Biology 388 May 9, 2019

- Introduction of the chemostat problem of Tai et al (2007)
- Data extracted from the Tai paper (2005) & (2007)
- Methods used to investigate the model
- Temperature investigation
- Efficiency/waste investigation
- Conclusions

## Chemostats are Useful for Controlling Variables

- "The chemostat is an experimental apparatus where the chemical environment can be maintained static and nutrient availability can be controlled by the experimenter." -ScienceDirect
- Chemostats can be used to investigate the differential utilization of fermentation at different metabolic rates.
- Tai paper experimented with a limiting nutrient- either Glucose (Carbon) or Ammonium (Nitrogen).
- Tai experiment done under anaerobic conditions.
- It is not possible to only change a single parameter without having an effect on any others, even using the chemostat culture approach rather than the batches.



Inflow = outflow

http://sphinx.murdoch.edu.au/units/extern /BIO301/teach/download/previous%20ye ars/student%20websites%202009/03%20 Bioreactors%20for%20ethanol%20produc tion/background.html

#### Parameters Included in Tai et al

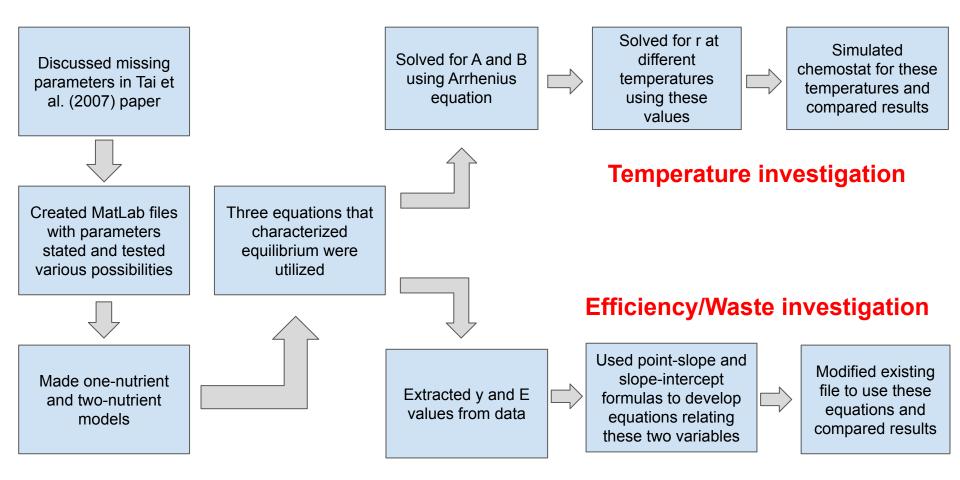
Table 1. Physiological characteristics of S. cerevisiae grown in ammonium- and glucose-limited anaerobic chemostat cultures

| Limiting nutrient | Growth<br>temperature<br>(°C) | $(g_{\mathrm{DW}} \cdot g_{\mathrm{glucose}}^{-1})$ | $q_{ m Glu}^{a}$ | $q_{EtOH}^{a}$ | q <sub>CO2</sub> <sup>a</sup> | Carbon<br>recovery<br>(%) | Residual<br>glucose<br>(mM) | Residual<br>ammonia<br>(mM) |
|-------------------|-------------------------------|-----------------------------------------------------|------------------|----------------|-------------------------------|---------------------------|-----------------------------|-----------------------------|
| Glucose           | 12                            | $0.07 \pm 0.01$                                     | $-2.5 \pm 0.2$   | $3.8 \pm 0.3$  | $4.4 \pm 0.3$                 | $100 \pm 3$               | $2.8 \pm 1.1$               | $65.2 \pm 2.2$              |
| Glucose           | 30                            | $0.07 \pm 0.00$                                     | $-2.3 \pm 0.0$   | $3.5 \pm 0.0$  | $3.8 \pm 0.2$                 | $95 \pm 1$                | $0.3 \pm 0.1$               | $61.3 \pm 4.5$              |
| Ammonium          | 12                            | $0.05 \pm 0.00$                                     | $-3.6 \pm 0.2$   | $6.1 \pm 0.3$  | $6.0 \pm 0.6$                 | $97 \pm 4$                | $90.0 \pm 9.8$              | $1.5 \pm 0.2$               |
| Ammonium          | 30                            | $0.04 \pm 0.00$                                     | $-4.0\pm0.1$     | $6.8 \pm 0.2$  | $7.4\pm0.2$                   | $97 \pm 2$                | $85.1 \pm 8.2$              | $0.2 \pm 0.1$               |

Cultures were grown at 30 and 12°C (D =  $0.03 \, h^{-1}$ ). Values represent the mean  $\pm$  SD of data from three independent steady-state chemostat cultivations.  $Y_{Glu/X}$ , biomass yield on glucose; DW, dry weight.

\*Did not know: r,k,L,F

<sup>&</sup>lt;sup>a</sup> Values expressed as mmol  $\cdot g_{DW}^{-1} \cdot h^{-1}$ .


- Introduction of the chemostat problem of Tai et al (2007)
- Data extracted from the Tai paper (2005) & (2007)
- Methods used to investigate the model
- Temperature investigation
- Efficiency/waste investigation
- Conclusions

## Parameters from Data Used to Define Unknowns

|   | 12C Glucose<br>Limiting | 30C Glucose<br>Limiting | 12C Ammonium<br>Limiting | 30C Ammonium<br>Limiting |
|---|-------------------------|-------------------------|--------------------------|--------------------------|
| Т | 285K                    | 303K                    | 285K                     | 303K                     |
| r | 0.08                    | 0.46                    | 0.08                     | 0.46                     |
| Α | 4.9*10^11               | 4.9*10^11               | 4.9*10^11                | 4.9*10^11                |
| В | 6.98*10^4               | 6.98*10^4               | 6.98*10^4                | 6.98*10^4                |
| E | 14.2857                 | 14.2857                 | 20.0000                  | 25.000                   |
| у | 0.504                   | 0.054                   | 16.216                   | 15.333                   |

- Introduction of the chemostat problem of Tai et al (2007)
- Data extracted from the Tai paper (2005) & (2007)
- Methods used to investigate the model
- Temperature investigation
- Efficiency/waste investigation
- Conclusions

## **Investigation of Chemostat Model**



# Remaining Parameters Calculated from the following

#### **Equilibrium equations used in MATLAB:**

$$y(t) = \frac{dy}{dt} = \frac{-Exryz}{(y+k)(z+L)} - qy + qu$$

$$z(t) = \frac{dz}{dt} = \frac{-Fxryz}{(y+k)(z+L)} - qz + qv$$
$$x(t) = \frac{dx}{dt} = \frac{xryz}{(y+k)(z+L)} - qx$$

#### **Arrhenius Equation:**

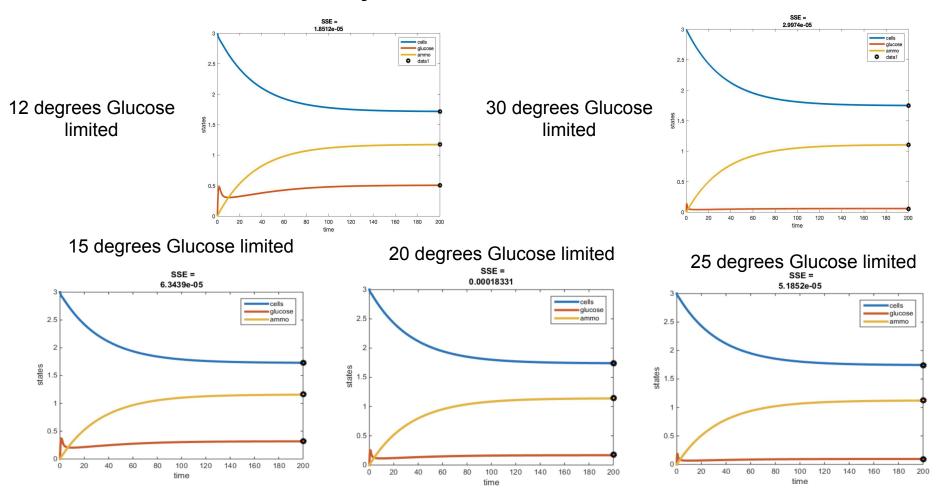
$$K = Ae^{-Ea/RT}$$

#### **Point-slope Equation:**

$$y - y_1 = m(x - x_1)$$

#### **Slope-intercept Formula:**

$$y = mx + b$$


- Introduction of the chemostat problem of Tai et al (2007)
- Data extracted from the Tai paper (2005) & (2007)
- Methods used to investigate the model
- Temperature investigation
- Efficiency/waste investigation
- Conclusions

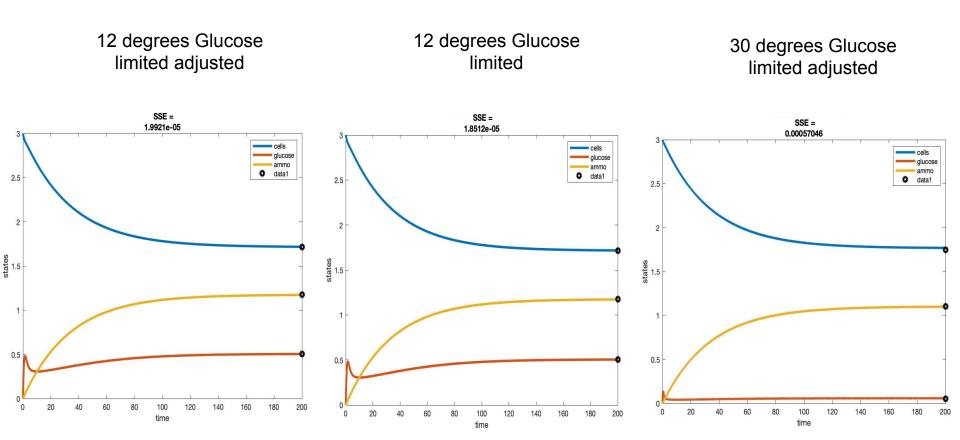
## Chemostat Simulated at Different Temperatures

- Used Glucose-limited condition
- Calculated rates using Arrhenius equation

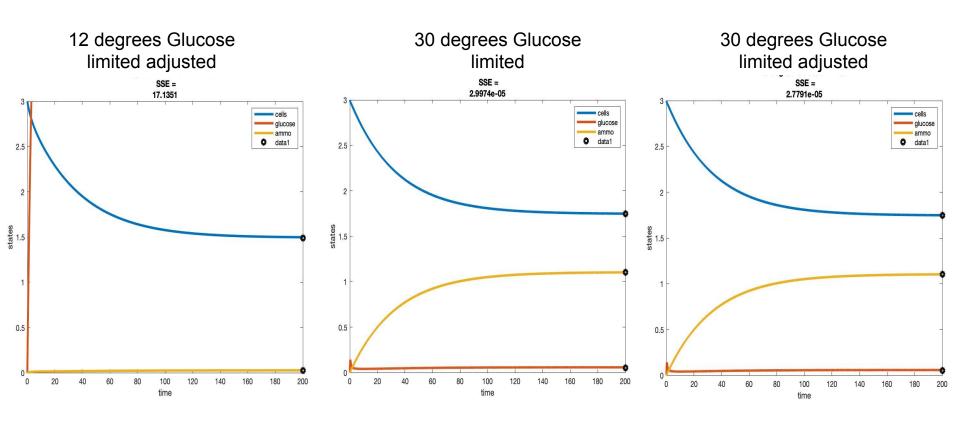
| Temperature | Rate   |  |
|-------------|--------|--|
| 15°         | 0.1087 |  |
| 20°         | 0.1787 |  |
| 25°         | 0.289  |  |

## Glucose Steady States Remained the Same




- Introduction of the chemostat problem of Tai et al (2007)
- Data extracted from the Tai paper (2005) & (2007)
- Methods used to investigate the model
- Temperature investigation
- Efficiency/waste investigation
- Conclusions

## Investigating E as a Variable Versus a Constant


- Calculated y values by multiplying residual glucose (rG) by the conversion factor to grams
- Used point-slope and slope-intercept formulas to develop equations that match both (y,E) points for each temperature

| Temperature | Function              |  |  |
|-------------|-----------------------|--|--|
| 12°C        | E = 0.3637y + 14.1022 |  |  |
| 30°C        | E = 0.7012y + 14.2483 |  |  |

# Using the 12°C Equation Steady States Varied



## The 30°C Equation Produced Similar Results



## **Conclusions**

- Changing the temperature did not affect the steady states
- Glucose levels decreased as temperature levels increased
- The Efficiency (E) did not change with temperature

#### **Future Directions**

- Include temperatures outside of the 12 and 30 degree range and see if that makes a bigger difference than using the intermediary 15, 20, 25 degrees.
- Investigate a different nutrient's steady state over time, such as Trehalose.

# Acknowledgments

Department of Biology
Biology 388
Loyola Marymount University

Kam D. Dahlquist, Ph.D.

LMU LA
Frank R. Seaver College
of Science and Engineering

Ben G. Fitzpatrick, Ph.D.

**Dahlquist Lab** 

## References

- 1. Dahlquist, K., & Fitzpatrick, B. (n.d.). BIOL388/S19: Week 14/15. Retrieved from <a href="https://openwetware.org.wiki/BIOL388/S19:Week">https://openwetware.org.wiki/BIOL388/S19:Week</a> 14/15
- 2. Tai, S. L., Daran-Lapujade, P., Walsh, M. C., Pronk, J. T., & Daran, J. M. (2007). Acclimation of Saccharomyces cerevisiae to low temperature: a chemostat-based transcriptome analysis. Molecular Biology of the Cell, 18(12), 5100-5112. DOI: 10.1091/mbc.e07-02-0131
- 3. Tai, S. L., Boer, V. M., Daran-Lapujade, P., Walsh, M. C., de Winde, J. H., Daran, J. M., and Pronk, J. T. (2005). Two-dimensional transcriptome analysis in chemostat cultures: combinatorial effects of oxygen availability and macro- nutrient limitation in Saccharomyces cerevisiae. J. Biol. Chem. 280, 437–447.