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GRNsight is a web application and service for visualizing models of gene regulatory
networks (GRNs). A gene regulatory network consists of genes, transcription factors, and
the regulatory connections between them which govern the level of expression of mRNA
and protein from genes. The original motivation came from our efforts to perform
parameter estimation and forward simulation of the dynamics of a differential equations
model of a small GRN with 21 nodes and 31 edges. We wanted a quick and easy way to
visualize the weight parameters from the model which represent the direction and
magnitude of the influence of a transcription factor on its target gene, so we created
GRNsight. GRNsight automatically lays out either an unweighted or weighted network
graph based on an Excel spreadsheet containing an adjacency matrix where regulators are
named in the columns and target genes in the rows, a Simple Interaction Format (SIF) text
file, or a GraphML XML file. When a user uploads an input file specifying an unweighted
network, GRNsight automatically lays out the graph using black lines and pointed
arrowheads. For a weighted network, GRNsight uses pointed and blunt arrowheads, and
colors the edges and adjusts their thicknesses based on the sign (positive for activation or
negative for repression) and magnitude of the weight parameter. GRNsight is written in
JavaScript, with diagrams facilitated by D3.js, a data visualization library. Node.js and the
Express framework handle server-side functions. GRNsight’s diagrams are based on D3.js’s
force graph layout algorithm, which was then extensively customized to support the
specific needs of GRNs. Nodes are rectangular and support gene labels of up to 12
characters. The edges are arcs, which become straight lines when the nodes are close
together. Self-requlatory edges are indicated by a loop. When a user mouses over an edge,
the numerical value of the weight parameter is displayed. Visualizations can be modified
by sliders that adjust the force graph layout parameters and through manual node
dragging. GRNsight is best-suited for visualizing networks of fewer than 35 nodes and 70
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edges, although it accepts networks of up to 75 nodes or 150 edges. GRNsight has general
applicability for displaying any small, unweighted or weighted network with directed edges
for systems biology or other application domains. GRNsight serves as an example of
following and teaching best practices for scientific computing and complying with FAIR
Principles, using an open and test-driven development model with rigorous documentation
of requirements and issues on GitHub. An exhaustive unit testing framework using Mocha
and the Chai assertion library consists of around 160 automated unit tests that examine
nearly 530 test files to ensure that the program is running as expected. The GRNsight
application (http://dondi.github.io/GRNsight/) and code
(https://github.com/dondi/GRNsight) are available under the open source BSD license.
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Abstract

GRNsight is a web application and service for visualizing models of gene regulatory
networks (GRNs). A gene regulatory network consists of genes, transcription factors, and the
regulatory connections between them which govern the level of expression of mRNA and protein
from genes. The original motivation came from our efforts to perform parameter estimation and
forward simulation of the dynamics of a differential equations model of a small GRN with 21
nodes and 31 edges. We wanted a quick and easy way to visualize the weight parameters from
the model which represent the direction and magnitude of the influence of a transcription factor
on its target gene, so we created GRNsight. GRNsight automatically lays out either an
unweighted or weighted network graph based on an Excel spreadsheet containing an adjacency
matrix where regulators are named in the columns and target genes in the rows, a Simple
Interaction Format (SIF) text file, or a GraphML XML file. When a user uploads an input file
specifying an unweighted network, GRNsight automatically lays out the graph using black lines
and pointed arrowheads. For a weighted network, GRNsight uses pointed and blunt arrowheads,
and colors the edges and adjusts their thicknesses based on the sign (positive for activation or
negative for repression) and magnitude of the weight parameter. GRNsight is written in
JavaScript, with diagrams facilitated by D3.js, a data visualization library. Node.js and the
Express framework handle server-side functions. GRNsight’s diagrams are based on D3.js’s
force graph layout algorithm, which was then extensively customized to support the specific
needs of GRNs. Nodes are rectangular and support gene labels of up to 12 characters. The edges
are arcs, which become straight lines when the nodes are close together. Self-regulatory edges
are indicated by a loop. When a user mouses over an edge, the numerical value of the weight

parameter is displayed. Visualizations can be modified by sliders that adjust the force graph

Peer] Preprints | https://doi.org/10.7287/peerj.preprints.2068v2 | CC BY 4.0 Open Access | rec: 18 Aug 2016, publ: 18 Aug 2016




41

42

43

44

45

46

47

48

49

50

51

layout parameters and through manual node dragging. GRNsight is best-suited for visualizing
networks of fewer than 35 nodes and 70 edges, although it accepts networks of up to 75 nodes or
150 edges. GRNsight has general applicability for displaying any small, unweighted or weighted
network with directed edges for systems biology or other application domains. GRNsight serves
as an example of following and teaching best practices for scientific computing and complying
with FAIR Principles, using an open and test-driven development model with rigorous
documentation of requirements and issues on GitHub. An exhaustive unit testing framework
using Mocha and the Chai assertion library consists of around 160 automated unit tests that
examine nearly 530 test files to ensure that the program is running as expected. The GRNsight
application (http://dondi.github.io/GRNsight/) and code (https://github.com/dondi/GRNsight) are

available under the open source BSD license.
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Introduction

GRNssight is a web application and service for visualizing models of small- to medium-
scale gene regulatory networks (GRNs). A gene regulatory network consists of genes,
transcription factors, and the regulatory connections between them which govern the level of
expression of mRNA and protein from genes. Our group has developed a MATLAB program to
perform parameter estimation and forward simulation of the dynamics of an ordinary differential
equations model of a medium-scale GRN with 21 nodes and 31 edges (Dahlquist et al., 2015;
http://kdahlquist.github.io/GRNmap/). GRNmap accepts a Microsoft Excel workbook as input,
with multiple worksheets specifying the different types of data needed to run the model. For
compactness, the GRN itself is specified by a worksheet that contains an adjacency matrix where
regulators are named in the columns and target genes in the rows. Each cell in the matrix
contains a “0” if there is no regulatory relationship between the regulator and target, or a “1” if
there is a regulatory relationship between them. The GRNmap program then outputs the
estimated weight parameters in a new worksheet containing an adjacency matrix where the “1°s”
are replaced with a real number that is the weight parameter, representing the direction (positive
for activation or negative for repression) and magnitude of the influence of the transcription
factor on its target gene (Dahlquist et al., 2015). Although MATLAB has graph layout
capabilities, we wanted a way for novice and experienced biologists alike to quickly and easily
view the unweighted and weighted network graphs corresponding to the matrix without having
to create or modify MATLAB code. Given that our user base included students in courses using
university computer labs where the installation and maintenance of software is subject to
logistical considerations sometimes beyond our control, we enumerated the following

requirements for a potential visualization tool. The tool should:
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1. Exist as a web application without the need to download and install specialized software;

2. Be simple and intuitive to use;

3. Accept an input file in Microsoft Excel format (.xIsx);

4. Read a weighted or unweighted adjacency matrix where the regulatory transcription
factors are in columns and the target genes are in rows;

5. Automatically lay out and display small- to medium-scale, unweighted and weighted,
directed network graphs in a way that is familiar to biologists and adds value to the

interpretation of the modeling results.

Having established the broad technical requirements to which we were seeking a
solution, the first task was to determine if software already existed that could fulfill our needs. A
review by Pavlopoulos et al., published in 2015, describes the types, trends, and usage of
visualization tools available for genomics and systems biology. Their list of 47 tools for network
analysis is representative of what was available to us at our project inception in January 2014
(given the caveat that the list itself is a moving target with some tools dropping out, new ones
being added, and others evolving in their functions). With such a large number of tools
available, it would be reasonable to expect that one already existed that could fulfill our needs.
However, our use case was narrow, and the tools we investigated out of this diverse set each had
properties that limited their use for us. With regard to our first requirement, out of the 47 tools,
29 are stand-alone applications, requiring installation, versus 18 web applications. With respect
to our second requirement, the more complex software packages out of the set have a steep
learning curve. Our third and fourth requirements specify data types. Some packages were
hardcoded for a different type of network than a GRN (e.g., metabolic or signaling pathways,

protein-protein interaction networks) or retrieved data exclusively from a backend database, not
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98 allowing user-supplied data. None at the time would readily accept an adjacency matrix with the
99  GRNmap specifications as input without some manipulation of the data format. Finally, with
100 respect to the last requirement, the core functionality, some packages were designed for
101  visualization and analysis of much larger networks than the ones in which we were interested or

102 did not have the ability to display directed, weighted graphs.

103 As an illustration of this, Pavlopoulos et al. (2015) showed that the open source software,
104  Cytoscape (Shannon et al., 2003; Smoot et al., 2011) had the highest citation count in the Scopus
105 database, as it is widely recognized as the “best-in-class” tool for viewing and analyzing large
106 networks for systems biology research. However, while Cytoscape is flexible in terms of what
107  types of network representations it accepts as input (SIF, NNF, GML, XGMML, SBML,

108 BioPAX, PSI-MI, GraphML, cf.

109  http://manual.cytoscape.org/en/latest/Supported Network File Formats.html#supported-

110  network-file-formats), its basic “unformatted table files” format expects the network to be

111 represented in a list of pairwise interactions between two nodes instead of as an adjacency

112 matrix, requiring a GRNmap user to convert the file external to the program. Furthermore,

113 Cytoscape must be installed on a user’s computer. Finally, because it is powerful and has a lot of
114 features, there is a somewhat steep learning curve before a novice user can begin to visualize

115 networks. Multiple settings must be learned and selected to generate a display that properly fits
116 ause case; it is not possible to just “load into Cytoscape and go.” Another open source

117  application, Gephi (Bastian, Heymann, and Jacomy, 2009), is a general graph visualization tool
118 that does accept an adjacency matrix in .csv format (among a wide range of supported formats,
119  cf. https://gephi.org/users/supported-graph-formats/csv-format/), but again requires download

120  and installation of the software and has a complex feature set. Because GRNmap itself is
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121  complex software targeted both at experienced biology investigators and novice undergraduate
122 users in a Biomathematical Modeling course, we wanted to limit the need to install and learn
123 additional visualization software. Reducing the cognitive load required for using the software

124 would allow users to focus their attention on understanding the biological results of the model.

125 After this exploration, we decided to create our own software solution that we could
126  exactly tailor to our specifications. Following the philosophy of “do one thing well”

127  (http://onethingwell.org/post/457050307/about-one-thing-well), we wanted to prioritize

128 rendering small- to medium-scale gene regulatory networks both easily and well. It was more
129 important for us to create a tool that is specifically tailored to the visualization of these sized
130  GRNs, and not every possible graph from every possible application domain. Similarly, we
131 wanted to pass data seamlessly from GRNmap to GRNsight, while bearing in mind that we
132 should adopt practices that would also make our tool useful to users outside our own group.
133 Finally, we wanted to minimize any startup, onboarding, or overhead time, which necessitated

134 also enumerating a set of process requirements that would lead us to our goal. Our project

135 should:

136 e Follow best practices for open software development in bioinformatics, including:

137 reusing code, releasing early and often to a public repository, tracking requirements,

138 issues, and bugs, performing unit-tests, and providing both code and user documentation
139 (Schultheiss, 2011; Prlic and Procter, 2012; Wilson et al., 2014);

140 e Leverage the expertise of the faculty and undergraduate student development team

141 members and be responsive to our GRNmap customers (i.e., eat our own dog food);
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142 ¢ Balance the needs of fulfilling our own use case with developing a tool of wider
143 applicability to the scientific community during a development cycle that ebbs and flows

144 with the pressures of the academic calendar.

145 GRNsight both fulfills our stated product requirements and serves as a model for best practices

146  for software development in bioinformatics as discussed in the sections below.

147 Materials and Methods

148  Input Data

149 GRNssight automatically lays out the network graph specified by an adjacency matrix

150 contained within a worksheet named “network”™ or “network optimized weights” in a Microsoft
151 Excel workbook (.xIsx). It was designed to accept workbooks seamlessly from the MATLAB
152 gene regulatory network modeling program, GRNmap; however, the expected input format is
153 general and is not dependent on GRNmap. Detailed documentation for the expected input file
154  format is found on the GRNsight Documentation page:

155 http://dondi.github.io/GRNsight/documentation. html.

156 GRNsight can automatically lay out either an unweighted or weighted network graph

157 specified by an adjacency matrix where regulators are named in the columns and target genes in
158 the rows. Note that regulators (regulatory transcription factors) are themselves encoded by genes
159 and will be referred to as such. The adjacency matrix can be either symmetric (with the exact
160 same genes named in both the columns and rows) or asymmetric (additional genes in either the
161  columns or rows or both). For an unweighted network, each cell in the matrix should contain a

162 “0” if there is no regulatory relationship between the regulator and target, or a “1” if there is a
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163  regulatory relationship between them (Fig. 1). In a weighted network, the “1’s” are replaced
164  with a real number that is the weight parameter (Fig. 2). Positive weights indicate activation of
165 the target gene by the regulator, and negative weights indicate repression of the target gene by

166 the regulator.

167 After having implemented the core functionality of seamlessly reading GRNmap-

168 generated Excel workbooks, we recently extended the ability of GRNsight to read other

169 commonly used network data formats to increase the interoperability of GRNsight with other
170 network analysis and visualization software. GRNsight can import and display Simple

171 Interaction Format (SIF, .sif,

172 http://manual.cytoscape.org/en/latest/Supported Network File Formats.html#sif-format) and
173 GraphML (.graphml; Brandes et al., 2001; Attp.://graphml.graphdrawing.org/) files and export
174 network data in those two formats (see the GRNsight Documentation page for details of the

175 implementation at http://dondi.github.io/GRNsight/documentation.html).

176 GRNsight is designed to visualize small- to medium-scale GRNs, not the entire gene

177  regulatory network for an organism. The bounding box for display of the graph has a fixed size.
178  Currently, it is recommended that the user upload networks with no more than 35 unique genes
179 (nodes) or 70 edges. A warning is given upon upload of a network with 50-74 nodes or 71-99
180 edges, although the network graph will still display. If the user attempts to upload a network of
181 75 or more nodes or 100 or more edges, the graph does not display, and an error message will be

182 returned.
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Architecture

GRNssight has a service-oriented architecture, consisting of separate server and web client
components (Fig. 3). The server provides a web API (application programming interface) that
accepts a Microsoft Excel workbook (.xIsx) file via a POST request and converts it into a
corresponding JSON (JavaScript Object Notation) representation. Conversion is accomplished
by first parsing the .xlsx file using the node-xIsx library (https.//github.com/mgcrea/node-xlsx)
then mapping the translated worksheet cells into JSON. It also provides demonstration graphs
already in this JSON format, without requiring a spreadsheet upload. The web client provides a
graphical user interface for visualizing the JSON graphs provided by the server, whether the
graphs are parsed from uploaded Excel workbooks or provided directly by the server’s demos.
As an additional layer of customization, the graphical interface provided by the web client can be
embedded in any web page using the standard iframe element. This is the mechanism used in
deploying the production and beta versions of the software on https://dondi.github.io/GRNsight.
Figure 3 illustrates this architecture and the interactions of the components. Documentation for
how GRNsight is specifically deployed, including autonomous production and beta versions, can

be found on the GRNsight wiki (https://github.com/dondi/GRNsight/wiki/Server-Setup).

GRNGssight is an open source project and is itself built using other open source software.
Server-side components are implemented with Node.js and the Express framework (Brown,
2014). Graph visualization is facilitated by the Data-Driven Documents JavaScript library
(D3.js; Bostock, Ogievetsky, and Heer, 2011). D3.js provides data mapping and layout routines
which GRNsight heavily customizes in order to achieve the desired graph visualization. The
resulting graph is a Scalable Vector Graphics (SVG) drawing in which D3.js maps gene objects

from the JSON representation provided by the web API server onto labeled rectangles. Edge
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weights are mapped into Bezier curves. The resulting graph is interactive, initially using D3.js’s
force graph layout algorithm to automatically determine the positions of the gene rectangles.
The user can then drag the rectangles to improve the graph’s layout. Customizations to the graph

display are described further in the next section.

As noted in the Introduction, we decided to create our own GRNsight software instead of
utilizing prior existing network visualization packages, like Cytoscape (Shannon et al., 2003;
Smoot et al., 2011). However, in keeping with open source development practices, we did
leverage other pre-existing code as described above. Besides D3.js, Cytoscape.js (Franz et al.,
2016) has been developed as an open source network visualization engine. The BioJS registry
(Yachdav et al., 2015) also lists a dozen components tagged with the keyword “network.” The
choice of D3.js as the visualization engine was made simply to leverage the expertise of one of
the co-authors who was already familiar with the D3.js library in order to minimize the startup,
onboarding, and overhead time for the project, which initially served as a semester-long capstone

experience for one of the undergraduate co-authors.

Graph Customizations

GRNssight’s diagrams are based on D3.js’s force graph layout algorithm (Bostock,
Ogievetsky, and Heer, 2011), which was then extensively customized to support the specific
needs of biologists for GRN visualization. D3.js’s baseline force graph implementation had
round, unlabeled nodes and undirected, straight-line edges. The following customizations were
made for the nodes: (a) the nodes were made rectangular; (b) a label of up to 12 characters was

added; (c) node size was varied, depending on the size of the label.
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Customizations were also made for the edges. Instead of undirected, straight line
segments, the edges display as directed edges. They are implemented as Bezier curves that
straighten when nodes are close together and curve when nodes are far apart. A special case was
added to form a looping edge if a node regulated itself. When an unweighted adjacency matrix is
uploaded, all edges are displayed as black with pointed arrowheads. When a weighted adjacency
matrix is uploaded, edges are further customized based on the sign and magnitude of the weight
parameter. As is common practice in biological pathway diagrams (Gostner et al., 2014),
activation (for positive weights) is represented by pointed arrowheads, and repression (for
negative weights) is represented by a blunt end marker, i.e., a line segment perpendicular to the
edge. The thickness of the edge also varies based on the magnitude of the absolute value of the
weight. Larger magnitudes have thicker edges and smaller magnitudes have thinner edges. The
way that GRNsight determines the edge thickness is as follows: GRNsight divides all weight
values by the absolute value of the maximum weight in the adjacency matrix to normalize all the
values to between zero and 1. GRNsight then adjusts the thickness of the lines to vary
continuously from the minimum thickness (for normalized weights near zero) to maximum
thickness (normalized weight of 1). The color of the edge also imparts information about the
regulatory relationship. Edges with positive normalized weight values from 0.05 to 1 are colored
magenta; edges with negative normalized weight values from -0.05 to -1 are colored cyan. Edges
with normalized weight values between -0.05 and 0.05 are colored grey to emphasize that their
normalized magnitude is near zero and that they have a weak influence on the target gene. When
a user mouses over an edge, the numerical value of the weight parameter is displayed. When the
user drags nodes to customize his or her view of the network, edges adapt their anchor points to

the movements of the nodes.
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250 User Interface

251 The GRNsight user interface includes a menu/status bar and sliders that adjust D3.js’s
252  force graph layout parameters. Figure 4 provides an annotated screenshot of the user interface,
253 highlighting its primary features. Users can move force graph parameter sliders to refine the

254 automated visualization. Nodes have a charge, which repels or attracts other nodes. The charge
255 distance determines at what range a node’s charge will affect other nodes. The link distance

256  determines the minimum distance maintained between nodes. Gravity determines the strength of
257  the force drawing the nodes to the center of the graph. Sliders can be locked to prevent changes
258 and also reset to default values. Graph visualizations can also be modified through manual node
259 dragging. Design decisions for the user interface were driven by applicable interaction design
260 guidelines and principles (Nielsen, 1993; Shneiderman et al., 2016; Norman, 2013) in alignment
261  with the mental model and expectations of the target user base, consisting primarily of biologists,

262  both novice and experienced.

263 Test-driven Development

264 GRNsight follows an open development model with rigorous documentation of

265 requirements and issues on GitHub. We have implemented an exhaustive unit testing framework
266 using Mocha (https://mochajs.org) and the Chai assertion library (http://chaijs.com) to perform
267 test-driven development where unit tests are written before new functionality is coded (Martin,
268  2008). This framework consists of around 160 automated unit tests that examine nearly 530 test
269 files to ensure that the program is running as expected. Table 1 shows the test suite’s coverage

270 report, as generated by Istanbul (https.//gotwarlost.github.io/istanbul/).
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Error and warning messages have a three-part framework that informs the user what
happened, the source of the problem, and possible solutions. This structure follows the alert
elements recommended by user interface guideline documents such as the OS X Human
Interface Guidelines
(https://developer.apple.com/library/mac/documentation/UserExperience/Conceptual/OSXHIGui
delines/WindowAlerts.html). For example, GRNsight returns an error when the spreadsheet is

formatted incorrectly or the maximum number of nodes or edges is exceeded.

Availability

GRNssight (currently version 1.18.1) is available at http.://dondi.github.io/GRNsight/and is
compatible with Google Chrome version 43.0.2357.65 or higher and Mozilla Firefox version
38.0.1 or higher on the Windows 7 and Mac OS X operating systems. The website is free and
open to all users, and there is no login requirement. Website content is available under the
Creative Commons Attribution Non-Commercial Share Alike 3.0 Unported License. GRNsight
code is available under the open source BSD license from our GitHub repository
https://github.com/dondi/GRNsight. Every user’s submitted data are private and not viewable by
anyone other than the user. Uploaded data reside as temporary files and are deleted from the
GRNsight server during standard operating system file cleanup procedures. A Google Analytics
page view counter was implemented on 18 September 2014, and a file upload counter was added
on 13 April 2015. From these start dates and as of 12 August 2016, the GRNsight home page
has been accessed 2349 times, and 1652 files have been uploaded and viewed with GRNsight. Of

these 1652 files, an estimated 148 were uploaded by users outside of our group.
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Results and Discussion

We have successfully implemented GRNsight, a web application and service for

visualizing small- to medium-scale gene regulatory networks, fulfilling our five requirements:

1. Tt exists as a web application without the need to download and install specialized
software;

2. Itis simple and intuitive to use;

3. It accepts an input file in Microsoft Excel format (.xIsx), as well as SIF (.sif) and
GraphML (.graphml);

4. TItreads a weighted or unweighted adjacency matrix where the regulatory transcription
factors are in columns and the target genes are in rows (Excel format-only);

5. It automatically lays out and displays small- to medium-scale, unweighted and weighted,
directed network graphs in a way that is familiar to biologists, adding value to the

interpretation of the modeling results.

GRNsight Facilitates Interpretation of GRN Model Results

GRNGsight facilitates the biological interpretation of unweighted and weighted gene
regulatory network graphs. Our discussion focuses on two of the demonstration files provided in
the user interface, Demo #3: Unweighted GRN (21 genes, 31 edges) and Demo #4: Weighted
GRN (21 genes, 31 edges, Schade et al. 2004 data). These two files describe gene regulatory
networks from budding yeast, Saccharomyces cerevisiae, correspond to supplementary data
published by Dahlquist et al. (2015), and when displayed by GRNsight, represent interactive

versions of Figures 1 and 8 of that paper, respectively.
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313 Figure 5 gives a side-by-side view of the same adjacency matrices laid out by GRNsight
314 and by hand. Figures 5A, 5B, and 5C are derived from Demo #3: Unweighted GRN (21 genes,
315 31 edges), and Figures 5D, SE, and 5F are derived from Demo #4: Weighted GRN (21 genes, 31
316 edges, Schade et al. 2004 data). Figures SA and 5D show examples of the automatic layout

317 performed by GRNsight. Figures 5C and 5F show the same adjacency matrices laid out by hand
318 in Adobe Illustrator, corresponding to Figure 1 and Figure 8 of Dahlquist et al. (2015),

319 respectively. Figures 5B and 5E started with the automatic layout from GRNsight and then were
320 manually manipulated from within GRNsight to lay them out similarly to Figures 5C and 5F,
321 respectively. The use of GRNsight represents a substantial time savings compared to creating the
322 same figures entirely by hand and allows the user to try multiple arrangements of the nodes

323 quickly and easily. Note that this type of “by hand” manipulation of graphs is most useful for
324 small- to medium-scale networks, the kind that GRNsight is designed to display, and would not

325 be appropriate for large networks.

326 Viewing the unweighted network (Fig. 5A, B, C) allows one to make observations about
327 the network structure (Dahlquist et al., 2015). For example, YAPG6 has the highest in-degree,
328 Dbeing regulated by six other transcription factors. RAP1 has the highest out-degree of five,

329 regulating four other transcription factors and itself. Four genes, AFT1, NRG1, RAP1, and

330 YAPG6, regulate themselves. Many of the transcription factors are involved in regulatory chains,
331 with the longest including five nodes originating at SKN7 or ACE2. There are several other 4-
332 node chains that originate at CINS, MAC1, PHD1, SKN7, and YAPI. Finally, there are two

333 rather complex feedforward motifs involving CIN5, ROX1, and YAP6 and SKN7, YAPI, and

334 ROXI1 (Dahlquist et al., 2015).
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The networks with colored edges (Fig. 5D, E, F) display the results of a mathematical
model, where the expression levels of the individual transcription factors were modeled using
mass balance ordinary differential equations with a sigmoidal production function and linear
degradation (Dahlquist et al., 2015). Each equation in the model included a production rate, a
degradation rate, weights that denote the magnitude and type of influence of the connected
transcription factors (activation or repression), and a threshold of expression. The differential
equation model was fit to published yeast cold shock microarray data from Schade et al. (2004)
using a penalized nonlinear least squares approach. The visualization produced by GRNsight is
displaying the results of the optimized weight parameters. Positive weights > 0 represent an
activation relationship and are shown by pointed arrowheads. One example is that CINS
activates the expression of MSN1. Negative weights < 0 represent a repression relationship and
are shown by a blunt arrowhead. One example is that ABF1 represses the expression of MSNI1.
The thicknesses of the edges also vary based on the magnitude of the absolute value of the
weight, with larger magnitudes having thicker edges and smaller magnitudes having thinner
edges. In Figures 5D, E, and F, the edge corresponding to the repression of the expression of
MSN1 by ABF1 stands out as the thickest because the absolute value of its weight parameter (-
2.97) has the largest magnitude out of all the weights (Dahlquist et al., 2015). It is noticeable
that none of the edges that represent activation are as thick as the ABF1-to-MSN1 edge; only

RAPI-to-RPHI1 and HAL9-to-MSN4 are close with weights of 1.50 and 1.43, respectively.

The color of the edge also imparts information about the regulatory relationship. Edges
with positive normalized weight values from 0.05 to 1 are colored magenta (10 edges in this
example); edges with negative normalized weight values from -0.05 to -1 are colored cyan (16

edges in this example). Edges with normalized weight values between -0.05 and 0.05 are colored
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358 grey to indicate that their normalized magnitude is near zero and that they have a weak influence
359 on the target gene (5 edges in this example). The grey color de-emphasizes the weak

360 relationships to the eye, thus emphasizing the stronger colored relationships.

361 Because of this visualization of the weight parameters, one can make some interesting
362 observations about the behavior of the network (Dahlquist et al., 2015). Taking the arrowhead
363  type, thickness, and color into consideration, one can, by visual inspection, group edges by type
364 and relative influence into four activation and four repression bins. RAP1-to-RPH1, HAL9-to-
365 MSN4, and NRGI to itself have the strongest activation relationships, followed by CIN5-to-
366 MSNI, followed by NRG1-to-YAP6, MSN4-to-FHL1, SKN7-to ROX1 and PHD1-to-MSN4,
367 followed by ABFI1-to-FHL1 as the weakest of the activation relationships. The aforementioned
368 ABFI1-to-MSNI1 edge has the strongest repression relationship, followed by ACE2-to-YAP1,
369 RAPI-to-HSF1, CIN5-to-ROX1, AFTI to itself, and RAP1 to itself, followed by ROX1-to-

370  YAP6, PHDI1-to-CUP9, CINS5-to-YAP6, YAP6-t0-ROX1, YAP1-to-ROX1, SKN7-to-YAPI,
371 RAPI-to-AFT1, and YAPG to itself, followed by MAC1-to-CUP9 and SKN7-to-NRG1 as the
372 weakest of the repression relationships. These rankings could have been obtained, of course, by
373 sorting the numerical values of the edges in a table, but it is notable that these groupings can also

374 be picked out by eye and then put into the context of the other network connections.

375 Because the five weakest connections, CUP9-to-YAP6, REB1-to-GTS1, YAP6-to-CINS,
376  YAPI1-to-YAP6, and HSF1-to-REB1, colored grey, are de-emphasized in the visual display, a
377 different interpretation of the network structure can be made as compared to the unweighted

378 network (Fig. SE and F versus 5B and C). In most cases, nodes in a regulatory chain “drop out”
379 visually “breaking” the chain. For example, in the four-node chain beginning with RAP1-to-

380 HSF1, the last two nodes, REB1 and GTSI, are only weakly connected. In the five-node chains
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beginning with SKN7-to-YAP1 or ACE2-to-YAP1, and the four-node chains beginning with
MAC1-to-CUP9 or PHD1-to-CUPY, the nodes connected to YAP6 drop out (YAP1-to-YAP6,

Y AP6-to-CINS, and CUP9-YAP6). This suggests that regulatory chains may only be effective
to a depth of two levels, and that while longer chains are theoretically possible, given the
network connections, they have a negligible effect on the dynamics of expression of downstream

genes.

Another interpretation of the network structure that is highlighted by the weighted display
is that the 21-gene network can be divided into two smaller subnetworks by removing the two
edges CUP9-to-YAP6 (grey) and ABF1-to-FHL1 (thin magenta, weakly activating). While this
could also be observed in the unweighted network, the application of the weight information,
showing only thin connections between the two subnetworks, suggests that they could function
relatively independently. Finally, the unweighted display showed two complex feedforward
motifs involving CINS5, ROX1, and YAP6 and SKN7, YAPI, and ROX1. The weighted display
reveals that the complexity of the connections is reduced because the weak YAPI1-to-YAP6 and
Y AP6-to-CINS edges drop out. Furthermore, the display shows that the modeling predicts that
the three-node CIN5-ROX1-Y AP6 motif is an incoherent type 2 feedforward loop, while the
SKN7-YAP1-ROX1 motif is a coherent type 4 feedforward loop, neither of which is found very
commonly in Escherichia coli nor S. cerevisiae gene regulatory networks (Alon, 2007). The
modeling combined with the display suggests that further investigation is warranted: either these
two rare types of feedforward loops are important to the dynamics of this particular GRN, or the
network structure is incorrect. In either case, future lines of experimental investigation are

suggested to the user.
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403 When examining individual genes in the network, one can see that the expression of

404 several genes is controlled by a balance of activation and repression by different regulators. For
405 example, the expression of MSN1 is strongly activated by CINS, but even more strongly

406 repressed by ABF1. The expression of ROX1 is weakly activated by SKN7 and weakly

407 repressed by YAP1, CINS, and YAP6. The expression of YAP6 is weakly activated by NRG1,
408 but weakly repressed by itself, CINS, and ROX1. Furthermore, some transcription factors act
409 both as activators of some targets and repressors of other targets. For example, RAP1 activates
410 the expression of MSN4 and RPH1, but represses the expression of AFT1, HSF1, and itself.

411 PHDI1, ABFI, CINS, and SKN7 also both activate and repress their different target genes in the
412 network. For each of these regulators, there is experimental evidence to support their opposite
413 effects on gene expression, although not necessarily for these particular target genes (RAP1:
414  Shore and Nasmyth, 1987; PHD1: Borneman et al. 2006, ABF1: Buchman and Kornberg, 1990
415 and Miyake et al., 2004; CINS5 and SKN7: Ni et al., 2009). Except for CINS, what these genes
416 have in common is that they themselves have no inputs in the network. The remaining no-input
417 genes (ACE2, MACI, and HAL9) have only one outgoing edge in this network. Because these
418 genes have no inputs and, in some sense, have been artificially disconnected from the larger

419  GRN of the cell, one must not overinterpret the results of the modeling for these genes.

420 Thus, GRNsight enables one to interpret the weight parameters more easily than one

421 could from the adjacency matrix alone. Visual inspection has long been recognized by experts
422 such as Tufte (1983) and Card, Mackinlay, and Shneiderman (1999) as distinct from other forms
423  of purely numeric, computational, or algorithmic data analysis, and as the preceding discussion
424 highlights, it is this potential that can be derived specifically by visual inspection that is enabled

425 by GRNsight. Card, Mackinlay, and Shneiderman (1999) have identified six major ways,
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documented in earlier literature and empirical studies, by which information visualization
amplifies cognition. Tufte’s seminal book The Visual Display of Quantitative Information
(1983) perhaps states it best: “Graphics reveal data. Indeed graphics can be more precise and

revealing than conventional statistical computations.”

Note that the nodes in Figure SF are also colored in the style of GenMAPP 2 (Salomonis
et al., 2007), based on the time course of expression of that gene in the Schade et al. (2004)
microarray data (stripes from left to right, 10, 30, and 120 minutes of cold shock, with magenta
representing a significant increase in expression relative to the control at time 0, cyan
representing a significant decrease in expression relative to the control, and grey representing no
significant change in expression relative to the control). This feature has not yet been

implemented in GRNsight, but is currently under development for Version 2.

These observations made by direct inspection of the GRNsight graph are for a relatively
small GRN of 21 genes and 31 edges and become more difficult as nodes and edges are added.
For much larger networks, a more powerful graph analysis tool such as Cytoscape (Shannon et
al., 2003; Smoot et al., 2011) or Gephi (Bastian, Heymann, and Jacomy, 2009) is warranted.
However, for small networks in the range of 15-35 nodes, GRNsight fulfills a need to quickly
and easily view and manipulate them. The GRN modeled in Dahlquist et al. (2015) and
displayed in Figure 5 was derived by hand from the Lee et al. (2002) and Harbison et al. (2004)
datasets generated by chromatin immunoprecipitation followed by microarray analysis. We have
also used GRNsight to display GRNs derived from the YEASTRACT database (Teixeira et al.,
2014), whose own display tool is static, displaying regulators and targets in two rows.
Instructions for viewing YEASTRACT-derived GRNs can be found on the GRNsight

documentation page.
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449 While GRNsight was designed originally for viewing gene regulatory networks, it is not
450 specific for any particular species, nor for that kind of data. As long as the text strings used as
451 identifiers for the “regulators” and “targets” match, it can be used to visualize any small,

452 unweighted or weighted network with directed edges for systems biology or other application
453  domains.

454  GRNsight Development Follows Best Practices for Scientific Computing and FAIR Data
455 Principles

456 Veretnik, Fink, and Bourne (2008) lament and Schultheiss et al. (2011) document that
457 some computational biology resources, especially web servers, lack persistence and usability,
458 leading to an inability to reproduce results. With that in mind, we have consciously followed
459  best practices for open development (Prlic and Procter, 2012), scientific computing (Wilson et
460 al., 2014), providing a web resource (Schultheiss, 2011), and FAIR data (Wilkinson et al., 2016),
461 simultaneously following and teaching these practices to the primary developers who were all

462 undergraduates. Each of these practices relates to each other, supporting reproducible research.

463  Open Development and Long-term Persistence

464 As noted in our process requirements in the Introduction, we have followed an open

465 development model since the project’s inception in January 2014, with our code available under
466 the open source BSD license at the public GitHub repository, where we “release early, release
467 often” (Torvalds in Raymond, 1999) and also track requirements, issues, and bugs. Indeed, our
468 project stands on the shoulders of other open source tools. Our unit-testing framework provides
469 confidence that the code works as expected. Detailed documentation for users (web page) and
470 developers (wiki) are provided. Demo data are also provided so users have both an example of

471 how to format input files and can see how the software should perform. As noted by Prlic and
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Procter (2012), open development practices have a positive impact on the long-term
sustainability of a project. Furthermore, Schultheiss et al. (2011) describe twelve qualities for
evaluating web services that sum to a Long-Term-Score, which correlates with persistence of the
web service. GRNsight complies with all twelve requirements, providing: a stable web address
(using the github.io domain to host the website and Amazon Cloud Services to host the server
help to ensure long-term availability), version information, hosting country and institution, last
updated date, contact information, high usability, no registration requirement, no download
required, example data, fair testing possibility (both with demonstration Excel workbooks and

standard SIF and GraphML file types), and a functional service.

We are committed to continue development of the GRNsight resource, fixing bugs and
improving the software by adding features. The lead authors (Dahlquist, Dionisio, and
Fitzpatrick) are all tenured faculty, overseeing the design, code, testing, and documentation of
GRNsight and providing continuity to the project. Together we have mentored the
undergraduates (Anguiano, Varshneya, Southwick, and Samdarshi) who had primary
responsibility for coding, testing, and documentation, while also being full partners in the design
of the software. A pipeline has been established for onboarding new members to the project,
also providing continuity. Lawlor and Walsh (2015) detail some of the same issues of reliability
and reproducibility in bioinformatics software referred to by Wilson et al. (2014). Lawlor and
Walsh (2015) conclude that the ideal way to bring software engineering values into
bioinformatics research projects is to establish separate specialists in bioinformatics engineering.
We disagree. Through GRNsight, we have shown how best practices can be taught to
undergraduates concomitant with training in bioinformatics, as we have shown previously with

Master’s level students (Dionisio and Dahlquist, 2008).
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FAIR Data Principles

The FAIR Guiding Principles for scientific data and stewardship state that data should be
Findable, Accessible, Interoperable, and Reusable by both humans and machines (Wilkinson et
al., 2016), with “data” loosely construed as any scholarly digital research object, including
software. As scientific software that interacts with data, the FAIR principles can apply to both
the GRNsight application and the network data it is used to visualize. Thus, we evaluate the

GRNsight project in terms of its “FAIRness” below.

Findable

The Findable principle states that metadata and data should have a globally unique and
persistent identifier, and that metadata and data should be registered or indexed in a searchable
resource (Wilkinson et al., 2016). In terms of software, the identifier is the name and version.
Because we utilize the GitHub release mechanism, GRNsight code is tagged with a version
(currently v1.18.1) and each version is available from the release page
(https://github.com/dondi/GRNsight/releases). We have registered GRNsight with well-known
bioinformatics tools registries: the BioJS Repository (Yachdav et al., 2015; http://biojs.io/), the
Elixir Tools and Data Services Registry (Ison et al., 2016; https.//bio.tools/), Bioinformatics.org
(http://'www.bioinformatics.org/wiki/), and the Links Directory at Bioinformatics.ca (Brazas,
Yamada, and Ouellette, 2010), Attps.//bioinformatics.ca/links_directory/), as well as NPM (Node
Package Manager, https://www.npmjs.com/). GRNsight has also been presented at scientific
conferences, with slides and posters available via SlideShare
(http.//www.slideshare.net/GRNsight) and with a recent talk and poster at the 2016
Bioinformatics Open Source Conference available via F1000 Research (Dahlquist et al., 2016a;

2016b). We have paid special attention to the metadata associated with our website to increase
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518 its Findability via Google search. And, of course, with the publication of this article, GRNsight
519 is Findable in literature databases. In the everyday sense of the word “findable,” one could argue
520 that by being “yet another” network visualization tool in a crowded domain (recall 47 other tools
521 recorded by Pavlopoulos et al., 2015), GRNsight is contributing to a Findability problem for

522 users in the sense that it contributes more “hay” to the “needle in a haystack” problem of finding
523 the right tool for the job. However, we hope that by the actions we have taken and the specificity
524  of our requirements for GRNsight’s functionality, publicly describing both what we mean it to be
525 and what we do not mean it to be, the benefits of adding GRNsight to the diverse pool of

526 network visualization software outweighs the detriments.

527 In addition, the Findable principle states that data should be described with rich metadata
528 and that metadata should include the identifier of the data it describes (Wilkinson et al., 2016).
529 Because GRNsight does not interact directly with a data repository, it is up to individual users to
530 make sure that their data is FAIR compliant with the Findable principle. This is discussed

531 further below with regard to Interoperability and Reusability.

532  Accessible

533 The Accessible principle states that metadata and data should be retrievable by their

534  identifier using a standardized communication protocol, that the protocol is open, free, and

535 universally implementable, that the protocol allows for authentication and authorization

536  procedures, where necessary, and that metadata are accessible, even when the data are no longer
537 available (Wilkinson et al., 2016). As noted before, GRNsight meets the first two criteria,

538 because it is free and open to all users, and there is no login requirement. The source code is
539 available under the open source BSD license and can be npm installed (given the caveat that the

540 user must be able to support the GRNsight client-server setup). The longevity of GRNsight is
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partially tied to the longevity of the GitHub repository itself, although the authors maintain local
backups. Again, because GRNsight does not interact directly with a data repository, it is up to
individual users to make sure that their data is FAIR compliant with the Accessible principle.
Since GRNsight does not have any security procedures nor authentication requirements (e.g.,
password protection; user registration), it is not recommended that sensitive data be uploaded to
our GRNsight server. However, users who wish to visualize sensitive data could run a local

instance of the GRNsight client-server setup.

Interoperable

As software, GRNsight does not interact directly with other databases or software, as, for
example, Cytoscape does with many pathway and molecular interaction databases or individual
Cytoscape apps (formerly plugins; Saito et al., 2012), so it is not Interoperable in that sense. The
GRNssight web application is designed to interact directly with a human user and is not set up to
import or export data programmatically, as would be necessary to incorporate it into popular
workflow environments like Galaxy (Afgan et al., 2016) or be hosted by a tool aggregator such
as QUBES Hub (Quantitative Undergraduate Biology Education and Synthesis Hub,
https://qubeshub.org/). However, GRNsight is Interoperable in the sense that via the user, it can
receive and pass data from and to other programs. In this latter sense, this section could just as
easily have been entitled, “95% of bioinformatics is getting your data into the right file format.”
Indeed, one of the original motivations and requirements for GRNsight was to seamlessly read
and display weighted GRNs that were output as Excel workbooks from the GRNmap MATLAB
modeling package (Dahlquist et al., 2015, http.//kdahlquist.github.io/GRNmap/). This
specialized use case is augmented by GRNsights’s ability to import and export data in the

commonly used SIF
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(http.//manual.cytoscape.org/en/latest/Supported Network File Formats.html#sif-format) and
GraphML (Brandes, et al. 2001, http://graphml.graphdrawing.org/) formats, facilitating
movement of data between GRNsight and other network visualization and analysis programs.
For instance, one can interact with the GRNsight server component directly, in order to upload
Excel workbooks and supported import formats for conversion into JSON then back into a
supported export format. Thus, we are in a position to comment on SIF and GraphML with
respect to the finer points of data Interoperability, including: metadata and data using a formal,
accessible, shared, and broadly applicable language for knowledge representation, metadata and
data using vocabularies that follow the FAIR principles, and metadata and data including

qualified references to other metadata and data (Wilkinson et al., 2016).

When we implemented import and export for the SIF and GraphML formats, we
encountered issues due to the variations accepted by these formats which required design
decisions that may, in turn, restrict compatibility with other software that we did not test. For
example, the SIF format as described in the documentation for Cytoscape v3.4.0 offers quite a
few divergent options, including choice of delimiter (space vs. tab), denoting a pairwise list of
interactions versus concatenating all the interactions to the same node on the same line, and the
choice of relationship type (any string). It only requires node identifiers to be internally
consistent to the file, without enforcing the use of IDs from a recognized biological database.
While GRNsight strives to read any SIF file, we restricted our export format to tab-delimited,
pairwise interactions, and a single relationship type (“pd” for “protein - DNA”) for unweighted
networks. For weighted networks, GRNsight exports the weight value as the relationship type.
The advantage of SIF is that it is a simple text format; the main disadvantage is that all it is really

intended to encode is the interaction between two nodes, which makes including the weight data
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as GRNsight does a kludge, and including metadata impossible. Moreover, there is no controlled
vocabulary for the relationship type, only a list of suggestions in the Cytoscape documentation,
from which we selected “pd”. In practice, Cytoscape v3.4.0 defaults to “interacts with” as the
relationship type when exporting SIF files. As a simple text format, it does not satisfy the three

sub-principles of Interoperability (Wilkinson et al. 2016).

In contrast, GraphML, as a richer XML format, has the potential to satisfy the
Interoperability criteria. However, as with SIF, we encountered issues because a feature of the
format that is intended to facilitate flexibility has, in practice, turned out to degrade
Interoperability rather than enhance it. GraphML standardizes only the representation of nodes
and edges and their directions; all other characteristics, such as names, weights, and other values,
are left for others to specify through a key element, which is not subject to a controlled
vocabulary. Although this flexibility is appreciated, it also serves as an enabler for divergence.
In particular, two issues arose with interpreting the node identifier and display label. First,
because of the lack of a controlled vocabulary, these are defined differently by different
programs. Second, in the GRNsight-native Excel format, transcription factors must be unique in
the header columns and rows and serve both as a unique ID for that node and the node label. In
two implementations of GraphML import/export that we tested with Cytoscape v3.4.0 and a
commercial graph editor called yED (v3.16, https://www.yworks.com/products/yved), an internal
node ID is assigned independently of the node label and is not editable by the user. This leads to
a situation where the user could assign identical labels to two or more nodes with different IDs,
raising an issue for correct display of the network in GRNsight where node ID and node label are
synonymous. GRNsight accommodates display of node labels from Cytoscape- and yED-

exported GraphML by using a priority system to select among the XML elements it may
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610 encounter. Finally, as with SIF, there is no enforcement of the use of IDs from a recognized
611 biological database, even though the potential exists to specify the ID source (at least as a

612 comment) in the XML.

613 The format of a GraphML export by GRNsight is described on the Documentation page
614  (http://dondi.github.io/GRNsight/documentation.html). In our testing, we have ensured that
615 GRNsight can read Cytoscape- and yED-exported GraphML and that GRNsight-exported

616 GraphML was accurately read by these two programs, but we cannot guarantee Interoperability
617  with other software. Any issues that arise will need to be addressed on a case-by-case basis

618 through bug reports at our GitHub repository.

619 Compliance with FAIR principles is facilitated by the BioSharing registry of standards
620  (McQuilton et al., 2016; https://biosharing.org). As of this writing, GraphML is present in the
621 registry, but as an unclaimed, automatically-generated entry. Other formats for sharing network
622 data are potentially more fully FAIR compliant. However, the addition of each new format,

623  while increasing the flexibility and power of the GRNsight software, would incur the cost of
624 additional complexity (http.//boxesandarrows.com/complexity-and-user-experience/). This is a
625 corollary of “one thing well” and is, for example, one reason why the complex Cytoscape stand-
626 alone application did not fit our initial product requirements. As demonstrated by our tests with
627 Cytoscape- and yED-exported GraphML, the aphorism that “95% of bioinformatics is getting

628 your data into the right file format” cannot entirely be avoided by developers or users.

629  Reusable

630 The FAIR principles state that metadata and data should be richly described with a

631 plurality of accurate and relevant attributes, released with a clear and accessible usage license,
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associated with a detailed provenance, and meet domain-relevant community standards. As
software, GRNsight is Reusable because the code is available on GitHub under the open source
BSD license. The advantage of having followed test-driven development is that a developer who
wishes to reuse the code has a test suite ready to guide development of new features. In terms of
data, the criteria for Reusability are closely linked to Interoperability. While the GraphML
format is capable of storing metadata, the limitations described above in terms of a lack of
controlled vocabulary causes it to fail the Reusability test as well. In terms of provenance,
GRNsight injects a comment into the GraphML recording what version of GRNsight exported
the data (as does yED v3.16, but not Cytoscape v3.4.0). We also note that the GRNmap Excel
workbook format with multiple worksheets has the potential to record both metadata and

provenance, although this feature is not implemented at this time.

In the end, even the examples given by Wilkinson et al. (2016) have varying levels of
adherence to the FAIR principles or “FAIRness”, which, they argue, should be used as a guide to
the incremental improvement of resources. Although GRNsight has the limitations discussed

above, we have done as much as we can to achieve FAIRness at this time.

Conclusions

We have successfully implemented GRNsight, a web application and service for
visualizing small- to medium-scale gene regulatory networks that is simple and intuitive to use.
GRNssight accepts an input file in Microsoft Excel format (.xlsx), reading a weighted or
unweighted adjacency matrix where the regulators are in columns and the target genes are in
rows, and automatically lays out and displays unweighted and weighted network graphs in a way

that is familiar to biologists. GRNsight also has the capability of importing and exporting files in
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SIF and GraphML formats. Although GRNsight was originally developed for use with the
GRNmap modeling software, and has provided useful insight into the interpretation of the gene
regulatory network model described in Dahlquist et al. (2015), it has general applicability for
displaying any small, unweighted or weighted network with directed edges for systems biology
or other application domains. Thus, GRNsight inhabits a niche not satisfied by other software,
doing “one thing well”. GRNsight also serves as a model for how best practices for software
engineering support reproducible research and can be learned simultaneously with the

development of useful bioinformatics software.
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Figure 1

Screenshot of the expected format for an adjacency matrix for an unweighted network.

Regulators are named in the columns and target genes in the rows. A gene name at the top
of the matrix will be considered the same as a gene name on the side if it contains the same

text string, regardless of capitalization.

a1 v S | cols regudatorsirows tasgets v
A B c D E F G H | J K L M N o} P Q R S T u v
1 |cols regulatorsirows targets JABF1 ACE2 AFT1 CINS CUPS FHL1 GTS1 HAL9 HSF1 MAC1 MSN1 MSN4 NRG1 PHD1 RAP1 REB1 ROX1 RPH1 SKN7 YAP1 YAPS
2 ABF1 0 Q 0 0 Q 0 0 Q 0 0 ] 0 0 0 0 0 0 Q 0 0 0
3 ACE2 0 0 0 0 0 0 ] 0 0 ] 0 0 0 0 0 0 0 0 0 0 0
4 AFT1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0
5 CINS 0 Q 0 0 Q 0 0 0 0 0 0 0 0 0 0 0 0 Q 0 0 1
6 CUP9 0 Q 0 0 Q 0 0 Q 0 1 ] 0 0 1 0 0 0 Q 0 0 1]
7 FHL1 1 1] 0 0 [1] 0 0 0 0 ] 0 1 0 0 0 0 0 0 0 0 0
8 GTS1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0
9 HALS 0 Q 0 0 Q 0 0 0 0 0 0 0 0 0 0 0 0 Q 0 0 0
10 HSF1 0 Q 0 0 0 0 0 Q 0 0 ] 0 0 0 1 0 0 Q 0 0 0
11 MAC1 0 1] 0 1] 1] 0 V] 1] 0 V] [1] 0 V] [1] 0 0 1] 1] 0 V] 1]
12 MSN1 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
13 MSN4 0 Q 0 0 Q 0 0 1 0 0 0 0 0 1 1 0 0 Q 0 0 1]
14 NRG1 0 Q 0 0 Q 0 0 Q 0 0 0 0 1 0 0 0 0 1] 1 0 0
15 PHD1 0 1] 0 0 1] 0 V] 0 0 Y] 1] 0 0 1] 0 0 0 1] 0 0 0
16 RAP1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0
17 REB1 0 Q 0 0 Q 0 0 1] 1 0 0 0 0 0 0 0 0 Q 0 0 1]
18 ROX1 0 Q 0 1 Q 0 0 Q 0 0 ] 0 0 0 0 0 0 1] 1 1 1
19 RPH1 0 0 0 0 1] 0 ] 0 0 ] 0 0 0 0 1 0 0 0 0 0 0
20 SKN7 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
21 YAP1 0 1 0 0 Q 0 0 1] 0 0 0 0 0 0 0 0 0 Q 1 0 1]
22 YAPE 0 1] 0 1 1 0 0 1] 0 ] 0 0 1 0 0 0 1 1] 0 1 1
‘ o |_metwork ®
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Figure 2

Screenshot of the expected format for an adjacency matrix for a weighted network.

Regulators are named in the columns and target genes in the rows. A gene name at the top
of the matrix will be considered the same as a gene name on the side if it contains the same

text string, regardless of capitalization.

Al - e | cols regulatorsiiows targets v
A B Cc D E F G H | J K L M N (] P Q R S T u v
1 |cols regulatorsirows targets |ABF1 ACE2 AFT1 CINS CUPS FHL1 GTS1 HAL9 HSF1 MAC1 MSN1 MSN4 NRG1 PHD1 RAP1 REB1 ROX1 RPH1 SKN7 YAP1 YAPE
2 ABF1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
3 ACE2 0 Q 0 0 Q 0 0 0 0 0 0 0 0 0 0 0 0 1] 0 0 0
4 AFT1 0 0 -0.8966 0 Q 0 0 Q 0 0 ] 0 0 0 -0.4030 0 0 Q 0 0 0
5 CINS 0 1] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -0.0450
6 CUP9 0 0 0 0 0 0 0 0 0 -0.1882 0 0 0 -0.6510 0 0 0 0 0 0 0
7 FHL1 0.1562 0 0 0 0 0 0 1] 0 0 0 06121 0 0 0 0 0 1] 0 0 0
8 GTS1 0 Q 0 0 Q 0 0 1] 0 0 ] 0 0 0 0 0.0778 0 Q 0 0 0
9 HALS ] Q 0 ] Q 0 0 0 0 0 0 0 0 ] 0 0 0 Q 0 0 0
10 HSF1 0 0 0 0 0 0 0 0 0 ] 0 0 0 0 -1.2321 0 0 0 0 0 0
11 MAC1 0 o 0 0 o 0 0 1] 0 o 1] 0 V] 0 0 V] 0 1] 0 V] 1]
12 MSN1 -2.9707 Q 0 0.9393 Q 0 0 1] 0 0 0 0 0 0 0 0 0 0 0 0 0
13 MSN4 0 Q 0 0 0 0 0 1.4283 0 0 1] 0 0 0.5447 1.0131 0 0 Q 0 0 0
14 NRG1 0 0 0 0 0 0 0 0 0 0 0 0 1.2341 0 0 0 0 0 -0.1852 0 0
15 PHD1 0 1] 0 0 1] 0 0 1] 0 0 0 0 0 0 0 0 0 1] 0 V] 0
16 RAP1 0 0 0 0 1] 0 0 1] 0 0 0 0 0 0 -0.8890 0 0 0 0 0 0
17 REB1 0 Q 0 0 Q 0 0 0 -0.0102 0 0 0 0 0 0 0 0 Q 0 0 1]
18 ROX1 ] Q 0 -0.9278 0 0 0 Q 0 0 0 0 0 ] 0 0 0 0 0.5744 -0.4315 -0.5071
19 RPH1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1.4999 0 0 0 0 0 0
20 SKNT7 0 0 0 0 0 0 0 ] 0 0 0 0 0 0 0 0 0 0 0 0 0
21 YAP1 0 -1.3615 0 0 Q 0 0 0 0 0 0 0 0 0 0 0 0 0 -0.4082 0 0
22 YAPE 0 1] 0 -0.5312 -0.1293 0 0 1] 0 0 0 0 08215 0 0 0 -0.7603 1] 0 0.0146 -0.3027 .
4 v .. network optimized weights ) Ps "
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Figure 3(on next page)

GRNsight architecture and component interactions.
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Figure 4 (on next page)

Annotated screenshot of the GRNsight user interface.
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Table 1(on next page)

GRNsight test suite code coverage summary.

Denominators represent the number of aspects of each type detected by Istanbul in the
GRNsight codebase; numerators represent the subset of these which were executed by unit

test code.
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Aspect of the Code Test Coverage (percent)
Statements 272/371 (73.3%)
Branches 158/185 (85.4%)
Functions 49/72 (68.1%)

Lines 272/371 (73.3%)
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Figure 5(on next page)

Side-by-side comparison of the same adjacency matrices laid out by GRNsight and by
hand.

A) GRNsight automatic layout of the demonstration file, Demo #3: Unweighted GRN (21
genes, 31 edges); B) graph from (A) manually manipulated from within GRNsight; C) the
same adjacency matrix from (A) and (B) laid out entirely by hand in Adobe Illustrator,
corresponding to Figure 1 of Dahlquist et al., (2015); D) GRNsight automatic layout of the
demonstration file, Demo #4: Weighted GRN (21 genes, 31 edges, Schade et al. 2004 data);
E) graph from (D) manually manipulated from within GRNsight; F) the same adjacency matrix
from (D) and (E) laid out entirely by hand in Adobe Illustrator, corresponding to Figure 8 of

Dahlquist et al., (2015).
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