

Rapid engineering of versatile molecular logic gates using heterologous genetic transcriptional modules

Baojun Wang and Martin Buck
Chemical Communications (2014 July) **50**: 1164211644

Presented by Heejo Choi and Tushar Kamath for 20.385
February 18th, 2015

Logic gates

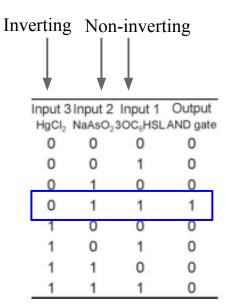
Single-input buffer Gate:

- amplifier for input signal
- Does not change the logicality of gate

Input NaAsO ₂	Output Buffer gate
0	0
1	1

Inverting Non-inverting

Input 2 Input 1 Output HgCl₂ NaAsO₂ AND gate

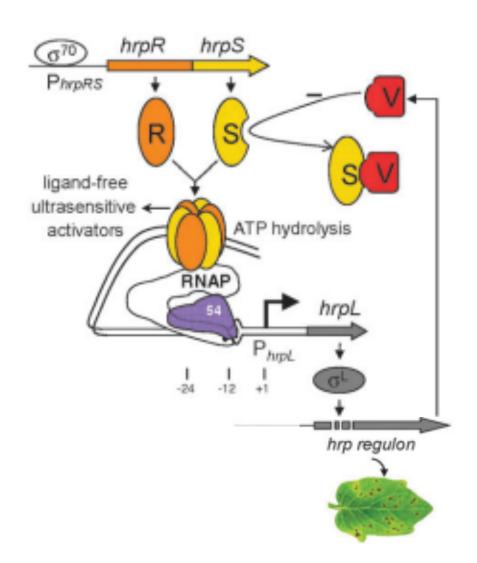

	0	0	0
	0	1	1
•	1	0	0
	1	1	0

Double-input AND gate:

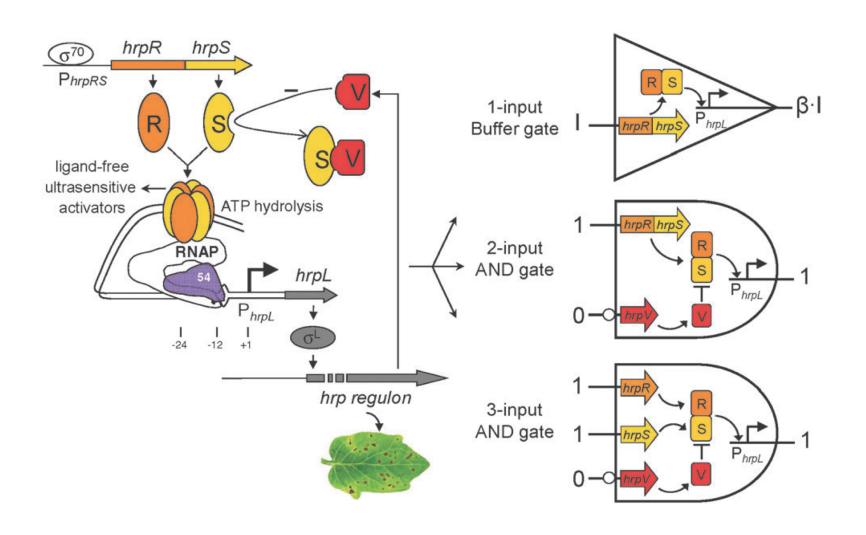
- Requires two inputs
 - First input needs to ON, second one needs to be OFF

Triple-input AND gate:

- Three inputs
 - First **and** second need to be ON, third needs to be OFF


Hrp regulatory system - type III secretion and multiple input

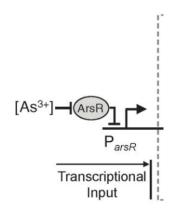
Type III secretion

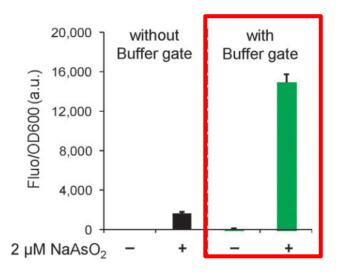

 Underlying basis for pathogenicity of Pseudomonas syringae

Multiple input

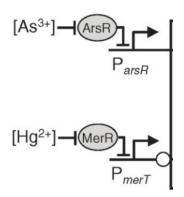
- hrpR/hrpS: both required to form highorder co-complex
- Co-complex activates by opening sigma-dependent hrpL promoter → activates hrp regulon
- hrpV: negative regulation directly interacts with hrpS

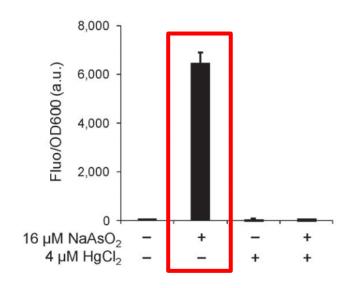
Constructing a set of modular genetic logic gates with versatile digital logic functions


What are the advantages?

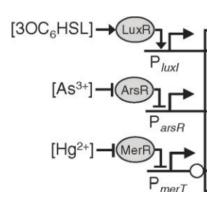

- Modularity (reusability)
 - inputs can be connected to different environment-responsive promoters
 - output may be wired to drive various useful genes
- Genetic components used are heterologous to E. coli
 - less likely to interfere with the host endogenous genetic programs
 - enable these logic devices to behave more robustly

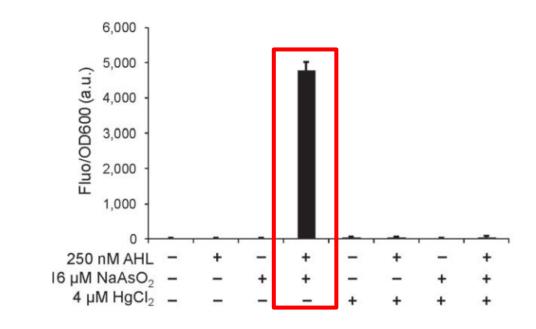
Design and characterization of the hrp system as a single-input buffer gate

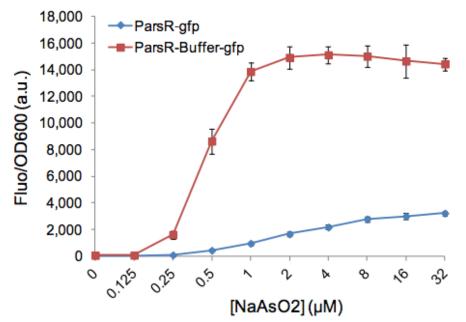

- Input connected to an arsenicresponsive promoter
- hrpR/hrpS act synergistically to produce hrpL promoter
- hrpL promoter activates gfp protein, creating fluorescent output
- Output is significantly amplified with buffer gate



The *hrp* regulatory system, in response to mercury and arsenic, functions as a logic AND gate with one inverting input

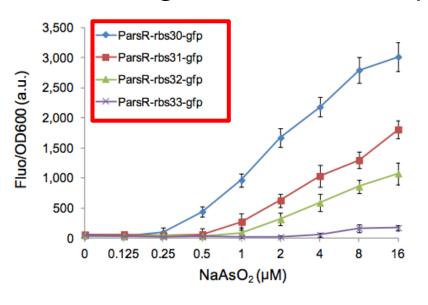

- One inverted input and one non-inverted input
- HrpR/HrpS expressed with a non-inverted input and HrpV with an inverted input
- weak RBS coupled with HrpR/HrpS and strong RBS with HrpV
- Arsenic present/mercury absent produces strongest output

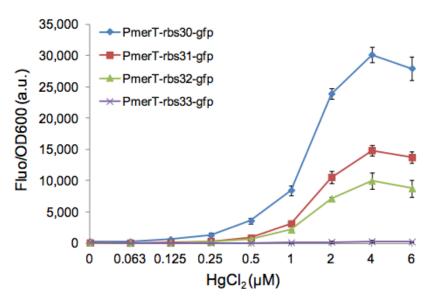


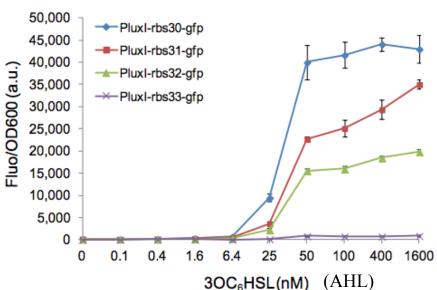

The hrp system functions as a triple-input AND logic gate with a single non-inverting input

- HrpR and hrpS control two non-inverted inputs independently
- HrpV acts as a third inverting input with a mercury promoter
- HrpL activated to produce GFP output

Quantifying the effects of a buffer logic gate on GFP output




Identifiera	Туре	DNA sequence (5'- 3')	Reported strength ¹
rbs30	RBSb	TCTAGAG <u>ATTAAAGAGGAGAAA</u> TACTAG ATG	Very strong
rbs31	RBSb	TCTAGAG <u>TCACACAGGAAACC</u> TACTAG ATG	Middle strong
rbs32	RBSb	$\mathtt{TCTAGAG}$ $\mathtt{TCACACAGGAAAG}$ \mathtt{TACTAG}	Weak
rbs33	RBSb	TCTAGAG <u>TCACACAGGAC</u> TACTAG ATG	Very weak
rbs34	RBSb	TCTAGAG <u>AAAGAGGAGAAA</u> TACTAG ATG	Very strong
J115	Promoter	TTTATAGCTAGCTCAGCCCTTGGTACAATGCTAGC	- (constitutive)
J101	Promoter	TTTACAGCTAGCTCAGTCCTAGGTATTATGCTAGC	- (constitutive)


^aThe regulatory sequences are from the Registry of Standard Biological Parts (http://partsregistry.org).

bSequence of RBS (ribosome binding site) is underlined and start codon is in bold.

Quantifying fluorescent effects by ribosomal binding site changes with various promoters

Rapid engineering of versatile molecular logic gates using heterologous genetic transcriptional modules

Key assumption

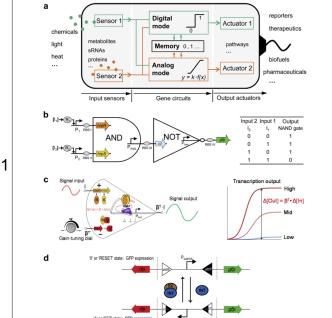
genetic heterology protects robustness

As a reviewer

- Explain existing hrp regulation system
 - Clarify how hrpR and hrpS co-complex causes a synergistic amplification
- Justify input substrate concentration (ie. At which substrate concentrations does the system lose robustness?)
- Assays to show robustness (What level of Fluo/OD600 is considered "1"?)

Significance

- building blocks in kit for gene circuit engineering
- modular (reusable) ie. easy to incorporate into other cellular circuits by changing inputs and outputs
- versatile (adaptable) ie. easy to make various logic gates from the same existing regulatory system
- heterologous to E. coli → less likely to interfere with with host endogenous genetic programs


Genetic logic device incorporated into kit for gene circuit engineering

Designer cell signal processing circuits for biotechnology

Robert W. Bradley^{1,2} and Baojun Wang²

January 2015

²Centre for Synthetic and Systems Biology, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3JR, UK

Follow-up

- Expanding range of available orthogonal genetic components
- Insufficient orthogonal elements in the current toolkit to design large synthetic biological systems
- Robustness & safety
- Demonstrate repeated efficacy to improve and maintain public perception in synthetic biology

Figure 1

¹ Department of Life Sciences, Faculty of Natural Sciences, Imperial College London, London SW7 2AZ, UK