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1 Abstract

Molecular profiling technologies monitor thousands of transcripts, proteins, metabo-
lites or other species concurrently in biological samples of interest. Given two-
class, high-dimensional profiling data, nominal LIKNON [4] is a specific imple-
mentation of a methodology for performing simultaneous relevant feature iden-
tification and classification. It exploits the well-known property that minimising
an /; norm (via linear programming) yields a sparse hyperplane [15,26,2, 8, 17].
This work (i) examines computational, software and practical issues required to
realise nominal LIKNON, (ii) summarises results from its application to five real
world data sets, (iii) outlines heuristic solutions to problems posed by domain
experts when interpreting the results and (iv) defines some future directions of
the research.

2 Introduction

Biologists and clinicians are adopting high-throughput genomics, proteomics and
related technologies to assist in interrogating normal and perturbed systems such
as unaffected and tumour tissue specimens. Such investigations can generate data
having the form D = {(x,,yn), 7 € (1,..., N)} where x,, € R¥ and, for two-class
data, y, € {+1,—1}. Each element of a data point x, is the absolute or relative
abundance of a molecular species monitored. In transcript profiling, a data point
represents transcript (gene) levels measured in a sample using ¢cDNA, oligonu-
cleotide or similar microarray technology. A data point from protein profiling
can represent Mass/Charge (M/Z) values for low molecular weight molecules
(proteins) measured in a sample using mass spectrocopy.

In cancer biology, profiling studies of different types of (tissue) specimens
are motivated largely by a desire to create clinical decision support systems
for accurate tumour classification and to identify robust and reliable targets,
“biomarkers”, for imaging, diagnosis, prognosis and therapeutic intervention [14,
3,13,27,18,23,9,25,28,19,21,24]. Meeting these biological challenges includes
addressing the general statistical problems of classification and prediction, and
relevant feature identification.



Support Vector Machines (SVMs) [30, 8] have been employed successfully for
cancer classification based on transcript profiles [5,22, 25, 28]. Although mecha-
nisms for reducing the number of features to more manageable numbers include
discarding those below a user-defined threshold, relevant feature identification is
usually addressed via a filter-wrapper strategy [12,22,32]. The filter generates
candidate feature subsets whilst the wrapper runs an induction algorithm to
determine the discriminative ability of a subset. Although SVMs and the newly
formulated Minimax Probability Machine (MPM) [20] are good wrappers [4],
the choice of filtering statistic remains an open question.

Nominal LIKNON is a specific implementation of a strategy for performing
simultaneous relevant feature identification and classification [4]. It exploits the
well-known property that minimising an /; norm (via linear programming) yields
a sparse hyperplane [15,26,2,8,17]. The hyperplane constitutes the classifier
whilst its sparsity, a weight vector with few non-zero elements, defines a small
number of relevant features. Nominal LIKNON is computationally less demand-
ing than the prevailing filter-(SVM/MPM) wrapper strategy which treats the
problems of feature selection and classification as two independent tasks [4, 16].
Biologically, nominal LIKNON performs well when applied to real world data
generated not only by the ubiquitous transcript profiling technology, but also by
the emergent protein profiling technology.

3 Simultaneous relevant feature identification and
classification

Consider a data set D = {(x,,yn),n € (1,..., N)}. Each of the N data points
(profiling experiments) is a P-dimensional vector of features (gene or protein
abundances) x, € R (usually N ~ 10! — 10%; P ~ 10® — 10*). A data point
n is assigned to one of two classes y, € {+1,—1} such a normal or tumour
tissue sample. Given such two-class high-dimensional data, the analytical goal
is to estimate a sparse classifier, a model which distinguishes the two classes
of data points (classification) and specifies a small subset of discriminatory fea-
tures (relevant feature identification). Assume that the data D can be separated
by a linear hyperplane in the P-dimensional input feature space. The learning
task can be formulated as an attempt to estimate a hyperplane, parameterised
in terms of a weight vector w and bias b, via a solution to the following N
inequalities [30]:

Ynin = yn(WTXn - b) Z 0
Vn={1,... N} . (1)

The hyperplane satisfying w”x — b = 0 is termed a classifier. A new data point
x (abundances of P features in a new sample) is classified by computing z =
wTx —b.If z > 0, the data point is assigned to one class otherwise it belongs to
the other class.

Enumerating relevant features at the same time as discovering a classifier

can be addressed by finding a sparse hyperplane, a weight vector w in which



most components are equal to zero. The rationale is that zero elements do not
contribute to determining the value of z:

P
z = g wpxp — b .
p=1

If w, = 0, feature p is “irrelevant” with regards to deciding the class. Since
only non-zero elements wy, # 0 influence the value of z, they can be regarded as
“relevant” features.

The task of defining a small number of relevant features can be equated
with that of finding a small set of non-zero elements. This can be formulated as
an optimisation problem; namely that of minimising the /g norm ||w||g, where
[[wl||o = number of{p : w, # 0}, the number of non-zero elements of w. Thus we
obtain:
min [[w]]o
w,b

)

subject to y,(wlx, —b) >0
Vn={1,...,N} . (2)

Unfortunately, problem (2) is NP-hard [10]. A tractable, convex approxima-
tion to this problem can be obtained by replacing the Iy norm with the /; norm
[|w]||1, where [|w|1 = 25:1 |wp|, the sum of the absolute magnitudes of the
elements of a vector [10]:

. P
min [wlly =37, |wpl
w,b

)

subject to y,(wlx, —b) >0
Vn={1,...,N} . (3)

A solution to (3) yields the desired sparse weight vector w.

Optimisation problem (3) can be solved via linear programming [11]. The
ensuing formulation requires the imposition of constraints on the allowed ranges
of variables. The introduction of new variables u,,v, € R¥ such that |w,| =
up + vp and w, = u, — v, ensures non-negativity. The range of w, = u, — v, is
unconstrained (positive or negative) whilst u, and v, remain non-negative. u,
and v, are designated the “positive” and “negative” parts respectively. Similarly,
the bias b is split into positive and negative components b = by — b_. Given a
solution to problem (3), either u, or v, will be non-zero for feature p [11]:

min 25:1 (up +vp)

u,v,by b_
subject to yn((u—v)Tx, — (by —b_)) > 1
up > 0;vp > 0564 > 0;6- >0
Vn={1l,...,.N};)¥p={1,...,P} . 4)

A detailed description of the origins of the > 1 constraint can be found elsewhere

[30].



If the data D are not linearly separable, misclassifications (errors in the class
labels ) can be accounted for by the introduction of slack variables &,. Problem
(4) can be recast yielding the final optimisation problem,

min 25:1(“10 +vp) +C Eivzl €n

u,v,by b_
subject to yn (0 —v)Tx, — (by —b_)) > 1—&,
up > 0305 > 0504 2 0;6- > 056, 20
Vn={1,...,.N};)¥p={1,...,P} . (5)

C' is an adjustable parameter weighing the contribution of misclassified data
points. Larger values lead to fewer misclassifications being ignored: C' = 0 cor-
responds to no outliers being ignored whereas C' — oo leads to the hard margin
limit,.

4 Computational, software and practical issues

Learning the sparse classifier defined by optimisation problem (5) involves min-
imising a linear function subject to linear constraints. Efficient algorithms for
solving such linear programming problems involving ~10,000 variables (N) and
~10,000 constraints (P) are well-known. Standalone open source codes include
1p_solve* and PCx®.

Nominal LIKNON is an implementation of the sparse classifier (5). It incor-
porates routines written in Matlab® and a system utilising per1? and 1p_solve.
The code is available from the authors upon request. The input consists of a file
containing an N x (P + 1) data matrix in which each row represents a single
profiling experiment. The first P columns are the feature values, abundances of
molecular species, whilst column P + 1 is the class label y, € {+1,—1}. The
output comprises the non-zero values of the weight vector w (relevant features),
the bias b and the number of non-zero slack variables &, .

The adjustable parameter C' in problem (5) can be set using cross validation
techniques. The results described here were obtained by choosing C' = 0.5 or
=1

5 Application of nominal Liknon to real world data

Nominal LIKNON was applied to five data sets in the size range (N = 19, P =
1,987) to (N = 200, P = 15,154). A data set D yielded a sparse classifier, w and
b, and a specification of the [ relevant features (P >> I). Since the profiling studies
produced only a small number of data points (N < P), the generalisation error

* http://www.netlib.org/ampl/solvers/lpsolve/
® http://www-fp.mcs.anl.gov/otc/Tools/PCx/

5 http://www.mathworks.com

" http://www.perl.org/



of a nominal LIKNON classifier was determined by computing the leave-one-out
error for /-dimensional data points. A classifier trained using N — 1 data points
was used to predict the class of the withheld data point; the procedure was
repeated N times. The results are shown in Table 1.

Nominal LIKNON performs well in terms of simultaneous relevant feature
identification and classification. In all five transcript and protein profiling data
sets a hyperplane was found, the weight vector was sparse (< 100 or < 2% non-
zero components) and the relevant features were of interest to domain experts
(they generated novel biological hypotheses amenable to subsequent experimen-
tal or clinical validation). For the protein profiles, better results were obtained
using normalised as opposed to raw values: when employed to predict the class
of 16 independent non-cancer samples, the 51 relevant features had a test error
of 0 out of 16.

On a powerful desktop computer, a > 1 GHz Intel-like machine, the time
required to create a sparse classifier varied from 2 seconds to 20 minutes. For
the larger problems, the main memory RAM requirement exceeded 500 MBytes.

6 Heuristic solutions to problems posed by domain
experts

Domain experts wish to postprocess nominal LIKNON results to assist in the
design of subsequent experiments aimed at validating, verifying and extending
any biological predictions. In lieu of a theoretically sound statistical framework,
heuristics have been developed to prioritise, reduce or increase the number of
relevant features.

In order to prioritise features, assume that all P features are on the same
scale. The [ relevant features can be ranked according to the magnitude and/or
sign of the non-zero elements of the weight vector w (w, # 0). To reduce the
number of relevant features to a “smaller, most interesting” set, a histogram of
wp # 0 values can be used to determine a threshold for pruning the set. In order
to increase the number of features to a “larger, more interesting” set, nominal
LIKNON can be run in an iterative manner. The ! relevant features identified in
one pass through the data are removed from the data points to be used as input
for the next pass. Each successive round generates a new set of relevant features.
The procedure is terminated either by the domain expert or by monitoring the
leave-one-out error of the classifier associated with each set of relevant features.

Preliminary results from analysis of the gastrointestinal stromal tumour /spindle
cell tumour transcript profiling data set indicate that these extensions are likely
to be of utility to domain experts. The leave-one-out error of the relevant features
identified by five iterations of nominal LIKNON was at most one. The details are:
iteration 0 (number of relevant features = 6, leave-one-out error = 0), iteration
1 (5, 0), iteration 2 (5, 1), iteration 3 (9, 0), iteration 4 (13, 1), iteration 5 (11,
1).

Tterative LIKNON may prove useful during explorations of the (qualitative) as-
sociation between relevant features and their behaviour in the N data points. The



Table 1. Summary of published and unpublished investigations using nominal LIKNON

[4,16].

Transcript profiles

Two-class data

Relevant features
Leave-one-out error

Sporadic breast carcinoma tissue samples [29]
inkjet microarrays; relative transcript levels
http://www.rii.com/publications/vantveer.htm
46 patients with distant metastases < 5 years

51 patients with no distant metastases > 5 years
72 out of P=5,192

1 out of N=97

Transcript profiles

Two-class data

Relevant features
Leave-one-out error

Tumour tissue samples [1]

custom cDNA microarrays; relative transcript levels
http://www.nhgri.nih.gov/DIR/Microarray/selected_publications.html
13 KIT-mutation positive gastrointestinal stromal tumours

6 spindle cell tumours from locations outside the gastrointestinal tract

6 out of P=1,987

0 out of N=19

Transcript profiles

Two-class data

Relevant features
Leave-one-out error

Small round blue cell tumour samples (EWS, RMS, NHL, NB) [19]
custom cDNA microarrays; relative transcript levels
http://wew.nhgri.nih.gov/DIR/Microarray/Supplement

46 EWS/RMS tumour biopsies

38 EWS/RMS/NHL/NB cell lines

23 out of P=2,308

0 out of N=84

Transcript profiles

Two-class data

Relevant features
Leave-one-out error

Prostate tissue samples [31]

Affymetrix arrays; absolute transcript levels
http://carrier.gnf.org/welsh/prostate
9 normal

25 malignant

7 out of P=12,626

0 out of N=34

Protein profiles

Two-class data

Relevant features
Leave-one-out error

Serum samples [24]

SELDI-TOF mass spectrometry; M/Z values (spectral amplitudes)
http://clinicalproteomics.steem.comn

100 unaffected

100 ovarian cancer

51 out of P=15,154

3 out of N=200




gastrointestinal stromal tumour/spindle cell tumour transcript profiling data set
has been the subject of probabilistic clustering [16]. A finite Gaussian mixture
model as implemented by the programme AutoClass [6] was estimated from
P=1,987, N=19-dimensional unlabelled data points. The trained model was
used to assign each feature (gene) to one of the resultant clusters. Five itera-
tions of nominal LIKNON identified the majority of genes assigned to a small
number of discriminative clusters. Furthermore, these genes constituted most of
the important distinguishing genes defined by the original authors [1].

7 Discussion

Nominal LIKNON implements a mathematical technique for finding a sparse
hyperplane. When applied to two-class high-dimensional real-world molecular
profiling data, it identifies a small number of relevant features and creates a
classifier that generalises well. As discussed elsewehere [4,7], many subsets of
relevant features are likely to exist. Although nominal LIKNON specifies but one
set of discriminatory features, this “low-hanging fruit” approach does suggest
genes of interest to experimentalists. Iterating the procedure provides a rapid
mechanism for highlighting additional sets of relevant features that yield good
classifiers. Since nominal LIKNON is a single-pass method, one disadvantage is
that the learned parameters cannot be adjusted (improved) as would be possible
with a more typical train/test methodology.

8 TFuture directions

Computational biology and chemistry are generating high-dimensional data so
sparse solutions for classification and regression problems are of widespread im-
portance. A general purpose toolbox containing specific implementations of par-
ticular statistical techniques would be of considerable practical utility. Future
plans include developing a suite of software modules to aid in performing tasks
such as the following. A. Create high-dimensional input data. (i) Direct genera-
tion by high-throughput experimental technologies. (ii) Systematic formulation
and extraction of large numbers of features from data that may be in the form of
strings, images, and so on (a priori, features “relevant” for one problem may be
“irrelevant” for another). B. Enunciate sparse solutions for classification and re-
gression problems in high-dimensions. C. Construct and assess models. (i) Learn
a variety of models by a grid search through the space of adjustable parameters.
(ii) Evaluate the generalisation error of each model. D. Combine best models to
create a final decision function. E. Propose hypotheses for domain expert.
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