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Abstract
Soft tissue infections caused by the opportunistic pathogen Pseudomonas aeruginosa are 
dangerous, difficult to treat, and have a significant economic impact on health care. In burn 
wound infections, P. aeruginosa grows and multiplies rapidly and often transitions into the 
bloodstream to cause systemic infections that can result in death. By contrast, in chronic 
wound infections, P. aeruginosa is highly persistent, resisting clearance by both physical and 
antimicrobial treatments, and a chronically-infected wound can persist for weeks or months. 
Thus, these two types of wounds represent highly different lifestyles for P. aeruginosa, yet 
many basic questions of bacterial physiology and metabolism during these infections remain. 
Here we address this gap by using high-throughput sequencing-based techniques to examine 
global gene expression and gene knockout fitness in mouse models of both burn and chronic 
wound infections. Specifically, we use RNA-Seq to characterize differential expression of both 
coding and noncoding RNAs in vitro and in model burn and chronic wound infections. We also 
subject a pool of ~100,000 PAO1 transposon mutants to growth in these same conditions, and 
profile mutant abundance by Tn-Seq. The results of these experiments reveal the crucial roles 
played by several primary metabolic pathways, motility, and many other phenotypes during 
wound infections. Finally, we compare the results obtained from applying these techniques to 
both chronic and acute wound infections to determine similarities and differences between 
these two distinct types of infections. We argue that, by simultaneously analyzing genome-
wide gene expression and knockout fitness data in a variety of disease-related conditions, 
 robust and powerful conclusions can be drawn about the lifestyles exhibited by pathogens in
 different infections
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Table 1. Results of high-throughput sequencing and processing and gross analysis of 
the sequences obtained. Shown are raw counts obtained by both Tn-Seq and RNA-Seq per-
formed on four conditions. (LB, Luria-Bertani broth culture at 37°C with aeration; MOPS-Succ, 
MOPS minimal media + 20 mM Succinate broth culture at 37°C with aeration; Burn wound, 
murine burn infection harvested at 24h post-infection; Chronic wound, murine chronic wound 
infection harvested at 4d post-infection; *, not considered in this analysis pending additional 
sequencing; N.D., not done, in progress; m, millions; k, thousands).
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Figure 2. The genomic response of P. aeruginosa during burn wound infection. (A) Si-
multaneous plot of gene expression (RNA-Seq) and gene knockout fitness (Tn-Seq) data for 
every gene in the genome upon comparison of cells grown planktonically in LB broth to cells 
obtained from a monoculture murine burn wound infection (yellow & blue, genes significantly 
upregulated (yellow) or downregulated (blue) in burn wounds (fold change > 5, P < 0.01); light 
green, genes that significantly contribute to fitness in burn wounds (fold change > 5, P < 0.05); 
dark green, genes that both significantly contribute to fitness and are significantly up- or 
down-regulated in burn wounds; Other colors, see panels below). (B-F) Diagrams of specific 
systems found to be important in burn wound infection. Genes are colored according to their 
color in panel A. Systems identified include (B) the flagellum, (C) chemotaxis (MCP, methyl-
accepting chemotaxis protein), (D) siderophores, (E) high-affinity terminal oxidases and deni-
itrification enzymes, (F) the glyoxylate shunt and fatty acid β-oxidation. (G) Shown is a detail
 of Tn-Seq results obtained from comparing growth in MOPS minimal media with succinate as
 the  carbon  source  and  growth  in  the  burn  wound at the  fatty  acid  β-oxidation  genes  faoAB.
 These results suggest that fatty acids are a major carbon source in burns.
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Chemotaxis is a virulence factor in burn wounds

Figure 3. Core chemotaxis genes are required for virulence in burn wounds. (A) Pheno-
types of wild-type (PA14) and chemotaxis gene transposon mutants (ΔcheR1 and ΔcheB) 
grown on soft minimal agar with succinate as a sole carbon source (inoculated on right side of 
plates). A disc soaked in 20% casamino acids was placed on the left side of the plates to serve 
as a source of chemoattractant. (B) Survival assay of burned mice infected with the strains 
used above.
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Figure 4. Biosynthetic pathways are significantly overrepresented among genes that 
contribute to fitness in minimal media but not in burn wounds. Shown is an enrichment 
analysis of genes that were identified as conditional fitness determinants in minimal media 
and not in burn wounds (Tn-Seq fold change > 2). The y axis contains KEGG pathways that 
were significantly enriched in this set (P < 0.05, Fisher’s exact test) and the x axis displays the 
fraction of total genes in the genome belonging to each pathway that belong in this set. These 
data suggest that a number of biosynthetic intermediates may be utilized in vivo.
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Figure 1. High-throughput genomic methods used in this study. (A) Tn-Seq methodology. 
Genomic DNA is sheared to approximately 400 bp and subjected to multiple cycles of primer 
extension using a biotinylated primer specific to the transposon end with a NotI site on the 5’ 
end (the primer is designed so as to leave an 11 bp end for additional sequence quality con-
trol). Single-stranded primer extension products are bound to streptavidin-coupled paramag-
netic beads, and a second strand is synthesized using random primers and Klenow DNA Poly-
merase fragment. Double-stranded DNA is eluted from the beads with NotI digestion, and 
DNA is subjected to standard Illumina genomic DNA library prep and high-throughput se-
quencing. (B) RNA-Seq methodology. Total RNA is depleted of both mammalian and bacterial 
rRNA with commercially available capture kits. Remaining RNA is fragmented and subjected 
to the NEBNext Small RNA Library Prep Set for Illumina, which involves the ligation of oligos 
to the 5’ and 3’ ends of the RNA fragments, synthesis of cDNA and PCR amplification of final 
sequencing libraries. (C & D) Custom analysis pipelines were developed for (C) Tn-Seq and 
(D) RNA-Seq data (Jorth et al. (2013), J Bacteriol) and used to determine differential gene ex-
pression and knockout fitness.
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A second anaplerotic pathway is active
specfically in chronic wounds

Figure 5. PEP carboxylase expression is significantly upregulated in chronic wounds 
as compared to burn wounds. (A) Shown is a plot of gene expression vs. fold change in 
gene expression (chronic wound/burn wound). Genes of the glyoxylate shunt found to be im-
portant in burn wounds (see Figure 2F) are highlighted in red, and ppc, which encodes PEP 
carboxylase, is highlighted in green. (B) Schematic showing the role of PEP carboxylase in re-
plenishing the TCA cycle intermediate oxaloacetate. These data, taken with the identification 
of glyoxylate shunt genes as being important in burn wounds, suggest that anaplerosis is im-
portant in soft tissue infections by P. aeruginosa.
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