4. Kopplung

Konzepte:

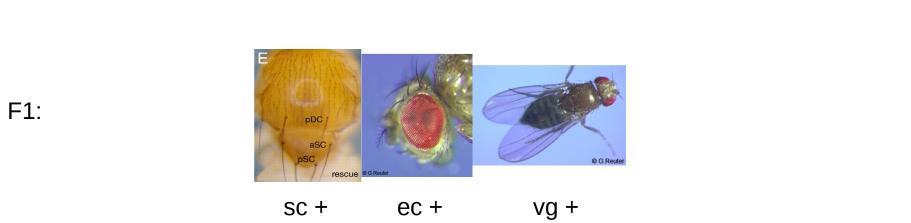
Gekoppelte Vererbung

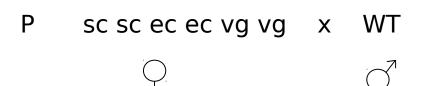
Genkarten

Doppel-Crossover

Interferenz

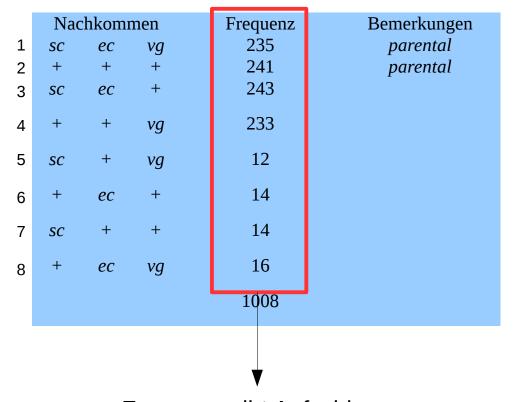
Statistik

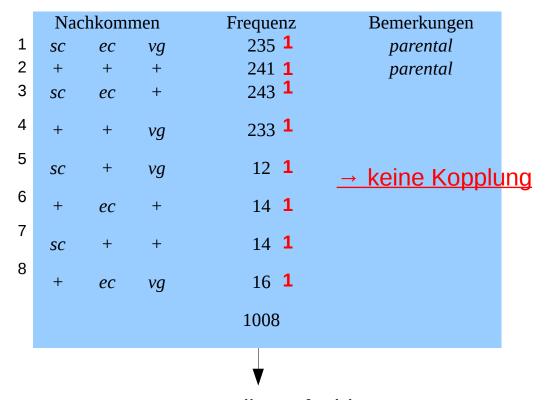

1. Sie analysieren die Kopplungsverhältnisse von 3 Mutationen in *Drosophila melanogaster* (scute [sc; keine Thoraxborsten], echinus [ec; rauhe Augen] und vestigial [vg] Stummelflügel). Zu diesem Zwecke wird ein Fliege, die alle drei Mutationen homozygot trägt, mit einem Wildtyp gekreuzt. Anschließend werden die F1 Nachkommen mit einem Tester gekreuzt. Dabei entstehen folgende Nachkommen:


1	Nachkommen		Frequenz	Bemerkungen
SC	ес	vg	235	parental
+	+	+	241	parental
SC	ес	+	243	
+	+	vg	233	
SC	+	vg	12	
+	ес	+	14	
SC	+	+	14	
+	ес	vg	16	
			1008	

- a) Wie häufig sollte jeder Genotyp auftauchen, wenn keine Kopplung zwischen den Genen vorliegt?
- b) Welche Gene sind gekoppelt?
- c) Berechnen Sie den Abstand zwischen den Genen.

1. Sie analysieren die Kopplungsverhältnisse von 3 Mutationen in *Drosophila melanogaster* (scute [sc; keine Thoraxborsten], echinus [ec; rauhe Augen] und vestigial [vg] Stummelflügel). Zu diesem Zwecke wird ein Fliege, die alle drei Mutationen homozygot trägt, mit einem Wildtyp gekreuzt. Anschließend werden die F1 Nachkommen mit einem Tester gekreuzt. Dabei entstehen folgende Nachkommen:




	Nachkommen			Frequenz	Bemerkungen	
1	SC	ес	vg	235	parental	
2	+	+	+	241	parental	
3	SC	ес	+	243		
4	+	+	vg	233		
5	SC	+	vg	12		
6	+	ес	+	14		
7	SC	+	+	14		
8	+	ес	vg	16		
-			<u> </u>	1008		
= Phänotypen!						

- a) Wie häufig sollte jeder Genotyp auftauchen, wenn keine Kopplung zwischen den Genen vorliegt?
- b) Welche Gene sind gekoppelt?
- c) Berechnen Sie den Abstand zwischen den Genen.

Frequenz gibt Aufschluss über potentielle Kopplung der Gene

- <u>a) Wie häufig sollte jeder Genotyp auftauchen, wenn keine Kopplung zwischen den Genen vorliegt?</u>
- b) Welche Gene sind gekoppelt?
- c) Berechnen Sie den Abstand zwischen den Genen.

Frequenz gibt Aufschluss über potentielle Kopplung der Gene

- a) Wie häufig sollte jeder Genotyp auftauchen, wenn keine Kopplung zwischen den Genen vorliegt?
- b) Welche Gene sind gekoppelt?
- c) Berechnen Sie den Abstand zwischen den Genen.

	Nachkommen			Frequenz	Bemerkungen
1	SC	ес	vg	235	parental
2	+	+	+	241	parental
3	SC	ес	+	243	
4	+	+	vg	233	
5	SC	+	vg	12	
6	+	ес	+	14	
7	SC	+	+	14	
8	+	ес	vg	16	
				1008	

Rekombination zwischen sc und vg:

- a) Wie häufig sollte jeder Genotyp auftauchen, wenn keine Kopplung zwischen den Genen vorliegt?
- b) Welche Gene sind gekoppelt?
- c) Berechnen Sie den Abstand zwischen den Genen.

	Nachkommen			Frequenz	Bemerkungen
1	SC	ес	vg	235	parental
2	+	+	+	241	parental
3	SC	ес	+	243 *	
4	+	+	vg	233 *	
5	SC	+	vg	12	
6	+	ес	+	14	
7	SC	+	+	14 *	
8	+	ес	vg	16 *	
				1008	

Rekombination zwischen sc und vg:

- a) Wie häufig sollte jeder Genotyp auftauchen, wenn keine Kopplung zwischen den Genen vorliegt?
- b) Welche Gene sind gekoppelt?
- c) Berechnen Sie den Abstand zwischen den Genen.

	Nachkommen			Frequenz	Bemerkungen
1	SC	ес	vg	235	parental
2	+	+	+	241	parental
3	SC	ec	+	243 *	
4	+	+	vg	233 *	
5	SC	+	vg	12	
6	+	ес	+	14	
7	SC	+	+	14 *	
8	+	ес	vg	16 *	
				1008	

Rekombination zwischen sc und vg: $506 \approx 50\%$

- a) Wie häufig sollte jeder Genotyp auftauchen, wenn keine Kopplung zwischen den Genen vorliegt?
- b) Welche Gene sind gekoppelt?
- c) Berechnen Sie den Abstand zwischen den Genen.

	Nachkommen			Frequenz	Bemerkungen
1	SC	ес	vg	235	parental
2	+	+	+	241	parental
3	SC	ес	+	243 *	
4	+	+	vg	233 *	
5	SC	+	vg	12	
6	+	ес	+	14	
7	SC	+	+	14 *	
8	+	ес	vg	16 *	
				1008	

Rekombination zwischen sc und vg: 506 ≈ 50% → keine Kopplung

- a) Wie häufig sollte jeder Genotyp auftauchen, wenn keine Kopplung zwischen den Genen vorliegt?
- b) Welche Gene sind gekoppelt?
- c) Berechnen Sie den Abstand zwischen den Genen.

Nachkommen			Frequenz	Bemerkungen
SC	ес	vg	235	parental
+	+	+		parental
SC	ес	+	243 *	
+	+	vg	233 *	
SC	+	vg	12	
+	ес	+	14	
SC	+	+	14 *	
+	ес	vg	16 *	
			1008	
	sc + sc + sc + sc	sc ec + + sc ec + + + ec sc + sc +	sc ec vg + + + sc ec + + + vg sc + vg + ec + sc + +	sc ec vg 235 + + + 241 sc ec + 243 * + + vg 233 * sc + vg 12 + ec + 14 sc + + 14 * + ec vg 16 *

Rekombination zwischen sc und vg: $506 \approx 50\% \rightarrow \text{keine Kopplung}$ Rekombination zwischen sc und ec:

- a) Wie häufig sollte jeder Genotyp auftauchen, wenn keine Kopplung zwischen den Genen vorliegt?
- b) Welche Gene sind gekoppelt?
- c) Berechnen Sie den Abstand zwischen den Genen.

	Nachkommen			Frequenz	Bemerkungen
1	SC	ес	vg	235	parental
2	+	+	+	241	parental
3	SC	ес	+	243 *	
4	+	+	vg	233 *	
5	SC	+	vg	12 *	
6	+	ес	+	14 *	
7	SC	+	+	14 * *	
8	+	ес	vg	16 * *	
				1008	

Rekombination zwischen sc und vg: 506 ≈ 50% → keine Kopplung

Rekombination zwischen sc und ec: $56 \approx 5.5\%$

- a) Wie häufig sollte jeder Genotyp auftauchen, wenn keine Kopplung zwischen den Genen vorliegt?
- b) Welche Gene sind gekoppelt?
- c) Berechnen Sie den Abstand zwischen den Genen.

	Nachkommen			Frequenz	Bemerkungen
1	SC	ес	vg	235	parental
2	+	+	+	241	parental
3	SC	ес	+	243 *	
4	+	+	vg	233 *	
5	SC	+	vg	12 *	
6	+	ес	+	14 *	
7	SC	+	+	14 * *	
8	+	ес	vg	16 * *	
				1008	

Rekombination zwischen sc und vg: 506 ≈ 50% → keine Kopplung

Rekombination zwischen sc und ec: 56 ≈ 5.5% → Kopplung

- a) Wie häufig sollte jeder Genotyp auftauchen, wenn keine Kopplung zwischen den Genen vorliegt?
- b) Welche Gene sind gekoppelt?
- c) Berechnen Sie den Abstand zwischen den Genen.

	Nachkommen			Frequenz	Bemerkungen
1	SC	ес	vg	235	parental
2	+	+	+	241	parental
3	SC	ес	+	243 *	
4	+	+	vg	233 *	
5	SC	+	vg	12 *	
6	+	ес	+	14 *	
7	SC	+	+	14 * *	
8	+	ес	vg	16 * *	
				1008	

Rekombination zwischen sc und vg: 506 ≈ 50% → keine Kopplung

Rekombination zwischen sc und ec: 56 ≈ 5.5% → Kopplung

Rekombination zwischen ec und vg:

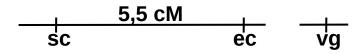
- a) Wie häufig sollte jeder Genotyp auftauchen, wenn keine Kopplung zwischen den Genen vorliegt?
- b) Welche Gene sind gekoppelt?
- c) Berechnen Sie den Abstand zwischen den Genen.

	Nachkommen			Frequenz	Bemerkungen
1	SC	ес	vg	235	parental
2	+	+	+	241	parental
3	SC	ес	+	243 * *	
4	+	+	vg	233 * *	
5	SC	+	vg	12 * *	
6	+	ес	+	14 * *	
7	SC	+	+	14 * *	
8	+	ес	vg	16 * *	
				1008	

Rekombination zwischen sc und vg: 506 ≈ 50% → keine Kopplung

Rekombination zwischen sc und ec: $56 \approx 5.5\% \rightarrow \text{Kopplung}$

Rekombination zwischen ec und vg: 502 ≈ 50% → keine Kopplung


- <u>a) Wie häufig sollte jeder Genotyp auftauchen, wenn keine Kopplung zwischen den Genen vorliegt?</u>
- b) Welche Gene sind gekoppelt?
- c) Berechnen Sie den Abstand zwischen den Genen.

	Nachkommen			Frequenz	Bemerkungen
1	SC	ес	vg	235	parental
2	+	+	+	241	parental
3	SC	ес	+	243 * *	
4	+	+	vg	233 * *	
5	SC	+	vg	12 * *	
6	+	ec	+	14 * *	
7	SC	+	+	14 * *	
8	+	ес	vg	16 * *	
				1008	

Rekombination zwischen sc und vg: 506 ≈ 50% → keine Kopplung

Rekombination zwischen sc und ec: $56 \approx 5.5\% \rightarrow \text{Kopplung}$

Rekombination zwischen ec und vg: 502 ≈ 50% → keine Kopplung

2. Sie analysieren die Kopplungsverhältnisse von 3 Genen (A, B, C; a, b, c). Zu diesem Zwecke wird folgende Kreuzung durchgeführt:

Anschliessend werden die F1 Nachkommen mit einem Tester gekreuzt. Dabei entstehen

folgende Nachkommen:

Na	chkomm	ıen	Frequenz	Bemerkungen
C	+	+	580	parental
+	b	a	592	parental
С	b	+	45	
+	+	a	40	
С	b	a	89	
+	+	+	94	
С	+	a	3	
+	b	+	5	
			1448	

- a) Welche Gene sind gekoppelt?
- b) <u>Erstellen Sie eine Genkarte.</u>
- c) <u>Berechnen Sie die Anzahl der *erwarteten* Doppelrekombinationsereignisse</u> (unter Anwendung der Produktregel).
- d) Berechnen Sie den "Koeffizienten der Koinzidenz" und die "Interferenz".

P: ++ aa bb \times cc ++ ++

F1: a+b+c+x Tester

	Na	chkomn	nen	Frequenz	Bemerkungen
1	С	+	+	580	parental
2	+	b	a	592	parental
3	С	b	+	45	
4	+	+	a	40	
5	С	b	a	89	
6	+	+	+	94	
7	С	+	a	3	
8	+	b	+	5	
				1448	

P: ++ aa bb x cc ++ ++

F1: a+b+c+x aa bb cc

	Na	chkomn	ien	Frequenz	Bemerkungen
1	С	+	+	580	parental
2	+	b	a	592	parental
3	С	b	+	45	
4	+	+	a	40	
5	С	b	a	89	
6	+	+	+	94	
7	С	+	a	3	
8	+	b	+	5	
				1448	

- a) Welche Gene sind gekoppelt?
- b) Erstellen Sie eine Genkarte.
- c) <u>Berechnen Sie die Anzahl der *erwarteten* Doppelrekombinationsereignisse</u> (unter Anwendung der Produktregel).
- d) Berechnen Sie den "Koeffizienten der Koinzidenz" und die "Interferenz".

P: ++ aa bb x cc ++ ++ F1: a+b+c+x aa bb cc Frequenz Nachkommen Bemerkungen 1 580 parental 2 b 592 parental a b 45 4 a 40 5 b 89 a 6 + 94 3 a 8

5

1448

sind Gene gekoppelt?

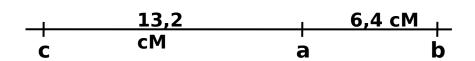
+

- a) Welche Gene sind gekoppelt?
- b) <u>Erstellen Sie eine Genkarte.</u>
- c) <u>Berechnen Sie die Anzahl der *erwarteten* Doppelrekombinationsereignisse</u> (unter Anwendung der Produktregel).
- d) Berechnen Sie den "Koeffizienten der Koinzidenz" und die "Interferenz".

P: ++ aa bb x cc ++ ++

F1: a+b+c+x aa bb cc

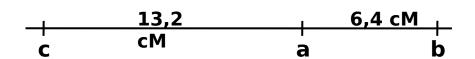
	Na	chkomn	nen	Frequenz	Bemerkungen
1	С	+	+	580	parental
2	+	b	a	592	parental
3	С	b	+	45	* *
4	+	+	a	40	* *
5	С	b	a	89	* *
6	+	+	+	94	* *
7	С	+	a	3	* *
8	+	b	+	5	* *
				1448	


Rekombination zwischen c und a: $191 \approx 13,2\%$

Rekombination zwischen a und b: $93 \approx 6.4\%$

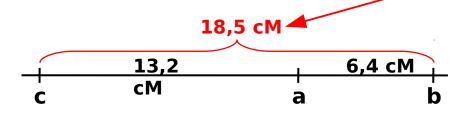
P ++ aa bb x cc ++ ++F1 a+ b+ c+ x aa bb cc

1	Na c	chkomn +	ien +	Frequenz 580	Bemerkungen parental
_	C	·	·	500	parcina
2	+	b	a	592	parental
3	С	b	+	45	* *
4	+	+	a	40	* *
5	С	b	a	89	* *
6	+	+	+	94	* *
7	С	+	a	3	* *
8	+	b	+	5	* *
				1448	


Rekombination zwischen a und b: $93 \approx 6.4\%$

P ++ aa bb x cc ++ ++F1 a+ b+ c+ x aa bb cc

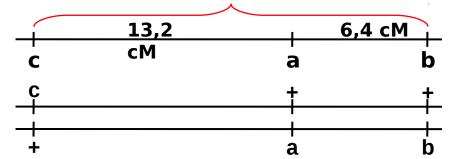
1	Na c	chkomn +	ien +	Frequenz 580	Bemerkungen parental
_	C	·	·	500	parcina
2	+	b	a	592	parental
3	С	b	+	45	* *
4	+	+	a	40	* *
5	С	b	a	89	* *
6	+	+	+	94	* *
7	С	+	a	3	* *
8	+	b	+	5	* *
				1448	


Rekombination zwischen a und b: $93 \approx 6.4\%$

P ++ aa bb x cc ++ ++F1 a+ b+ c+ x aa bb cc

	Na	chkomn	nen	Frequenz	Bemerkungen
1	С	+	+	580	parental
2	+	b	a	592	parental
3	С	b	+	45	* *
4	+	+	a	40	* *
5	С	b	a	89	* *
6	+	+	+	94	* *
7	С	+	a	3	* *
8	+	b	+	5	* *
				1448	

Rekombination zwischen a und b: $93 \approx 6.4\%$


P ++ aa bb x cc ++ ++F1 a+ b+ c+ x aa bb cc

1	Na c	chkomm +	ien +	Frequenz 580	Bemerkungen parental
2	+	b	a	592	parental
3	С	b	+	45	* *
4	+	+	a	40	* *
5	С	b	a	89	* *
6	+	+	+	94	* *
7	С	+	a	3	* *
8	+	b	+	5	* *
				1448	

Rekombination zwischen a und b: $93 \approx 6.4\%$

Rekombination zwischen c und b: $268 \approx 18,5\%$

$13,2 \text{ cM} + 6,4 \text{ cM} = 19,6 \text{ cM}!!! \leftrightarrow 18,5 \text{ cM}^4$

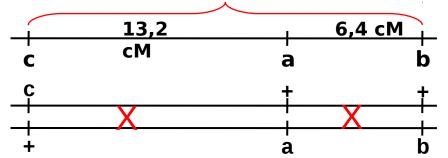

P ++ aa bb x cc ++ ++
F1 a+ b+ c+ x aa bb cc

	Na	chkomm	nen	Frequenz	Bemerkungen
1	С	+	+	580	parental
2	+	b	a	592	parental
_	С	b	+	45	
3	+	+	a	40	* *
4	С	b	a	89	* *
5	+	+	+	94	* *
6	С	+	a	3	* *
7					* *
8	+	b	+	5	* *
				1448	

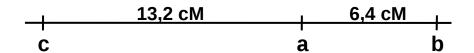
Rekombination zwischen a und b: $93 \approx 6.4\%$

Rekombination zwischen c und b: $268 \approx 18,5\%$

$13,2 \text{ cM} + 6,4 \text{ cM} = 19,6 \text{ cM}!!! \leftrightarrow 18,5 \text{ cM}^4$

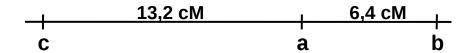

P ++ aa bb
$$\times$$
 cc ++ ++
F1 a+ b+ c+ \times aa bb cc

1		chkomm		Frequenz	Bemerkungen
1	С	+	+	580	parental
2	+	b	a	592	parental
3	С	b	+	45	* *
4	+	+	a	40	* *
5	С	b	a	89	* *
6	+	+	+	94	* *
7	С	+	a	3	* *
8	+	b	+	5	* *
				1448	


Rekombination zwischen a und b: $93 \approx 6.4\%$

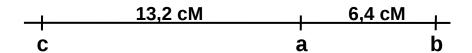
Rekombination zwischen c und b: $268 \approx 18,5\%$

$13,2 \text{ cM} + 6,4 \text{ cM} = 19,6 \text{ cM}!!! \leftrightarrow 18,5 \text{ cM}^2$



R zw. c und b inkl. Doppelrek.:

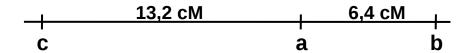
c - a Rekombinationsfrequenz = 0.132


a - b Rekombinationsfrequenz = 0,064

c - a Rekombinationsfrequenz = 0,132

a - b Rekombinationsfrequenz = 0,064

Wahrscheinlichkeit des Auftretens von Doppelrekombinanten → Produktregel:

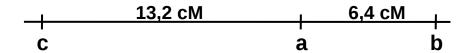


c - a Rekombinationsfrequenz = 0.132

a - b Rekombinationsfrequenz = 0,064

Wahrscheinlichkeit des Auftretens von Doppelrekombinanten → Produktregel:

 $0.132 \times 0.064 = 0.0084 \rightarrow 0.0084 \times 1448 = 12$ erwartet 8 beobachtet

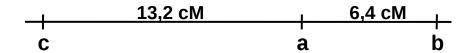

c - a Rekombinationsfrequenz = 0.132

a - b Rekombinationsfrequenz = 0,064

Wahrscheinlichkeit des Auftretens von Doppelrekombinanten → Produktregel:

$$0.132 \times 0.064 = 0.0084 \rightarrow 0.0084 \times 1448 = 12$$
 erwartet 8 beobachtet

Interferenz = ein Crossing-over beeinflusst Crossing-over Ereignisse in der Nachbarschaft


c - a Rekombinationsfrequenz = 0.132

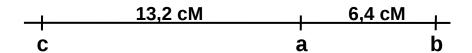
a - b Rekombinationsfrequenz = 0,064

Wahrscheinlichkeit des Auftretens von Doppelrekombinanten → Produktregel:

$$0.132 \times 0.064 = 0.0084 \rightarrow 0.0084 \times 1448 = 12$$
 erwartet 8 beobachtet

Interferenz = ein Crossing-over beeinflusst Crossing-over Ereignisse in der Nachbarschaft

c - a Rekombinationsfrequenz = 0,132


a - b Rekombinationsfrequenz = 0,064

Wahrscheinlichkeit des Auftretens von Doppelrekombinanten → Produktregel:

$$0.132 \times 0.064 = 0.0084 \rightarrow 0.0084 \times 1448 = 12$$
 erwartet 8 beobachtet

Interferenz = ein Crossing-over beeinflusst Crossing-over Ereignisse
in der Nachbarschaft

I = 1 - c.o.c. (Koeffizient der Koinzidenz)

c - a Rekombinationsfrequenz = 0,132

a - b Rekombinationsfrequenz = 0,064

Wahrscheinlichkeit des Auftretens von Doppelrekombinanten → Produktregel:

$$0.132 \times 0.064 = 0.0084 \rightarrow 0.0084 \times 1448 = 12$$
 erwartet 8 beobachtet

Interferenz = ein Crossing-over beeinflusst Crossing-over Ereignisse
in der Nachbarschaft

■ 1 - c.o.c. (Koeffizient der Koinzidenz)

= 1 - Anzahl beobachtete Doppelrekombinante
Anzahl erwartete Doppelrekombinante

c - a Rekombinationsfrequenz = 0,132

a - b Rekombinationsfrequenz = 0,064

Wahrscheinlichkeit des Auftretens von Doppelrekombinanten → Produktregel:

$$0.132 \times 0.064 = 0.0084 \rightarrow 0.0084 \times 1448 = 12$$
 erwartet 8 beobachtet

Interferenz = ein Crossing-over beeinflusst Crossing-over Ereignisse
in der Nachbarschaft

I = 1 - c.o.c. (Koeffizient der Koinzidenz)

$$= 1 - \frac{8}{12}$$
 1- 0.67 \rightarrow **I = 1/3** = 0,33

c.o.c. = $0 \rightarrow I = 1 \rightarrow \text{komplette Interferenz}$

Wie erstellt man eine Genkarte/Kopplungskarte?

- 1. Berechnung der RF für jedes Genpaar
- 2. Darstellung der Kopplung
- 3. Bestimmung der Doppelrekombinanten
- 4. Berechnung der erwarteten Doppelrekombinanten
- 5. Berechnung der Interferenz

3. Sie analysieren die Kopplungsverhältnisse von 2 Genen (A, B; a, b). Zu diesem Zwecke wird folgende Kreuzung durchgeführt:

Anschließend werden die F1 Nachkommen mit einem Tester gekreuzt. Dabei entstehen folgende Nachkommen:

Nachkommen	Frequenz	Bemerkungen
AB	140	parental
ab	135	parental
Ab	110	
aB	115	
	500	

Analysieren Sie mit Hilfe eines X²-(Chi-Quadrat) Tests, ob A und B gekoppelte oder nicht-gekoppelt Gene sind.

P aa bb x WT

F1 a+b+ x aa bb

Nachkommen	Frequenz	Bemerkungen
AB	140	parental
ab	135	parental
Ab	110	
aB	115	
	500	

P aa bb
$$x$$
 WT F1 a+b+ x aa bb

Nachkommen	Frequenz	Bemerkungen
AB	140	parental
ab	135	parental
Ab	110	225
aB	115	$\frac{225}{500} = 45\%$
	500	

RF nahe, aber < 50% → Kopplung?

P aa bb
$$x$$
 WT F1 a+b+ x aa bb

Nachkommen	Frequenz	Bemerkungen
AB	140	parental
ab	135	parental
Ab	110	225
aB	115	$\frac{225}{500} = 45\%$
	500	

RF nahe, aber $< 50\% \rightarrow \text{Kopplung}$?

Unabhängige Spaltung $\rightarrow 1:1:1:1 \rightarrow 125:125:125:125$

P aa bb
$$x$$
 WT F1 a+b+ x aa bb

Nachkommen	Frequenz	Bemerkungen
AB	140	parental
ab	135	parental
Ab	110	225
aB	115	$\frac{225}{500} = 45\%$
	500	

RF nahe, aber < 50% → Kopplung?

Unabhängige Spaltung $\rightarrow 1:1:1:1 \rightarrow 125:125:125:125$

Voraussetzungen:

- 1. Keinerlei Kopplung zwischen A und B
- 2. Gleiche Überlebensfähigkeit (viability) aller Allelkombinationen
 - → rezessive Allele haben oft nachteilige Effekte auf Überlebensfähigkeit
 - → Lethalität

P aa bb
$$x$$
 WT F1 a+b+ x aa bb

Nachkommen	Frequenz	Bemerkungen
AB	140	parental
ab	135	parental
Ab	110) 225
aB	115	$\frac{225}{500} = 45\%$
	500	

RF nahe, aber $< 50\% \rightarrow \text{Kopplung}$?

Unabhängige Spaltung $\rightarrow 1:1:1:1 \rightarrow 125:125:125:125$

Voraussetzungen:

- 1. Keinerlei Kopplung zwischen A und B
- 2. Gleiche Überlebensfähigkeit (viability) aller Allelkombinationen
 - → rezessive Allele haben oft nachteilige Effekte auf Überlebensfähigkeit
 - → Lethalität
 - → Methode zur Berechnung der erwarteten Spaltung unter Einbeziehung der Fitness einzelner Allele benötigt!

Nachkommen	Frequenz	Bemerkungen
AB	140	parental
ab	135	parental
Ab	110	
aB	115	
	500	

Allelfrequenz = relative Häufigkeit p eines Allels in einer Population Wenn Überlebensfähigkeit von a = A, dann p(a) = p(A) = 0.5 bzw. 50%

Nachkommen	Frequenz	Bemerkungen
AB	140	parental
ab	135	parental
Ab	110	
aB	115	
	500	

$$p(A) = (140 + 110)/500 = 0.50$$

$$p(a) = (135 + 115)/500 = 0.50$$

Nachkommen	Frequenz	Bemerkungen
AB	140	parental
ab	135	parental
Ab	110	
aB	115	
	500	

$$p(A) = (140 + 110)/500 = 0.50$$

$$p(a) = (135 + 115)/500 = 0.50$$

$$p(B) = (140 + 115)/500 = 0.51$$

Nachkommen	Frequenz	Bemerkungen
AB	140	parental
ab	135	parental
Ab	110	
aB	115	
	500	

$$p(A) = (140 + 110)/500 = 0.50$$

$$p(a) = (135 + 115)/500 = 0.50$$

$$p(B) = (140 + 115)/500 = 0.51$$

$$p(b) = (135 + 110)/500 = 0.49$$

Nachkommen	Frequenz Ei	Bemerkungen
AB	140 127,5	parental
ab	135	parental
Ab	110	
aB	115	
	500	

$$p(A) = (140 + 110)/500 = 0.50$$

$$p(a) = (135 + 115)/500 = 0.50$$

$$p(B) = (140 + 115)/500 = 0.51$$

$$p(b) = (135 + 110)/500 = 0.49$$

$$p(AB) = 0.50 \times 0.51 = 0.255 \rightarrow 0.255 \times 500 = 127.5$$

Nachkommen	Frequenz Ei	Bemerkungen
AB	140 127,5	parental
ab	135 122,5	parental
Ab	110 122,5	
aB	115 127,5	
	500	

Wenn Überlebensfähigkeit von a = A, dann p(a) = p(A) = 0.5 bzw. 50%

$$p(A) = (140 + 110)/500 = 0.50$$

$$p(a) = (135 + 115)/500 = 0.50$$

$$p(B) = (140 + 115)/500 = 0.51$$

$$p(b) = (135 + 110)/500 = 0.49$$

$$p(AB) = 0.50 \times 0.51 = 0.255 \rightarrow 0.255 \times 500 = 127.5$$

 $p(ab) = 0.50 \times 0.49 = 0.245 \rightarrow 0.245 \times 500 = 122.5$
 $p(Ab) = 0.50 \times 0.49 = 0.245 \rightarrow 0.245 \times 500 = 122.5$
 $p(aB) = 0.50 \times 0.51 = 0.255 \rightarrow 0.255 \times 500 = 127.5$

korrigierte Erwartungswerte unter Einbeziehung d. Allelfrequenzen

Nachkommen	Bi	Ei	Bemerkungen
AB	140	127,5	parental
ab	135	122,5	parental
Ab	110	122,5	
aB	115	127,5	
	500		

X² Wert: gibt die Wahrscheinlichkeit *p* an, dass die Abweichung zwischen beobachtetem und erwartetem Wert auf Zufall beruht

Bi	Ei	Bemerkungen
140	127,5	parental
135	122,5	parental
110	122,5	
115	127,5	
500		
	140 135 110 115	140127,5135122,5110122,5115127,5

X² Wert: gibt die Wahrscheinlichkeit *p* an, dass die Abweichung zwischen beobachtetem und erwartetem Wert auf Zufall beruht

Fragestellung: Weichen die beobachteten Häufigkeiten Bi unserer Stichprobe signifikant von den erwarteten Häufigkeiten Ei ab?

Die Berechnung von X²:

$$X^2 = \sum_{i=1}^{n} \frac{\text{(beobachtete Häufigkeit - erwartete Häufigkeit)}^2}{\text{erwartete Häufigkeit}}$$

Nachkommen	Bi	Ei	Bemerkungen
AB	140	127,5	parental
ab	135	122,5	parental
Ab	110	122,5	
aB	115	127,5	
	500		

X² Wert: gibt die Wahrscheinlichkeit *p* an, dass die Abweichung zwischen beobachtetem und erwartetem Wert auf Zufall beruht

Fragestellung: Weichen die beobachteten Häufigkeiten Bi unserer Stichprobe signifikant von den erwarteten Häufigkeiten Ei ab?

Die Berechnung von X²:

$$X^{2} = \sum_{i=1}^{n} \frac{\text{(beobachtete Häufigkeit - erwartete Häufigkeit)}^{2}}{\text{erwartete Häufigkeit}} = \sum_{i=1}^{n} \frac{\text{(Bi - Ei)}^{2}}{\text{Ei}}$$

Nachkommen	Bi	Ei	Bi – Ei	Bemerkungen
AB	140	127,5	12,5	parental
ab	135	122,5	12,5	parental
Ab	110	122,5	-12,5	
aB	115	127,5	-12,5	
	500			

X² Wert: gibt die Wahrscheinlichkeit *p* an, dass die Abweichung zwischen beobachtetem und erwartetem Wert auf Zufall beruht

Fragestellung: Weichen die beobachteten Häufigkeiten Bi unserer Stichprobe signifikant von den erwarteten Häufigkeiten Ei ab?

Die Berechnung von X²:

$$X^{2} = \sum_{i=1}^{n} \frac{\text{(beobachtete Häufigkeit - erwartete Häufigkeit)}^{2}}{\text{erwartete Häufigkeit}} = \sum_{i=1}^{n} \frac{\text{(Bi - Ei)}^{2}}{\text{Ei}}$$

Nachkommen	Bi	Ei	Bi – Ei	<u>(Bi – Ei)²</u> Ei	Bemerkungen
AB	140	127,5	12,5	1,23	parental
ab	135	122,5	12,5	1,28	parental
Ab	110	122,5	-12,5	1,28	
aB	115	127,5	-12,5	1,23	
	500			$\Sigma X^2 = 5.02$	

X² Wert: gibt die Wahrscheinlichkeit *p* an, dass die Abweichung zwischen beobachtetem und erwartetem Wert auf Zufall beruht

Fragestellung: Weichen die beobachteten Häufigkeiten Bi unserer Stichprobe signifikant von den erwarteten Häufigkeiten Ei ab?

Die Berechnung von X²:

$$X^{2} = \sum_{i=1}^{n} \frac{\text{(beobachtete Häufigkeit - erwartete Häufigkeit)}^{2}}{\text{erwartete Häufigkeit}} = \sum_{i=1}^{n} \frac{\text{(Bi - Ei)}^{2}}{\text{Ei}}$$

Nachkommen	Bi	Ei	Bi – Ei	<u>(Bi – Ei)²</u> Ei	Bemerkungen
AB	140	127,5	12,5	1,23	parental
ab	135	122,5	12,5	1,28	parental
Ab	110	122,5	-12,5	1,28	rekombinant
aB	115	127,5	-12,5	1,23	rekombinant
	500			$\Sigma X^2 = 5.02$	

X² Wert des Experiments
 → wird mit tabellarischen
 Werten verglichen um abzuschätzen ob die Abweichung zufällig ist

(p< $0.05 \rightarrow 5\%$ Fehlerwahrscheinlichkeit)

Nachkommen	Bi	Ei	Bi – Ei	<u>(Bi – Ei)²</u> Ei	Bemerkungen
AB	140	127,5	12,5	1,23	parental
ab	135	122,5	12,5	1,28	parental
Ab	110	122,5	-12,5	1,28	rekombinant
aB	115	127,5	-12,5	1,23	rekombinant
	500			$\Sigma X^2 = 5.02$	

TABLE C: X2 CRITICAL VALUES

Tail probability p .25 .20 .15 :10 .05 .025 .02 .01 .005 .0025 .001 df 10.83 1.32 1.64 2.07 2.71 3.84 5.02 7.88 9.14 5.41 6.63 2 2.77 3.22 3.79 4.61 5.99 7.38 7.82 9.21 11.98 13.82 10.60 3 5.32 6.25 7.81 9.35 9.84 11.34 12.84 14.32 16.27 4.11 4.64 4 5.99 6.74 7.78 9.49 11.14 11.67 14.86 16.42 18.47 5.39 13.28 5 8.12 9.24 11.07 12.83 16.75 18.39 20.51 7.29 13.39 15.09 6.63 6 7.84 8.56 9.45 10.64 12.59 14.45 15.03 16.81 18.55 20.25 22.46 7 10.75 12.02 14.07 16.01 20.28 22.04 24.32 9.04 9.80 16.62 18.48 13.36 15.51 17.53 20.09 21.95 10.22 11.03 12.03 18.17 23.77 26.12 9 11.39 12.24 13.29 14.68 16.92 19.02 19.68 21.67 23.59 25.46 27.88 10 14.53 15.99 18.31 20.48 23.21 25.19 27.11 29.59 12.55 13.44 21.16 17.28 19.68 24.72 26.76 28.73 31.26 11 13.70 14.63 15.77 21.92 22.62 16.99 28.30 30.32 32.91 12 14.85 15.81 18.55 21.03 23.34 24.05 26.22 13 15.98 19.81 25.47 27.69 29.82 31.88 34.53 16.98 18.20 22.36 24.74

X² Wert des Experiments → wird mit tabellarischen Werten verglichen um abzuschätzen ob die Abweichung zufällig ist

. (p< 0.05 → 5% Fehlerwahrscheinlichkeit)

Nachkommen	Bi	Ei	Bi – Ei	<u>(Bi – Ei)²</u> Ei	Bemerkungen
AB	140	127,5	12,5	1,23	parental
ab	135	122,5	12,5	1,28	parental
Ab	110	122,5	-12,5	1,28	rekombinant
aB	115	127,5	-12,5	1,23	rekombinant
	500			$\Sigma X^2 = 5.02$	

df = Freiheitsgrade (degrees of freedom) = n - 1 bzw. Anzahl unabh. Abweichungen zw. Bi und Ei

TABLE C: χ^2 CRITICAL VALUES

1		1107-22		3	Tail prob	ability p					
df	.25	.20	.15	:10	.05	.025	.02	.01	.005	.0025	.001
1	1.32	1.64	2.07	2.71	3.84	5.02	5.41	6.63	7.88	- 9.14	10.83
2	2.77	3.22	3.79	4.61	5.99	7.38	7.82	9.21	10.60	11.98	13.82
3	4.11	4.64	5.32	6.25	7.81	9.35	9.84	11.34	12.84	14.32	16.27
4	5.39	5.99	6.74	7.78	9.49	11.14	11.67	13.28	14.86	16.42	18.47
5	6.63	7.29	8.12	9.24	11.07	12.83	13.39	15.09	16.75	18.39	20.51
6	7.84	8.56	9.45	10.64	12.59	14.45	15.03	16.81	18.55	20.25	22.46
7	9.04	9.80	10.75	12.02	14.07	16.01	16.62	18.48	20.28	22.04	24.32
8	10.22	11.03	12.03	13.36	15.51	17.53	18.17	20.09	21.95	23.77	26.12
9	11.39	12.24	13.29	14.68	16.92	19.02	19.68	21.67	23.59	25.46	27.88
10	12.55	13.44	14.53	15.99	18.31	20.48	21.16	23.21	25.19	27.11	29.59
11	13.70	14.63	15.77	17.28	19.68	21.92	22.62	24.72	26.76	28.73	31.26
12	14.85	15.81	16.99	18.55	21.03	23.34	24.05	26.22	28.30	30.32	32.91
13	15.98	16.98	18.20	19.81	22.36	24.74	25.47	27.69	29.82	31.88	34.53

Nachkommen	Bi	Ei	Bi – Ei	<u>(Bi – Ei)²</u> Ei	Bemerkungen
AB	140	127,5	12,5	1,23	parental
ab	135	122,5	12,5	1,28	parental
Ab	110	122,5	-12,5	1,28	rekombinant
aB	115	127,5	-12,5	1,23	rekombinant
	500			$\Sigma X^2 = 5,02$	

df = Freiheitsgrade (degrees of freedom) = n - 1 bzw. Anzahl unabh. Abweichungen zw. Bi und Ei

Test ob die Häufigkeit aller 4 Allelkombinationen n=4 der Erwartung entspricht

dF

3

	Nachkommen	Bi	Ei	Bi – Ei	<u>(Bi – Ei)²</u> Ei	Bemerkungen
	AB	140	127,5	12,5	1,23	parental
	ab	135	122,5	12,5	1,28	parental
\langle	Ab	110	122,5	-12,5	1,28	rekombinant
	aB	115	127,5	-12,5	1,23	rekombinant
(500			$\Sigma X^2 = 5,02$	

df = Freiheitsgrade (degrees of freedom) = n - 1 bzw. Anzahl unabh. Abweichungen zw. Bi und Ei

n = 4

TABLE C: X2 CRITICAL VALUES

1					Tail prob	ability p	1.5					
df	.25	.20	.15	:10	.05	.025	.02	.01	.005	.0025	.001	
1	1.32	1.64	2.07	2.71	3.84	5.02	5.41	6.63	7.88	9.14	10.83	
2	2.77	3.22	3.79	4.61	5.99	7.38	7.82	9.21	10.60	11.98	13.82	
3	4.11	4.64	5.32	6.25	7.81	9.35	9.84	11.34	12.84	14.32	16.27	5.02 <
4	5.39	5.99	6.74	7.78	0.49	11.14	11.67	13.28	14.86	16.42	18.47	1
5	6.63	7.29	8.12	9.24	11.07	12.83	13.39	15.09	16.75	18.39	20.51	
6	7.84	8.56	9.45	10.64	12.59	14.45	15.03	16.81	18.55	20.25	22.46	
7	9.04	9.80	10.75	12.02	14.07	16.01	16.62	18.48	20.28	22.04	24.32	
8	10.22	11.03	12.03	13.36	15.51	17.53	18.17	20.09	21.95	23.77	26.12	
9	11.39	12.24	13.29	14.68	16.92	19.02	19.68	21.67	23.59	25.46	27.88	
10	12.55	13.44	14.53	15.99	18.31	20.48	21.16	23.21	25.19	27.11	29.59	
11	13.70	14.63	15.77	17.28	19.68	21.92	22.62	24.72	26.76	28.73	31.26	
12	14.85	15.81	16.99	18.55	21.03	23.34	24.05	26.22	28.30	30.32	32.91	
13	15.98	16.98	18.20	19.81	22.36	24.74	25.47	27.69	29.82	31.88	34.53	▼

 $X^2 \ Vers \le X^2 \ Tab \rightarrow \text{keine sign. Abweichung zw. Bi } u. \ Ei \rightarrow \text{freie Spaltung}$ $X^2 \ Vers > X^2 \ Tab \rightarrow \text{Bi } sign. \ \text{abweichend von Ei} \rightarrow \text{Kopplung}$ 3. Sie analysieren die Kopplungsverhältnisse von 2 Genen (A, B; a, b). Zu diesem Zwecke wird folgende Kreuzung durchgeführt:

Anschließend werden die F1 Nachkommen mit einem Tester gekreuzt. Dabei entstehen folgende Nachkommen:

Nachkommen	Frequenz	Bemerkungen
AB	140	parental
ab	135	parental
Ab	110	
aB	115	
	500	

Analysieren Sie mit Hilfe eines X²-(Chi-Quadrat) Tests, ob A und B gekoppelte oder nicht-gekoppelt Gene sind.