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Cofactor Engineering

• Coenzyme A and acetyl coenzyme-A
(CoA and acetyl-CoA)

• NAD(P)H/NAD(P)+ Cofactor Pair



• Recycle of cofactors necessary for cell growth

NAD(P)H/NADP+ Cofactor Pair

NAD(P)H 
(Reduced)

NAD(P)+

(Oxidized)

• Donor or acceptor of reducing equivalents 
• Important in metabolism

– Cofactor in >300 red-ox reactions
– Regulates genes and enzymes

• Reversible transformation 





NADH/NAD+ cofactor pair

If product needs more 
reductant can use a
NADH recycling system
for increased 
availability



Simplified Fermentation Pathway of E. coli
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Methylotrophic 
yeasts grow on 
methanol and 
have an active 
NAD-Formate 
dehydrogenase
in cytosol

Diagram from Hartner & Glieder 2006
Candida boidinii





Strain study (Shake Tubes)

Control: GJT001 (pDHK29)

Mutant:  BS1 (pSBF2)

pDHK29:   cloning vector serve as control
pSBF2:      pDHK29 carrying a NAD-dependent FDH 
BS1:          GJT001 lacking native FDH

Carbon source: glucose
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% of Increase/Decrease for BS1 (pSBF2) relative to GJT001 (pDHK29)
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Berríos-Rivera et al., Metabolic Engineering, 4: 217-229 (2002)
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Anaerobic Tube Experiment
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pDHK29:   cloning vector serves as control
pSBF2:      pDHK29 carrying a NAD-dependent FDH
BS1:          GJT001 lacking native FDH

Berríos-Rivera et al., Metabolic Engineering, 4: 217-229 (2002)

New FDH competes 
effectively with native 
FDH for available 
formate (fdh- mutation 
not necessary)



• Drastic increase in ethanol/acetate ratio
• The new FDH competes effectively with native FDH for 

available formate (fdh- mutation not necessary)
• Increase in intracellular NADH availability allows increase 

reduced product yields (such as ethanol)
• Other applications using in vivo FDH have included 

fructose to mannitol conversion (Kaup B, Bringer-Meyer S, 
Sahm H. Metabolic engineering of Escherichia coli: construction of 
an efficient biocatalyst for D-mannitol formation in a whole-cell 
biotransformation. Appl Microbiol Biotechnol. 2004 Apr;64(3):333-9). 

Effect of NADH regeneration (overexpressing 
NAD+-dependent FDH)



NADPH/NADP+

Usually formed in quantity by pentose phosphate pathway or 
isocitrate conversion
β-D-glucose-6-phosphate + NADP+ = D-glucono-δ-lactone-6-

phosphate + NADPH + H+
D-isocitrate + NADP+ = NADPH + 2-ketoglutarate + CO2

Exchange reactions in E coli

NAD+ + NADPH <=> NADH + NADP+

pntAB system (membrane bound)

udh system sthA (soluble)



NADPH

• Many reactions use this reductant
• Can engineer a specific protein that uses NADH 

instead of NADPH (sometimes modified protein 
works but may be less efficient)

• We are interested in overall cell network change 
and use in cell (more metabolic engineering than 
protein engineering)





Model Product ExperimentModel Product Experiment

Poly(3Poly(3--hydroxybutyrate) (PHB)hydroxybutyrate) (PHB)







PHB Production (Shake Flasks)

Control: GJT001 (pDHK29, pAET29)

Mutant:  GJT001 (pUDHAK, pAET29)

pDHK29:     cloning vector serve as control
pUDHAK:   pDHK29 carrying the soluble pyridine nucleotide 

transhydrogenase (udhA) 
pAeT29 :     plasmid carrying the PHB biosynthesis pathway
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Production of PHB

pDHK29: control plasmid
pUDHAK: pDHK29 carrying the soluble pyridine 
nucleotide transhydrogenase (udhA)  
pAeT29: plasmid carrying the PHB genes  
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Strain carrying 
UdhA produces a 
significantly higher 
quantity of PHB 
– a product that 
requires NADPH for 
its biosynthesis

Sánchez et al., Biotechnology Progress, 22(2):420-5 (2006)



This study suggested  higher availability of 
NADPH could lead to observed change in 
metabolites
• The transhydrogenase 

offered a way to help 
convert part of the NADH 
pool to useful NADPH

• Optional to cell

• Would like to force cell to 
make more NADPH

• Connect to required carbon 
pathway



A Direct ApproachA Direct Approach

Metabolic engineer E. coli central 
metabolism to increase NADPH availability
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Potential Sources of an NADPH dependent 
GAPDH

• Plants (small preference for NADPH, highly regulated) EC 1.2.1.13 
and non-phosphorylating EC 1.2.1.9 types

• Methanothermus fervidus, Synechococcus PCC7942
• Streptococcus pyrogenes 
• Clostridium acetobutylicum 
• Structure of NADH dependent GapN from
Hyperthermophilic Archaeum 
Thermoproteus tenax
(Pohl et al JBC 277,
19938-19945, 2002) NADH dependent



Strategy

• eliminate the native NAD+-dependent
glyceraldehyde-3-phosphate dehydrogenase
(GAPDH) from E. coli

• replace it with an NADP+-dependent
glyceraldehyde-3-phosphate dehydrogenase
(GAPDH) from C. acetobutylicum
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Strategy
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Control: MG1655 pDHC29

Mutant : MG1655 ∆gapA pHL621

Strains

pDHC29:   cloning vector serve as control
pHL621:     pDHC29 carrying a NADP+-dependent GAP



Metabolic Flux AnalysisMetabolic Flux Analysis

using C-13 labeling
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So see quite a difference in partitioning 
through network

• See if this can be exploited with an 
appropriate sink for NADPH



Model Product ExperimentsModel Product Experiments

•• Lycopene ProductionLycopene Production

•• Poly(3Poly(3--hydroxybutyrate) hydroxybutyrate) 
(PHB)(PHB)



Model Product ExperimentsModel Product Experiments

Lycopene Production Lycopene Production 



Lycopene Synthesis

Non-mevalonate pathway

8 G3P + 8 Pyr + 16 NADPH + 8 CTP + 8 ATP

1 Lycopene + 8 CO2 + 16 NADP+ + 8 CMP + 8 ADP + 12 PPi



Lycopene Production (Shake Flask)

Control: MG1655 (pDHC29, pK19-Lyco)

Mutant:  MG1655 ∆gapA (pHL621, pK19-lyco)

pDHC29:     cloning vector serve as control
pHL621:      pDHC29 carrying a NADPH-dependent GAP
pK19-lyco:  plasmid carrying the lycopene biosynthesis pathway
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Control   Mutant

Lycopene Production (24 hr Shake Flask, OD about same)

Control: MG1655 (pDHC29 pK19-Lyco)
Mutant:  MG1655 ∆gapA (pHL621 pK19-lyco)

OD (24h, 30°C, 250 rpm)
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higher final optical density in 
both LB and 2YT media



Lycopene Production (Shake Flask)

Control   MutantLycopene concentration
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Specific lycopene production

Control Mutant

• Final lycopene concentration 
increased by >250%

• Specific lycopene production 
increased by >200%



Model Product ExperimentsModel Product Experiments

Poly(3Poly(3--hydroxybutyrate) (PHB)hydroxybutyrate) (PHB)







PHB Production (Shake Flasks)

Control: MG1655 (pDHC29, pAeT29)

Mutant:  MG1655 ∆gapA (pHL621, pAeT29)

pDHC29:     cloning vector serve as control
pHL621:      pDHC29 carrying a NADPH-dependent GAP
pAeT29 :     plasmid carrying the PHB biosynthesis pathway
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PHB Production Experiments
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• Higher final PHB production at the lower temperature
• Mutant strain yielded significantly higher PHB than the
control strain



Model Product ExperimentsModel Product Experiments
Whole cell single step conversion involving Whole cell single step conversion involving 

a NADPHa NADPH--dependent reactiondependent reaction



Whole Cell Single Step Conversion

O O

O

+ O2 + NADPH + H+ + H2O + NADP+CHMO

CHMO: cyclohexanone monooxygenase from Acinetobacter sp1.

cyclohexanone ε-caprolactone

Cunningham et al. The Plant Cell 1994, 6:1107-1121





Whole Cell Single Step Conversion

Control: BL21(pDHC29, pMM4)

Mutant: BL21∆gapA(pHL621, pMM4)

pDHC29:     cloning vector serve as control
pHL621:      pDHC29 carrying a NADPH-dependent GAP
pMM4:        plasmid carrying the cyclohexanone monooxygenase
from Stewart U Fla
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• Various approaches to increase NAD(P)H availability

• Replacement of native GAPDH from E. coli with the 
NADP+-dependent GAPDH from C. acetobutylicum 
shows big changes 

• We increased the synthesis of NADPH-dependent 
products PHB and lycopene. 

• We have shown that the system is also applicable for 
single step conversion with improved rates and 
glucose yield

• This metabolic engineered strain will be useful for 
future applications where high levels of NADPH are 
required.

Conclusions
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