Alexander M. Andrianov & Ivan V. Anishchenko (2009) Computational Model of the HIV-1 Subtype A V3 Loop: Study on the Conformational Mobility for Structure Based Anti-AIDS Drug Design, Journal of Biomolecular Structure and Dynamics, 27:2, 179-193, DOI: 10.1080/07391102.2009.10507308

Loyola Marymount University
Department of Biology
October 25, 2016

Zach, Matt, Mia, Will

- The V3 loop and the molecular dynamic in regards to this study
- Three segments along the V3 region are compared showing similarities and conserved regions
- The most probable 3D structure of the V3 loop shows secondary structures in the immunogenic region and the N- and C- terminals
- cRMSD and aRMSD analyses show the immunogenic tip has more relativity and rigidity than the rest of the V3 loop
- The V3 loop was bound to CycA and FKBP to show the loop binds at more than one site.
- N- and C- terminals and immunogenic tip along the SA-V3 region of HIV-1 gene demonstrate promising sites for anti-AIDS drugs
- Future modeling on SB-V3 region using cRMSD and aRMSD to increase data sets would show consistency in results

- The V3 loop and the molecular dynamic in regards to this study
- Three segments along the V3 region are compared showing similarities and conserved regions
- The most probable 3D structure of the V3 loop shows secondary structures in the immunogenic region and the N- and C- terminals
- cRMSD and aRMSD analyses show the immunogenic tip has more relativity and rigidity than the rest of the V3 loop
- The V3 loop was bound to CycA and FKBP to show the loop binds at more than one site.
- N- and C- terminals and immunogenic tip along the SA-V3 region of HIV-1 gene demonstrate promising sites for anti-AIDS drugs
- Future modeling on SB-V3 region using cRMSD and aRMSD to increase data sets would show consistency in results

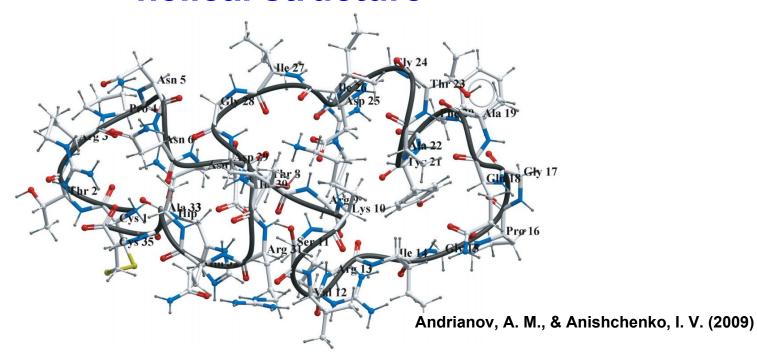
HIV Aspects

- The virions enter the host cells through sequential interactions the CD4 cell surface receptors
 - After binding to the CD4 binding site, a 180 degree switch in the surface protein gp120 of the virus exposes the co-receptor binding site.
 - V3 loop of the glycoprotein gp120 is 35 residues long and highly variable plays a central role in the virus biology in human invasion and immune system interaction.
- The focus of this paper is to investigate the V3 loop, constructed by various adaptive and computational computer programs

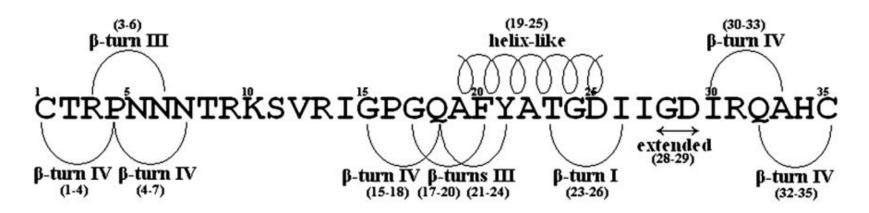
HIV Aspects

This paper seeks to provide insight into the less-studied HIV 1 subtype A model

- Seeks to investigate this lack of knowledge through simulated computer media
 - Comparative modeling and simulated annealing
 - Collection of the low-energy structures to find a consensus amino acid sequence for the HIV-1 subtype A V3 loop.
 - Structural motifs in the HIV-1 V3 loops were located and analyzed
 - Examined the consistencies therein to identify characteristics of the V3 loop

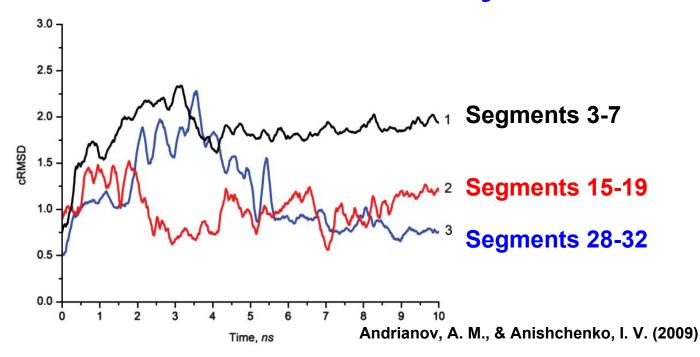

- The V3 loop and the molecular dynamic in regards to this study
- Three segments along the V3 region are compared showing similarities and conserved regions
- The most probable 3D structure of the V3 loop shows secondary structures in the immunogenic region and the N- and C- terminals
- cRMSD and aRMSD analyses show the immunogenic tip has more relativity and rigidity than the rest of the V3 loop
- The V3 loop was bound to CycA and FKBP to show the loop binds at more than one site.
- N- and C- terminals and immunogenic tip along the SA-V3 region of HIV-1 gene demonstrate promising sites for anti-AIDS drugs
- Future modeling on SB-V3 region using cRMSD and aRMSD to increase data sets would show consistency in results

3D structures of the individual segments 3-7, 15-19, and 28-32 of the HIV-1 subtype A V3 loop exhibit close structural similarity

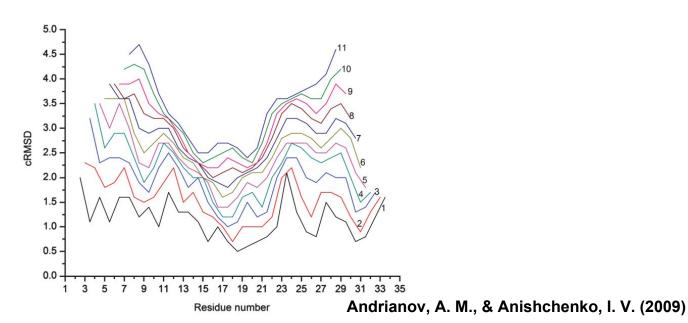


- The V3 loop and the molecular dynamic in regards to this study
- Three segments along the V3 region are compared showing similarities and conserved regions
- The most probable 3D structure of the V3 loop shows secondary structures in the immunogenic region and the N- and C- terminals
- cRMSD and aRMSD analyses show the immunogenic tip has more relativity and rigidity than the rest of the V3 loop
- The V3 loop was bound to CycA and FKBP to show the loop binds at more than one site.
- N- and C- terminals and immunogenic tip along the SA-V3 region of HIV-1 gene demonstrate promising sites for anti-AIDS drugs
- Future modeling on SB-V3 region using cRMSD and aRMSD to increase data sets would show consistency in results

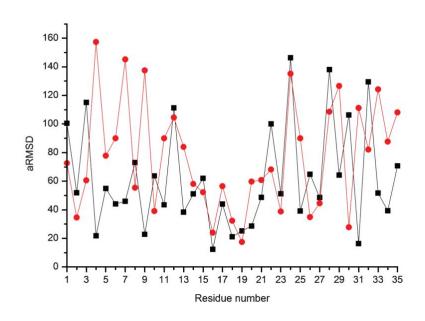
The most probable 3D structure of the HIV-1 subtype A V3 loop shows beta turns and a small helical structure



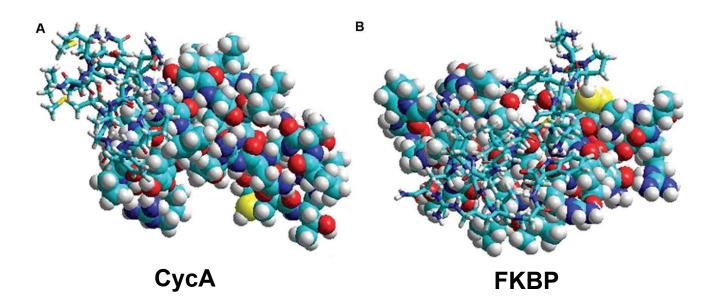
The immunogenic region and the N- and Cterminals are comprised mostly of beta turns and helical structures in the lowest-energy simulated conformation of the V3 loop



- The V3 loop and the molecular dynamic in regards to this study
- Three segments along the V3 region are compared showing similarities and conserved regions
- The most probable 3D structure of the V3 loop shows secondary structures in the immunogenic region and the N- and C- terminals
- cRMSD and aRMSD analyses show the immunogenic tip has more relativity and rigidity than the rest of the V3 loop
- The V3 loop was bound to CycA and FKBP to show the loop binds at more than one site.
- N- and C- terminals and immunogenic tip along the SA-V3 region of HIV-1 gene demonstrate promising sites for anti-AIDS drugs
- Future modeling on SB-V3 region using cRMSD and aRMSD to increase data sets would show consistency in results


Graphic 1 shows the least conserved structure, while Graphic 2 shows the most conserved structure based on cRMSD analysis

Pinching of lines in residues 11-17 and 21-25 represent rigidity on either side of the immunogenic tip


Graphical representation of the aRMSD analysis of phi and psi bonds shows the immunogenic tip as the valley between residues 11 and 21

- Red = psi bonds
- Black = phi bonds

- The V3 loop and the molecular dynamic in regards to this study
- Three segments along the V3 region are compared showing similarities and conserved regions
- The most probable 3D structure of the V3 loop shows secondary structures in the immunogenic region and the N- and C- terminals
- cRMSD and aRMSD analyses show the immunogenic tip has more relativity and rigidity than the rest of the V3 loop
- The V3 loop was bound to CycA and FKBP to show the loop binds at more than one site.
- N- and C- terminals and immunogenic tip along the SA-V3 region of HIV-1 gene demonstrate promising sites for anti-AIDS drugs
- Future modeling on SB-V3 region using cRMSD and aRMSD to increase data sets would show consistency in results

Binding sites of peptides can occur at more than one site along the V3 Loop

- The V3 loop and the molecular dynamic in regards to this study
- Three segments along the V3 region are compared showing similarities and conserved regions
- The most probable 3D structure of the V3 loop shows secondary structures in the immunogenic region and the N- and C- terminals
- cRMSD and aRMSD analyses show the immunogenic tip has more relativity and rigidity than the rest of the V3 loop
- The V3 loop was bound to CycA and FKBP to show the loop binds at more than one site.
- N- and C- terminals and immunogenic tip along the SA-V3 region of HIV-1 gene demonstrate promising sites for anti-AIDS drugs
- Future modeling on SB-V3 region using cRMSD and aRMSD to increase data sets would show consistency in results

N- and C- terminals and Immunogenic tip of the SA-V3 loop may be promising targets for anti-AIDS drug development

- Information can be used to target cells and induce neutralizing antibody response
- Inflexible regions of SA-V3 regions act as HIV-1 "achilles heel"
- These findings can improve immunogenicity of AIDS drugs
- Provides a potential strategy for treating HIV and preventing AIDS progression by identifying a potential weakness within the virus

- The V3 loop and the molecular dynamic in regards to this study
- Three segments along the V3 region are compared showing similarities and conserved regions
- The most probable 3D structure of the V3 loop shows secondary structures in the immunogenic region and the N- and C- terminals
- cRMSD and aRMSD analyses show the immunogenic tip has more relativity and rigidity than the rest of the V3 loop
- The V3 loop was bound to CycA and FKBP to show the loop binds at more than one site.
- N- and C- terminals and immunogenic tip along the SA-V3 region of HIV-1 gene demonstrate promising sites for anti-AIDS drugs
- Future modeling on SB-V3 region using cRMSD and aRMSD to increase data sets would show consistency in results

3D models of SB-V3 regions must be created to verify conserved segments of the SA-V3 region and study the V3 loop under varying conditions

- Models should be created and interpreted using the SB-V3 region to increase available data
- General consistency of the rigid segments proving to be promising for anti-AIDS medication will confirm analysis
- cRMSD and aRMSD calculations should be performed to compare SB to SA and determine consistency of rigid segments in the V3 region
- Different forms of the loop should be studied under varying conditions, subsequent data can be used in the synthesis of potential vaccines

Summary

- Various programs and virtual constructions of V3 loop and thorough analysis of the generated models
- Three segments along the V3 region are compared showing similarities and conserved regions
- The most probable 3D structure of the V3 loop shows secondary structures in the immunogenic region and the N- and C- terminals
- N- and C- terminals and immunogenic tip along the SA-V3 region of HIV-1 gene demonstrate promising sites for anti-AIDS drugs
- Future work in 3D modeling and analysis of HIV-1 subtype B would show consistency in results for rigid segments along the gene

Acknowledgments

Department of Biology Loyola Marymount University

Dr. Kam Dahlquist

References

 Andrianov, A. M., & Anishchenko, I. V. (2009). Computational model of the HIV-1 subtype A V3 loop: Study on the conformational mobility for structure-based anti-AIDS drug design. Journal of Biomolecular Structure and Dynamics, 27(2), 179-193. DOI: 10.1080/07391102.2009.10507308