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Studying Response to Temperature Shock is a 
Good Way to Explore Gene Expression 

• Saccharomyces cerevisiae is subject to temperature 
extremes in both natural and artificial environments 
(Aguilera, et al., 2007)  
– While heat shock as been well studied, little is known  

about cold shock, especially how gene expression is regulated as 
yeast respond to the sudden extreme change. 

• S. cerevisiae was cold shocked from 30oC to 13oC. DNA 
microarray data was taken and analyzed.  The gene expression 
data was used to construct a model to estimate the relative 
contribution of select transcription factors (TFs) on the up or 
down regulation of genes in the first hour (early response).  
– This data was taken on five strains.  This presentation focuses on the 

data from a wild type strain.  



Using DNA Microarrays to obtain  
Gene Expression Information 

• Baseline DNA microarray data was obtained at 30o C, then 
replicates of microarray data were obtained at a number of time 
steps after reducing the temperature to 13o C. This data was 
processed to determine  
change in gene expression  
between time steps.  
– Ratios of red/green fluorescence  

(expression increase/decrease)  
were determined, then converted  
to log2. 

• The data was scaled and centered, then statistical analysis was 
performed  
– Average Log2 fold change and standard deviation were determined. 
– T-tests were performed and the p-values were used to understand 

the likelihood that the expression changes in each gene are real 
changes.     



Cluster Genes Based on  
Similar Expression Profiles 

• Genes with similar expression 
profiles are likely to be encoded  
for similar functions 

• Short Time Series Expression 
Miner (STEM) software 
performs analysis and assigns 
genes to expression profiles 
(Ernst and Bar-Joseph, 2006). 

– p-values give likelihood that 
the genes belong in the 
cluster 

 



Gene Ontology Analysis is Also  
Performed Using STEM 

GO Results for Profile 27 based on the actual number of genes assigned to the profile (0.0,0.0,1.0,-1.0,0.0)

Category ID Category Name #Genes 

Category

#Genes 

Assigned

#Genes 

Expected

#Genes 

Enriched

p-value Corrected 

p-value

Fold

GO:0000469 cleavage involved in rRNA processing 65 5 0.9 4.1 1.50E-03 0.288 5.9

GO:0090501 RNA phosphodiester bond hydrolysis 66 5 0.9 4.1 1.60E-03 0.298 5.8

GO:0016071 mRNA metabolic process 277 10 3.6 6.4 3.10E-03 0.452 2.8

GO:0005730 nucleolus 278 10 3.6 6.4 3.20E-03 0.466 2.7

GO:0000466 maturation of 5.8S rRNA from tricistronic rRNA transcript 

(SSU-rRNA, 5.8S rRNA, LSU-rRNA) 77 5 1 4 3.20E-03 0.466 5

GO:0000460 maturation of 5.8S rRNA 78 5 1 4 3.40E-03 0.476 4.9

GO:0006417 regulation of translation 113 6 1.5 4.5 3.50E-03 0.478 4.1

GO:0030686 90S preribosome 89 5 1.2 3.8 6.00E-03 0.606 4.3

GO:0000956 nuclear-transcribed mRNA catabolic process 91 5 1.2 3.8 6.60E-03 0.634 4.2

GO:0010608 posttranscriptional regulation of gene expression 131 6 1.7 4.3 7.10E-03 0.652 3.5

GO:0006402 mRNA catabolic process 93 5 1.2 3.8 7.20E-03 0.66 4.1

GO:0006396 RNA processing 522 14 6.8 7.2 7.20E-03 0.662 2

GO:0030684 preribosome 145 6 1.9 4.1 0.01 0.756 3.2

GO:0006401 RNA catabolic process 111 5 1.5 3.5 0.01 0.822 3.4

GO:0016072 rRNA metabolic process 256 8 3.4 4.6 0.02 0.868 2.4

GO:0006820 anion transport 129 5 1.7 3.3 0.03 0.92 3

GO:0090305 nucleic acid phosphodiester bond hydrolysis 180 6 2.4 3.6 0.03 0.944 2.5

GO:0034470 ncRNA processing 347 9 4.5 4.5 0.04 0.962 2

GO:0034660 ncRNA metabolic process 404 10 5.3 4.7 0.04 0.962 1.9

• p-values are assigned to 
determine the likelihood that 
these genes are in these 
ontological groups by chance 
vs. really belonging there. 

 

• Gene ontology clusters provides  
a picture of the cellular 
components, molecular functions, 
and biological processes genes in 
these clusters are involved in.  
(http://www.geneontology.org/GO.doc.shtml) 



YEASTRACT Provides Transcription  
Factors for the Cluster of Genes 

• YEASTRACT produced a list of transcription factors.  Of the top 
10 factors, I chose three to add to the network of 21 genes 
Drs. Dahlquist and Fitpatrick have developed.  They were 
chosen because they regulate the highest percentage of genes 
in the network. 
– RAP1 
– STE12 
– TEC1 

 

• YEASTRACT also produced a regulation network.  Upon 
examination, this network contained essentially the same 
information as the network Dr. Dahlquist created. 



Two approaches were used  
to construct the models 

• Sigmoidal Model (based on Vu and Vohradsky, 2006) 
 

𝑑𝑥𝑖
𝑑𝑡
=  

𝑃𝑖
1 + 𝑒− 𝑤𝑖𝑗𝑥𝑗 𝑏𝑖

− 𝜆𝑖𝑥𝑖 

– where  
P is production rate, w is weight of other genes, b is activation 
threshold, and l is degradation rate  
The state variable, x, is concentration 

– “Second” Model: hold b=0 to compare with Michaelis-Menten equation 

• Michaelis-Menten 
 

𝑑𝑥𝑖
𝑑𝑡
=  𝑃𝑖  

𝑤𝑖𝑗

𝑤
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Comparison of Three Models  
Reveals Small Differences 

• For the most part there was agreement between the three models 

• For some data the sigmoidal fit was better 

• There was little difference if estimating b instead of holding b=0. 

– Therefore I chose to use data with estimated b. 



The Addition of RAP1, STE12, TEC1 to Main 
Set of Genes Affected Weights 

Controller Target Weights 
Main Set 

Weights 
Main +3 

Controller Target Weights 
Main Set 

Weights 
Main +3 

CIN5 HOT1 +7.98E-06 +0.1817 PHD1 SMP1 -0.0011 +0.0058 

CIN5 SMP1 -0.1252 +0.3868 SKN7 HOT1 +0.2679 -0.0206 

CIN5 YAP6 +1.74E-05 -0.0006 SKN7 PHD1 +0.1307 -0.0347 

FHL1 FKH2 +0.0237 -0.1308 SKN7 YAP6 -9.0E-05 +0.8024 

FHL1 HMO1 +0.6772 -0.0528 SKO1 PHD1 +0.0816 -0.0146 

FLH1 PHD1 -7.0E-05 +0.0543 SMP1 MAL33 -0.1851 +0.0576 

FHL1 SMP1 -0.0172 +0.0863 SMP1 MGA2 -0.0014 +0.0626 

FKH2 ACE2 +0.0861 +0.6956 SWI4 PHD1 -0.0305 +0.3454 

FKH2 FKH1 +0.0172 +0.5142 SWI6 PHD1 +0.0436 -0.8003 

MAL33 SWI4 +0.2147 -0.0005 SWI6 SWI4 -0.0162 -0.7681 

PHD1 CIN5 +0.0638 -0.0002 YAP6 SWI4 +0.0252 -0.0196 

PHD1 PHD1 -0.0045 +0.3668 YAP6 YAP6 -0.0551 +0.1087 



Cannot calculate a total “effective” weight   

 Tested to see if the weights can 
be combined to one “effective” 
weight 
 Applied weights to model 

concentrations, per sigmoidal  
model calculation 

-0.5

0

0.5

1

1.5

0 20 40 60 80

C
o

n
ce

n
tr

at
io

n
s 

Time (minutes) 

Concentration of Target Gene 
and Regulators 

MAL33 (+0.1629)

MBP1 (wt: +0.0979)

SMP1 (wt: -0.0435)

-0.5

0

0.5

1

1.5

0 20 40 60 80

C
o

n
ce

n
tr

at
io

n
s 

Time (minutes) 

Concentration of Target Gene and 
Regulators 

ACE2 (+0.2550)

FKH2 (wt: +0.0971)

RAP1 (wt: +0.0075)

ZAP1 (wt: -0.3912)

-1.5

-1

-0.5

0

0.5

1

0 20 40 60 80

C
o

n
ce

n
tr

at
io

n
s 

Time (minutes) 

Concentration of Target Gene and 
Regulators 

TEC1 (+0.0022)

FLH1 (wt: -0.3562)

PHD1 (wt: +0.2947)

SKN7 (wt: -1.8432)

TEC1 (wt: -0.3474)



Regulation Network with Added Genes 

Fermentation regulator 

Regulates Meiotic Gene Expression 

Osmotic/Oxidative Stress Reponses Invasive/Pseudohyphal Growth 

Regulates Ribosomal Protein Expression 

TF for Glycerol Biosynthesis Genes Septum Destruction > Cytokinesis 

Activator of genes regulated by NCR 

Fatty acid desaturation 

Stress Response 

HAP5 SWI6 SKO1 MSS11 AFT2 HMO1 

SWI4 CIN5 PHD1 YAP6 SKN7 FHL1 

MBP1 MAL33 HOT1 SMP1 FKH2 ACE2 ZAP1 

GLN3 MGA2 

TEC1 STE12 

RAP1 



Further Research Must be Done 

• Continued exploration of the elements of the network and 
their relative influences could be ongoing and ongoing…. 

• The addition of RAP1, STE12, and TEC1 added transcription 
control to MBP1, SK01, and SWI6. 
– One gene, FLH1, remains without controller. 

– Would like to explore other regulation mechanisms 

• e.g., Zinc regulation of ZAP1 (Wu, et.al., 2008) 

• Where is the “go” button? 

• Further exploration of sigmoidal vs. Michaelis Menten models 
is important.  

• Automation of this process would be convenient and not to 
difficult to achieve in Matlab. 



Model Constructed Using Yeast Cold Shock Data 
Does Provide Relative Contributions from TFs 

• The large numbers of genes in a genome provides 
statistically significant information in a series with few 
time steps.  

• Powerful tools exist to explore hierarchical structures and 
clustering of expression profiles. 

• We are on our way to a model that provides relative 
regulation contributions of different transcription factors. 

• Examination of the weights and concentrations of each 
individual gene and its regulators is necessary – there is 
no trick. 
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