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SUMMARY

Metabolic adaptation is essential for cell survival
during nutrient deprivation.We report that eukaryotic
elongation factor 2 kinase (eEF2K), which is activated
by AMP-kinase (AMPK), confers cell survival under
acute nutrient depletion by blocking translation
elongation. Tumor cells exploit this pathway to adapt
to nutrient deprivation by reactivating the AMPK-
eEF2K axis. Adaptation of transformed cells to
nutrient withdrawal is severely compromised in cells
lacking eEF2K. Moreover, eEF2K knockdown re-
stored sensitivity to acute nutrient deprivation in
highly resistant human tumor cell lines. In vivo, over-
expression of eEF2K rendered murine tumors
remarkably resistant to caloric restriction. Expres-
sion of eEF2K strongly correlated with overall sur-
vival in human medulloblastoma and glioblastoma
multiforme. Finally, C. elegans strains deficient in
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efk-1, the eEF2K ortholog, were severely compro-
mised in their response to nutrient depletion. Our
data highlight a conserved role for eEF2K in protect-
ing cells from nutrient deprivation and in conferring
tumor cell adaptation to metabolic stress.

INTRODUCTION

Nutrient deprivation (ND) is a severe physiological stress with

dire consequences for cell viability. Living organisms have there-

fore evolved molecular mechanisms to respond to ND, including

metabolic reprogramming to preserve energy balance (Caro-

Maldonado and Muñoz-Pinedo, 2011). A key mediator is the

highly conserved energy sensor AMP-activated protein kinase

(AMPK), which is activated when cellular AMP:ATP or ADP:ATP

ratios increase (Hardie, 2011). AMPK limits energy-consuming

processes such as proliferation and protein synthesis and in-

duces catabolic processes such as glycolysis and fatty acid

oxidation to preserve energy (Hardie, 2011). Another critical

nutrient sensor is mammalian target of rapamycin complex 1
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(mTORC1), which is regulated by ATP and amino acid levels

(Zoncu et al., 2011). This complex couples nutrient abundance

to control of protein synthesis through phosphorylation of

4EBP1 and p70S6K (Hay and Sonenberg, 2004). When nutrient

availability is compromised, mTORC1 is inactivated, in part

through AMPK (Inoki et al., 2003), thereby blocking protein

synthesis, the most energy-demanding process in the cell

(Buttgereit and Brand, 1995).

Pathologic ND occurs along with hypoxia in early stages of

tumor development before new blood vessels form or at later

stages due to abnormal tumor vasculature (Nagy et al., 2009).

While metabolic stress prevents tumor development by inducing

growth arrest and necrosis, it may also select for metabolically

adapted cells that can form aggressive tumors (Jones and

Thompson, 2009). Proto-oncogenes such as MYC, AKT, and

mTOR that stimulate anabolic metabolism sensitize cells to ND

(Buzzai et al., 2005; Choo et al., 2010; Shim et al., 1998). This

argues that, to balance initial oncogenic events driving energy-

demanding processes such as proliferation, tumors must

develop adaptive responses to protect cells from ND (Jones

and Thompson, 2009). Several factors have been linked to

such responses, including ATF4, NFkB, and CPT1C, which

affect amino acid synthesis, mitochondrial respiration, and fatty

acid oxidation, respectively (Mauro et al., 2011; Ye et al., 2010;

Zaugg et al., 2011). However, our understanding of this process

is incomplete, and uncovering the molecular pathways involved

is critical for potential therapeutic targeting in tumors.

In this study, we report that eukaryotic translation elongation

factor 2 kinase (eEF2K) is a conserved mediator of the cellular

response to ND. EEF2K inhibits activity of translation elongation

factor eEF2, which mediates the translocation stage of transla-

tion elongation, whereby polypeptidyl-tRNAs move from the A

to the P site of the ribosome (Carlberg et al., 1990). Activity of

eEF2K is tightly controlled by nutrient availability, notably

through direct positive regulation by AMPK and inhibition by

mTORC1 and Ras-Erk-p90RSK pathways (Proud, 2007). In the

absence of nutrients, eEF2K is activated to phosphorylate and

inactivate eEF2 (Ryazanov et al., 1988), thereby blocking

energy-demanding messenger RNA (mRNA) translation elonga-

tion (Carlberg et al., 1990). Our data demonstrate a critical role

for eEF2K in protecting normal tissues from acute ND through in-

hibition of eEF2 and show that this pathway is exploited by tumor

cells in adapting to metabolic stress.

RESULTS

Oncogenic Transformation Sensitizes Fibroblasts to
Acute ND in Association with Defective eEF2 Signaling
Wefirst tested effects of oncogenic transformation on responses

to acute ND using National Institutes of Health (NIH) 3T3 fibro-

blasts transformed by activated K-RasV12 (RasV12) or the ETV6-

NTRK3 (EN) chimeric tyrosine kinase (Knezevich et al., 1998).

Both oncoproteins constitutively activate Ras-Erk and PI3K-

Akt (Tognon et al., 2002), allowing us to study whether these

pathways impact acute responses to ND. Transformed fibro-

blasts cultured in media lacking glucose, amino acids, and

serum showed massive cell death compared to nontransformed

control cells under ND (Figures 1A and S1A available online).
Apoptosis was confirmed by Annexin V staining (Figure S1B).

Glucose depletion alone induced cell death in transformed cells,

whereas amino acid depletion had little effect (Figure S1C).

Nevertheless, withdrawal of both glucose and amino acids

significantly enhanced cell death in transformed cells (Fig-

ure S1C). Increased cell death was not linked to increased

proliferation or reactive oxygen species (ROS), as these were

similarly reduced or increased, respectively, in control and trans-

formed cells under ND (Figures S1D and S1E). Acute ND precip-

itously reduced ATP levels in control cells, but, unexpectedly,

this was not observed in transformed cells (Figure S1F), arguing

against a severe energetic crisis in the latter. Finally, autophagy

was similarly induced in all three cell lines based on LC3-II accu-

mulation (data not shown), ruling against differential autophagy

flux as the basis of the observed phenotype.

We next assessed mTORC1 signaling, but this was rapidly

and profoundly inhibited in all three cell lines by ND (Figure 1C).

However, activation of another key energy sensor, AMPK, was

compromised in transformed cells under ND, as indicated by

reduced phosphorylation of AMPK or acetyl CoA-carboxylase

(ACC) (Figure 1C). Moreover, phosphorylation of eEF2 at

Thr56, a known marker of AMPK activation, was markedly

blunted under ND in transformed versus control cells (Fig-

ure 1C). EEF2 is essential for translation elongation (Buttgereit

and Brand, 1995), and Thr56 is phosphorylated by eEF2

kinase (eEF2K), the only known kinase for eEF2, to block

eEF2 activity (Carlberg et al., 1990). This suggested that

eEF2 activity was partially retained in transformed cells under

ND. In addition, phosphorylation of eEF2K Ser366, catalyzed

by p90RSK downstream of Ras-Erk to inhibit eEF2K (Wang

et al., 2001), was retained in transformed cells under ND

(Figure 1C).

These results point to eEF2K inhibition and deregulated eEF2

activity in transformed cells under ND. We therefore examined

contributions of Ras-Erk-p90RSK and AMPK to this process,

as both regulate eEF2K (Proud, 2007). Chemical inhibitors of

p90RSK (PD184352 and BI-D1870; data not shown) or domi-

nant-negative p90RSK (DN-RSK; Figure S1G) each reduced

eEF2K-Ser366 phosphorylation and markedly enhanced eEF2

phosphorylation in EN and RasV12 cells under ND. Next, we

ectopically activated AMPK under ND using AICAR and

SMER28, chemical inducers of AMPK, or constitutively active

AMPK. Each strongly induced eEF2 phosphorylation without

changing eEF2K mRNA (data not shown) or protein levels (Fig-

ures S2A and S2B). Therefore, eEF2K activity is deregulated in

transformed cells under ND by sustained Ras-Erk-p90RSK ac-

tivity and reduced AMPK activation. The former likely occurs

through constitutively high Ras activity in RasV12 or EN-trans-

formed cells (Figure 1C). To explore the basis of defective

AMPK activation, we measured AMP:ATP and ADP:ATP ratios,

known physiological inducers of AMPK (Hardie, 2011), because

ATP levels were elevated in transformed cells (Figure S1F).

Whereas both ratios were elevated in control cells under ND

and correlated with AMPK induction (Figure 1C), ratios were

virtually unchanged in transformed cells (Figures 1D and S2C).

Therefore EN- and RasV12-transformed cells unexpectedly

exhibit a defect in the energy response to ND by maintaining

high ATP and failing to raise AMP:ATP and ADP:ATP ratios. To
Cell 153, 1064–1079, May 23, 2013 ª2013 Elsevier Inc. 1065
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confirm that sustained ATP levels inhibit AMPK activation, we

blocked ATP production with 2-deoxyglucose (2-DG) or rote-

none. Both agents, but not an Akt inhibitor, induced AMPK

activity under ND andmarkedly increased eEF2 phosphorylation

(Figure 1E). Together, this indicates that transformation sensi-

tizes fibroblasts to ND in association with defects in AMPK and

p90RSK regulation of eEF2.

Adaptation of Transformed Cells to Chronic ND
Correlates with Increased AMPK-eEF2K Pathway
Activation
We next hypothesized that rare transformed cells might adapt

and acquire resistance to prolonged ND. Therefore, transformed

cells were subjected to repeated cycles of prolonged ND

followed by nutrient resupplementation (Figure 1F and Extended

Experimental Procedures). Indeed, after several weeks, stable

populations of ‘‘selected’’ EN or RasV12 cells, designated EN

selected (EN-S) and RasV12 selected (RasV12-S), respectively,

emerged with the capacity to survive under acute ND (Figure 1F),

which was retained after multiple passages (tested out to ten

serial passages). Importantly, unselected EN- and RasV12-trans-

formed cells subjected to the same adaptation protocol but with

glucose and amino acids (EN-S+Glc+AA and RasV12-S+Glc+AA),

were equally sensitive to ND as their parental counterparts (Fig-

ure S2D), indicating that adaptive reprogramming requires

chronic exposure to ND. Notably, EN-S and RasV12-S cells re-

tained soft-agar-colony-forming activity (data not shown) and

tumorigenicity (Figure S2E). As observed for unselected cells,

EN-S and RasV12-S cells rapidly shut down mTORC1 signaling

during acute ND and exhibited similar levels of Akt activation

and autophagic flux compared to unselected counterparts (Fig-

ures 1G and S2F). In contrast, they displayed increased AMPK

and ACC phosphorylation under ND, suggesting that, like non-

transformed cells, selected cells had reacquired the ability to

activate AMPK under ND (Figure 1G). This correlated with

massively increased eEF2 phosphorylation, which was not due

to altered eEF2K transcript or protein levels (Figures 1G and

S2G). This confirms a correlation between eEF2 phosphorylation

and survival capacity under acute ND. This was not due to inhibi-

tion of the Ras-Erk-p90RSK pathway, as eEF2K Ser366 phos-

phorylationwaspreserved in selected cells under ND (Figure 1G).
Figure 1. Oncogenic Transformation Sensitizes Cells to ND and Alters

(A) Caspase-3 activity assays for NIH 3T3 MSCV, EN, and RasV12 cells grown in

(B) Schematic representation of nutrient-responsive signaling pathways assessed

upstream pathways.

(C) Immunoblot analysis of NIH 3T3 MSCV, EN, and RasV12 cells grown in comp

(D) Intracellular levels of AMP and ATP in NIH 3T3 MSCV, EN, RasV12, EN-S, and

expressed as relative fold increases of AMP:ATP ratio over MSCV Ctrl for n = 3.

(E) Immunoblot analysis of NIH 3T3 EN and RasV12 cells deprived of nutrients (1

glucose (2-DG; 25 mM), or vehicle.

(F) Scheme for generation of EN-S and RasV12-S cells from NIH 3T3 EN and Ra

RasV12-S cells grown in complete media or under ND as indicated (n = 3) (bottom

(G) Immunoblot analysis of NIH 3T3 EN, EN-S, RasV12, and RasV12-S cells grown

(H) Immunoblot analysis of NIH 3T3 EN-S/MSCV, EN-S/DN-AMPK, RasV12-S/MSC

indicated times.

(I) Caspase-3 assays of NIH 3T3 EN-S/MSCV, EN-S/DN-AMPK, RasV12-S/MSCV

48 hr (n = 3).

Where shown, data are reported as means ± SD with indicated significance (*p <
However, blocking AMPK activity with dominant-negative AMPK

(DN-AMPK) markedly reduced eEF2 phosphorylation in selected

cells (Figure 1H) and significantly increased ND-induced cell

death (Figure 1I), highlighting the importance of AMPK reinduc-

tion in resistance to ND. Mechanistically, this was not due to

changes in LKB1 expression (Figure 1G), which directly activates

AMPK (Hardie, 2011). However, AMP:ATP and ADP:ATP ratios

were both markedly increased in EN-S and RasV12-S cells under

ND compared to parental EN and RasV12 cells (Figures 1D and

S2C). Therefore, unlike nonselected tumor cells, selected cells

were able to raise AMP:ATP and ADP:ATP ratios when nutrient

depleted, strongly suggesting that adaptation of EN and RasV12

cells to ND is linked to reactivation of an AMPK-eEF2K axis.

Translation Elongation Is Deregulated in Transformed
Fibroblasts under ND and Restricts Cell Survival
We next asked whether eEF2 deregulation impacts protein syn-

thesis under ND, predicting that high eEF2 activity would sustain

protein synthesis under ND, thereby sensitizing nonselected

tumor cells to apoptosis. However, rates of global protein syn-

thesis were equivalently reduced under ND in both transformed

and nontransformed cells using [35S]-methionine/cysteine

incorporation (Figure 2A) and pulse-labeling with L-azidohomoa-

lanine (AHA) (Somasekharan et al., 2012) (Figure S3A). This is

consistent with the observed block in mTORC1 signaling under

ND (Figure 1C) and argues against a major role for sustained

global protein synthesis in hypersensitivity of nonselected trans-

formed cells to ND. It is noteworthy that a low level of protein syn-

thesis was still observed up to 6 hr under ND (Figure S3B).

We next examined the effects of ND on translation initiation

versus elongation by analyzing polysome profiles from sucrose

gradients. Ribosomal 40S-, 60S-, and 80S-mRNA complexes

represent translationally inactive complexes (subpolysomal frac-

tions), whereas polyribosome (polysome) fractions correspond

to translationally active complexes. ND markedly increased

60S fractions in both control and transformed cells, indicating

a global block in translation initiation (Figure 2B). This is con-

sistent with loss of 4EBP1 phosphorylation (Figure 1C), which

blocks cap-dependent translation initiation, the major rate-

limiting step of mRNA translation (Mathews et al., 2007).

Whereas ratios of polysomal to subpolysomal fractions (P/S)
eEF2 Signaling Pathways

complete media or deprived of nutrients (ND) for the indicated times (n = 3).

in this study. Gray arrows and bars indicate release from regulatory effects of

lete media or under ND for the indicated times.

RasV12-S cells grown in complete media (Ctrl) or under ND for 6 hr. Results are

hr) and treated with Akt inhibitor VII (Akti; 1 mM), rotenone (0.5 mM), 2-deoxy-

sV12 cells (top). Caspase-3 activity assays of NIH 3T3 EN, EN-S, RasV12, and

).

in complete media or under ND for the indicated times.

V, and RasV12-S/DN-AMPK cells grown in complete media or under ND for the

, and RasV12-S/DN-AMPK cells grown in complete media (Ctrl) or under ND for

0.05, **p < 0.01, and ***p < 0.005). See also Figures S1 and S2.
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were not significantly affected by ND in nontransformed cells

(4% ± 0.2% reduction), P/S ratios were dramatically decreased

in EN and RasV12 cells (82% ± 2% and 91% ± 3%, respectively)

under ND (Figure 2B). Because initiation is blocked, this strongly

suggests that, in transformed cells, ribosomes are continuously

running off transcripts (i.e., there is minimal ribosome stalling)

under ND, leading to polysomal disaggregation due to sustained

translation elongation, thus decreasing P/S ratios (Mathews

et al., 2007). Furthermore, under ND, eEF2 remained in an un-

phosphorylated state in mouse embryonic fibroblasts (MEFs)

lacking eEF2K (eEF2K�/�), indicating that translation elongation

was maintained in eEF2K�/� cells under ND, in contrast to wild-

type eEF2K+/+ cells in which eEF2 was strongly phosphorylated

(Figure S3C). ND correlated with accumulation of 60S fractions in

both eEF2K+/+ and eEF2K�/� cells, which is consistent with

blocked translation initiation (Figure S3D). However, the P/S ratio

was more dramatically reduced by ND in eEF2K�/� cells (89% ±

2%) compared to eEF2K+/+ cells (49% ± 1%) (Figure S3D). This

indicates that retained eEF2 activity leads to sustained transla-

tion elongation and polysome disaggregation under ND.

To conclusively demonstrate differential translation elonga-

tion in control versus transformed cells, we measured ribosome

half-transit times under ND. These refer to the time required for a

ribosome to translate an average-sized mRNA and are the

inverse of the elongation rate (Fan and Penman, 1970). Under

ND, ribosome half-transit times were�2-fold longer in nontrans-

formed cells, which is indicative of slower elongation rates

(Figure 2C). In contrast, half-transit times were only slightly

increased by ND in EN and RasV12 cells (i.e., �1.25-fold and

�1.2-fold, respectively) (Figure 2C). This was not due to differ-

ences in intracellular amino acid levels between control and

transformed cells, which were decreased equivalently during

ND (Figure S3E). These data support a model whereby, in

nonselected tumor cells under ND, retained eEF2 activity leads

to sustained translation elongation. To link this to cell death

under ND, we specifically impaired translation elongation in

EN and RasV12 cells by eEF2 knockdown (Figure 2D). Indeed,

ND-induced cell death was substantially reduced in transformed

cells after eEF2 knockdown compared to small interfering RNA

(siRNA) controls (Figure 2E). This further supports a role for

deregulated eEF2 activity in hypersensitivity of transformed cells

to ND. In addition, EN-S/DN-AMPK and RasV12-S/DN-AMPK

cells, which are highly susceptible to ND (Figure 1I), were

rescued from cell death by eEF2 knockdown, suggesting that
Figure 2. Translation Elongation Activity Is Sustained in Transformed

(A) Protein synthesis levels in NIH 3T3MSCV, EN, andRasV12 cells deprived of nutr

incorporation. Results are expressed as a percentage of [35S]-Met/Cys incorpor

(B) Polysome profiles for NIH 3T3 MSCV, EN, and RasV12 cells grown in comp

Procedures. P/S indicates ratio of polysomal to subpolysomal (40S, 60S, and 80

(C) Ribosome half-transit times for NIH 3T3 MSCV, EN, and RasV12 cells grown i

polypeptides (postmitochondrial supernatant, PMS) and into polypeptides releas

regression analysis. Representative results from three different experiments are

(D and E) siRNA-mediated knockdown of eEF2 in NIH 3T3 EN and RasV12 cells. Ce

siRNAs, grown in complete media for 48 hr, and placed under ND for 48 hr. Lysate

(n = 3) (E).

(F and G) siRNA-mediated knockdown of eEF2 in NIH 3T3 EN-S/MSCV, EN-S/D

fected, treated, and analyzed as in (D) and (E).

Where shown, data are reported as means ± SD with indicated significance (**p
AMPK promotes survival of adapted transformed cells by

inhibiting translation elongation (Figures 2F and 2G). Therefore,

sustained translation elongation renders transformed cells

hypersensitive to ND.

eEF2K Is Critical for Cell Survival under ND
Because translation elongation is tightly controlled by eEF2K

(Carlberg et al., 1990), we next examined the impact of eEF2K

expression on cell survival under ND. Similar to nonselected

tumor cells, eEF2K�/� MEFs were highly sensitive to ND

compared with eEF2K+/+ MEFs and underwent apoptotic cell

death under ND (Figures 3A and S4A). In contrast to previous

reports (Wu et al., 2006), this was not associated with defects

in autophagy (Figures S4B and S4C). To establish whether

eEF2 is linked to survival responses under ND, we performed

eEF2 knockdown in eEF2K�/� cells, which harbor high eEF2

activity under ND (Figure S3C). This markedly increased cell

survival compared to siRNA controls (Figures 3B and 3C). More-

over, eEF2K knockdown in NIH 3T3 cells with two independent

eEF2K siRNAs strongly sensitized cells to ND (Figures 3D and

3E). However, coknockdown of eEF2 completely rescued cells

from cell death (Figures 3D and 3E), confirming that eEF2K

mediates survival under ND through its control of eEF2.

Conversely, stable overexpression of eEF2K in EN- and

RasV12-transformed NIH 3T3 cells led to increased eEF2 phos-

phorylation and cell survival under ND (Figures 3F and 3G).

This was not observed with kinase-dead eEF2K, implying that

eEF2 phosphorylation and inhibition of translation elongation

are critical for survival under ND (Figures 3G and S4D).

To directly test the role of eEF2K in the adaptive response of

transformed fibroblasts to ND, we performed eEF2K knockdown

in EN-S and RasV12-S cells (which have high phospho-eEF2

levels; Figure 1G) using two independent siRNAs. This blocked

eEF2 phosphorylation (Figure 3H) and rendered cells signifi-

cantly more susceptible to ND compared to siRNA control cells

(Figure 3I). Finally, eEF2K�/� MEFs transformed with EN or

RasV12 exhibited similar growth in vitro under ambient conditions

as their eEF2K+/+ counterparts (Figures S4E and S4F) and were

similarly tumorigenic in athymic mouse (Figure S4G). However,

when these cells were subjected to the above adaptation

protocol (Figure 1F), transformed eEF2K�/� MEFs had a

strikingly reduced capacity to adapt to repeated ND compared

to transformed eEF2K+/+ MEFs (Figure 3J). These findings

clearly establish eEF2K as a critical survival factor under ND
Cells under ND and Reduces Their Survival

ients for 5min or 1, 3, or 6 hr determined by [35S]-methionine/cysteine(Met/Cys)

ation/mg protein relative to MSCV cells at 5 min (n = 2).

lete media or under ND for 70 min as described in Extended Experimental

S) fractions.

n complete media or under ND for 70 min. [35S]-Met/Cys incorporation into all

ed from ribosomes (postribosomal supernatant, PRS) was obtained by linear

shown.

lls were transiently transfected with 12.5 nM of control (CTRL) or eEF2-directed

s were either analyzed by immunoblotting (D) or assayed for caspase-3 activity

N-AMPK, RasV12-S/MSCV, and RasV12-S/DN-AMPK cells. Cells were trans-

< 0.005). See also Figure S3.
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and in the adaptive response of transformed fibroblasts to

nutrient stress.

eEF2K Is Critical for Survival of Human Tumor Cells
under Nutrient Stress
To extend these findings to human cells, we screened tumor cell

lines for eEF2 phosphorylation under ND. This identified two lines

with widely divergent levels: HeLa cells showed minimal eEF2

phosphorylation, whereas MG63 osteosarcoma cells exhibited

high eEF2 phosphorylation under ND (Figure 4A). HeLa cells ex-

hibited extremely low AMPK activity under ND as reported (Liang

et al., 2007), whereas, in MG63 cells, AMPK activity was high

(Figure 4A). This was tightly associated with survival: HeLa cells

were highly sensitive to ND, whereas MG63 cells were almost

completely resistant to cell death under these conditions (Fig-

ures 4B and 4C), with HeLa cells being particularly sensitive to

glucose withdrawal (Figure S5A). To link this to eEF2 and trans-

lation elongation, we knocked down eEF2 in HeLa cells, which

significantly reduced cell death under ND compared to siRNA

controls (Figures 4D and 4E). Moreover, stable eEF2K overex-

pression increased eEF2 phosphorylation and cell survival in

HeLa cells under ND compared to parental cells (Figures 4F,

4G, and S5B). This strongly argues that hypersensitivity of

HeLa cells is related to reduced eEF2K activity and sustained

translation elongation. Knockdown of eEF2K, which reduced

eEF2 phosphorylation compared to controls (Figure 4H), strongly

increased sensitivity of MG63 cells to ND (Figures 4I and S5C).

This was phenocopied by knockdown of AMPK-subunits a1/

a2, which sensitized MG63 cells to ND-induced cell death, sup-

porting the importance of an AMPK-eEF2K axis in protecting

human tumor cells from ND (Figures S5D and S5E). Overall,

these results demonstrate that eEF2K is critical for survival of

human tumor cells under ND.

eEF2K Protects Tumors against Caloric-Restriction-
Induced Cell Death In Vivo
To determine the relevance of these findings in vivo, EN- and

RasV12-transformed NIH 3T3 cells overexpressing eEF2K or

MSCV vector control were subcutaneously implanted in nu/nu

immunocompromised mice. Mice were either fed a standard

ad libitum (AL) diet or, prior to tumor development, caloric re-
Figure 3. eEF2K Is Critical for the Adaptation of Fibroblasts to ND

(A) Caspase-3 activity assays for eEF2K+/+ and eEF2K�/� MEFs grown in compl

(B and C) siRNA-mediated knockdown of eEF2 in eEF2K�/� MEFs. Cells were tra

grown in complete media for 48 hr, and placed under ND for 48 hr. Cell lysates

(n = 3) (C).

(D and E) siRNA-mediated knockdown of eEF2K and eEF2 in NIH 3T3 MSCV cell

siRNAs (si eEF2K#1 and eEF2K#2) combined with 12.5 nM of control or eEF2 siR

immunoblotting (D) or assayed for cell death (n = 3) (E).

(F) Immunoblot analysis of NIH 3T3 EN/MSCV, EN/eEF2K, RasV12/MSCV, and R

(G) Caspase-3 activity assays for NIH 3T3 EN/MSCV, EN/eEF2K, EN/eEF2K-K1

cells grown in complete media (Ctrl) or under ND for 48 hr (n = 3).

(H and I) siRNA-mediated knockdown of eEF2K in NIH 3T3 EN-S and RasV12-S c

(si eEF2K#1 and eEF2K#2) siRNAs and grown in complete media for 72 hr. Cells w

72 hr and assayed for caspase-3 activity (n = 3) (I).

(J) Cell adaptation assays for eEF2K+/+ and eEF2K�/�MEFs expressing EN or Ras

Experimental Procedures. Results are expressed as the number of cells alive at

Where shown, data are reported as means ± SD with indicated significance (*p <
striction (CR) corresponding to 60% caloric intake of the AL

diet. As described (Kalaany and Sabatini, 2009), CR led to signif-

icant reductions of blood IGF1, insulin, and glucose levels (Fig-

ures S6A–S6C). Tumor sizes in EN and RasV12 vector control

mice were each severely reduced (by �50%) by CR compared

to AL (compare MSCV bars in Figures 5A and 5B). Although

eEF2K-overexpressing tumors were smaller than control tumors

under AL diets, likely due to reduced translation elongation and

therefore overall growth, their sizes were virtually unaffected by

CR (Figures 5A, 5B, and S6D). Notably, EN/eEF2K and RasV12/

eEF2K tumors eventually grew to larger sizes than controls

when mice were reverted to an AL diet following CR (Figures

S6E and S6F), highlighting the survival advantage of high

eEF2K expression in tumors. Morphologic examination revealed

massive necrosis within EN and RasV12 vector control tumors

after CR compared to AL diets. In dramatic contrast, EN/

eEF2K and RasV12/eEF2K tumors from CR animals exhibited

no apparent necrosis (Figures 5C and S6G). In EN and RasV12

control tumors, CR massively increased apoptosis as measured

by IHC of cleaved caspase-3, which was not observed in EN/

eEF2K and RasV12/eEF2K tumors (Figures 5D and S6H), further

accentuating the protective effect of eEF2K in vivo. We then as-

sessed eEF2K activity in AL versus CR tumors by analyzing

phospho-eEF2 levels by IHC or immunoblotting. Phosphoryla-

tion of eEF2 was poorly induced by CR in EN and RasV12 control

tumors (seeMSCV panels in Figures 5E, 5F, S6I, and S6J), which

correlatedwith sustained eEF2K inhibition under CR as indicated

by retention of p90RSK-mediated eEF2K Ser366-phosphoryla-

tion (Figure S6K). In contrast, eEF2 phosphorylation was strongly

induced in EN/eEF2K and RasV12/eEF2K tumors under either AL

or CR and wasmore pronounced under CR (see eEF2K panels in

Figures 5E, 5F, S6I, and S6J). This was confirmed under CR us-

ing eEF2K�/� and +/+MEFs transformedwithRasV12 (FigureS6L).

Although tumor sizes were reduced by CR in RasV12/eEF2K+/+

MEF tumors, effects were more significant in RasV12/eEF2K�/�

MEF tumors (Figure 5G). CR again led to significantly increased

necrosis and apoptosis in RasV12/eEF2K�/� as compared to

RasV12/eEF2K+/+ tumors (Figures 5H and 5I), indicating that

genetic loss of eEF2K further increases sensitivity of tumors to

CR. These results are consistent with a model whereby eEF2K

activity protects tumors from CR-induced cell death in vivo.
ete media or under ND for the indicated times (n = 3).

nsiently transfected with 12.5 nM of control (CTRL) or eEF2-directed siRNAs,

were either analyzed by immunoblotting (B) or assayed for caspase-3 activity

s by transient transfection with 37.5 nM of control (siCTRL) or 25 nM of eEF2K

NAs. Cells were treated as described in (B) and (C). Lysates were analyzed by

asV12/eEF2K grown in complete media or under ND for the indicated times.

70M (kinase-dead), RasV12/MSCV, RasV12/eEF2K, and RasV12/eEF2K-K170M

ells. Cells were transiently transfected with 25 nM of control (siCTRL) or eEF2K

ere placed under ND either for 3 hr and analyzed by immunoblotting (H) or for

V12. Cells were subjected to the adaptation protocol described in the Extended

the completion of the experiment (n = 3).

0.05 and **p < 0.01; ns, nonsignificant). See also Figure S4.
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H I

G

D E

B Figure 4. eEF2K Facilitates Survival of

Human Tumor Cells in Response to ND

(A) Immunoblot analysis of HeLa and MG63 cells

grown in complete media or under ND for the

indicated times.

(B and C) Caspase-3 activity assays (B) or cell

death assays (C) for HeLa andMG63 cells grown in

complete media or under ND for the indicated

times (n = 3).

(D and E) siRNA-mediated knockdown of eEF2 in

HeLa cells. Cells were transiently transfected with

12.5 nM of control (CTRL) or eEF2-directed

siRNAs, grown in complete media for 48 hr, and

placed under ND for 48 hr. Cell lysates were either

analyzed by immunoblotting (D) or assayed for

caspase-3 activity (n = 3) (E).

(F and G) Immunoblot analysis (F) or caspase-3

activity assays (n = 3) (G) of HeLa MSCV and HeLa

eEF2K cells grown in complete media or under ND

for the indicated times.

(H and I) siRNA-mediated knockdown of eEF2K in

MG63 cells. Cells were transiently transfected with

25 nM of control (siCTRL) or eEF2K (si eEF2K#10

and eEF2K#20) siRNAs and grown in complete

media for 72 hr. Cells were placed under ND either

for 3 hr and analyzed by immunoblotting (H) or for

72 hr and assayed for caspase-3 activity (n = 3) (I).

Where shown, data are reported as means ± SD

with indicated significance (*p < 0.05, **p < 0.01,

and ***p < 0.005). See also Figure S5.
Expression of eEF2K Is Associated with Poor Prognosis
in Medulloblastoma and Glioblastoma Multiforme
To probe these findings in primary human tumors, we focused on

medulloblastoma (MB), themost commonmalignant brain tumor

of childhood, and glioblastoma multiforme (GBM), the most

highly malignant adult brain tumor, because eEF2K expression

data were publically available for these tumors (Northcott

et al., 2011). In MB, high eEF2K transcript levels correlated

with the most aggressive and metastatic subtype of MB, namely

group 3 tumors (Northcott et al., 2011). Gene expression profiles

from five independent MB cohorts (total n = 286) demonstrated

highly significant upregulation of eEF2K in group 3 relative to

non-group-3 tumors (Figures 6A and 6B). Furthermore, high

eEF2K expression correlated with significantly decreased overall
1072 Cell 153, 1064–1079, May 23, 2013 ª2013 Elsevier Inc.
survival in all disease variants (p =

0.00003; Figure 6C), as well as in aggres-

sive non-WNT/non-SHH subtypes (p =

0.002; Figure 6D). EEF2K expression

was significantly upregulated in GBM

compared to normal human brain tissue

(�2.5-fold; Figure 6E). Among GBM sub-

types, eEF2K expression was specifically

increased in classical and mesenchymal

subtypes (Figure 6F), both of which are

associated with poor overall and progres-

sion-free survival (Verhaak et al., 2010).

EEF2K expression strongly correlated

with decreased overall survival across all

human glioma subtypes (astrocytoma,
oligodendroglioma, mixed glioma, and GBM) (p = 0.0001; Fig-

ure 6G), as well as in GBM itself (p = 0.001; Figure 6H). Together,

these findings highlight eEF2K expression as a prognostic

biomarker in aggressive human brain tumors.

We next evaluated eEF2K activity inMB tumor samples by IHC

for phospho-eEF2. In a mouse model of MB (Wu et al., 2012),

both primary tumors (Figure 6I, panels 1 and 2) and matching

metastases (Figure 6I, panels 3 and 4) showed extensive

tumor-specific eEF2 phosphorylation (i.e., inactivation), whereas

adjacent normal cerebellar tissue was negative. Similar findings

were observed in primary human MB tumors (n = 7) (Figure 6J).

Thus, eEF2K activity is strongly induced in MB tissues, both

in primary tumor and metastatic compartments, compared

to normal cerebellar tissue. Finally, we tested the potential
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Figure 5. eEF2K Promotes Resistance of Tumors to Caloric Restriction-Induced Cell Death In Vivo

(A and B) Tumor volumes of NIH 3T3 RasV12/MSCV and RasV12/eEF2K (A) or EN/MSCV and EN/eEF2K (B) xenografts implanted subcutaneously in nu/nu mice.

Mice were fed either AL or placed on CR diets (n = 10 mice/group).

(C) Hematoxylin and eosin staining (H&E) of tumor xenografts from (A). Black arrows indicate regions of necrosis. Results are expressed as percentages of

necrotic/total tumor areas (n = 3 mice per group).

(D) Immunohistochemical (IHC) staining of tumor xenografts from (A) with antibodies against cleaved caspase-3. Graphs indicate percent of total cells that are

positive for cleaved caspase-3 (n = 3 mice per group).

(E) IHC staining of tumor xenografts from (A) with anti-phospho-eEF2 antibodies.

(F) Immunoblot analysis of tumor lysates of tumor xenografts from (A).

(legend continued on next page)
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involvement of eEF2K in the response of MB cells to ND. The

group 3 human MB d283 cell line was highly resistant to ND (Fig-

ures S7A and S7B). However, d283 cells transfected with eEF2K

siRNAs exhibited significantly higher cell death under ND

compared to controls (Figures 6K and S7C). This suggests that

eEF2K also promotes survival of MB cells under ND. Together,

these findings indicate that eEF2K expression is predictive of

outcome in MB and GBM and that eEF2K activity protects MB

cells from ND.

The eEF2K Ortholog efk-1 Is Critical for Survival of
C. elegans under ND
To test whether the protective role of eEF2K is conserved, we

examined physiological responses to ND in vivo using the

nematode worm Caenorhabditis elegans. In the absence of

nutrients, newly hatched first larval stage (L1) C. elegans worms

enter a dormant state termed ‘‘L1 diapause,’’ in which

development is halted but survival is sustained for 2 to 3 weeks

(Johnson et al., 1984), thus providing a useful model to study

survival mechanisms under ND independently of concomitant

developmental programs. We assessed a deletion allele of the

C. elegans eEF2K ortholog, efk-1(ok3609), in survival of starved

L1 larvae to determine whether there is a conserved role for

efk-1 in managing ND. Whereas the deletion of efk-1 had only a

minor effect on lifespans of animals grown under nutrient-rich

conditions, survival of efk-1(ok3609) was substantially reduced

under ND compared with wild-type (wt) (N2) worms (Figures 7A

and 7B). Indeed, the mean lifespan of N2 animals in the absence

of nutrients was 13.1 days, whereas efk-1 mutant worms had a

mean lifespan of only 7.4 days (p < 0.00058; Figure 7B). More-

over, efk-1 transcripts were markedly induced by ND in wt L1

larvae (Figure 7C), as were eEF2K levels across various mouse

and human cell lines subjected to ND (Figure 7D). These findings

provide compelling evidence that the eEF2K ortholog efk-1 is a

component of the physiological response of C. elegans to ND

and, thus, that the role of eEF2K in this pathway is highly

conserved.

DISCUSSION

efk-1/eEF2K Is a Component of the Stress Response
to ND
Nutrient deprivation activates multiple transcriptional cascades

to reprogram metabolism when nutrients are limited, such as

induction of AMPK subunit a-2 (prkaa-2/aak-2) (Baugh et al.,

2009; Jagoe et al., 2002). Here, we report that mammalian

eEF2K and its C. elegans ortholog efk-1 are ND-responsive

genes and are components of a nutrient stress adaptive pro-

gram. In mice, eEF2K expression is upregulated when neonates

are deprived of transplacental nutrient supply (Sakagami et al.,
(G) Tumor volumes of eEF2K+/+ RasV12 and eEF2K�/� RasV12 xenografts implante

(n = 10 mice per group).

(H) H&E staining of tumor xenografts from (G). Black arrows indicate areas of necr

mice per group).

(I) IHC staining of tumor xenografts from (G) with antibodies to cleaved caspase-3

mice per group).

Where shown, data are reported as means ± SEM with indicated significance (*p
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2002). Along with our findings, this suggests that the efk-1/

eEF2K system may have evolved to preserve cell survival during

physiological ND (Figure 7E). Given that eEF2K blocks mRNA

translation elongation, this may reflect the need to block transla-

tion elongation along with initiation for an optimal adaptive

response. Indeed, 4EBP1 expression increases under ND

(Jagoe et al., 2002) to support adaptation to metabolic stress,

including ND and hypoxia (Braunstein et al., 2007; Teleman

et al., 2005).

eEF2K Blocks Translation Elongation to Protect Cells
from ND
Inhibiting global mRNA translation increases resistance to ND

in vivo (Pan et al., 2007; Teleman et al., 2005). Indeed, mTORC1

is inactivated under ND to preserve energy balance and amino

acids (Choo et al., 2010; Teleman et al., 2005). Our findings sug-

gest that mTORC1 inhibition alone may be insufficient to fully

protect cells from ND and that eEF2K activation is also critical.

The latter relies on inhibition of the eEF2K substrate, eEF2, sup-

porting the notion that both translation initiation and elongation

must be inhibited to promote survival (Figure 7E). Unexpectedly,

inhibition of translation elongation was not linked to preservation

of ATP nor to altered ROS or autophagic flux. Moreover, inhibi-

tion of elongation did not affect global protein synthesis rates

in nutrient-deprived cells, as overall protein synthesis was

already strongly reduced due to the block in translation initiation.

Nevertheless, eEF2K activation does appear to promote stalling

of ribosomes on transcripts, secondary to blocked translation

elongation. This suggests that, in the absence of eEF2K activa-

tion, polypeptides still elongate under ND and some transcripts

may even bypass the block in initiation through alternative initia-

tion mechanisms (cap-independent or uORF-based processes),

thus supporting their continued translation under nutrient stress.

Therefore, eEF2K may block synthesis of specific subgroups of

proteins instead of affecting overall synthesis. This is particularly

relevant if the latter include proapoptotic factors or anabolic

drivers whose inhibition is critical for adaptation to ND. In keep-

ing with this notion, 4E-BP, which is protective under ND (Tele-

man et al., 2005), blocks synthesis of specific subsets of proteins

involved in proliferation and polyamine biosynthesis (Dowling

et al., 2010).

eEF2K Is Hijacked by Tumor Cells for Adaptation to ND
During tumor development, transformed cells must adapt to

metabolic stress such as ND because anabolic processes

typically driven by oncogenic pathways may have deleterious

effects on the cell when nutrients are scarce (Jones and

Thompson, 2009). Our in vitro studies indicate that hypersensi-

tivity of RasV12- or EN-transformed cells to ND is due to a

block in eEF2K activation through a combination of sustained
d subcutaneously in nu/numice. Mice were fed either AL or placed on CR diets

osis. Results are expressed as percentages of necrotic/total tumor areas (n = 3

. Graphs indicate the percent of total cells positive for cleaved caspase-3 (n = 3

< 0.05 and **p < 0.01; ns, nonsignificant). See also Figure S6.
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Figure 6. eEF2K Transcript Levels Are Associated with Poor Prognosis in Medulloblastoma and Glioblastoma Multiforme

(A and B) Expression levels of eEF2K in the Toronto MB cohort (A) or in the European MB data set (B) (see Extended Experimental Procedures). FC and CB

indicate fetal and adult cerebellum, respectively; MBs indicate the total cohort, and WNT, SHH, group 3, and group 4 indicate the specific disease subgroups. p

values are shown below each panel and were generated using a Mann-Whitney U test.

(C and D) Kaplan-Meier estimates of overall survival for MB patients from all subgroups (C) or from non-WNT/non-SHH subgroups (D) classified by eEF2KmRNA

expression levels. The number of patients at risk is indicated for time increments of 24 months. p values were calculated using a log rank test.

(E and F) Expression of eEF2KmRNA in normal human brain (NHB; n = 10) compared toGBM (n = 25) (E) or in specific disease subtypes of GBM (proneural, neural,

classical, and mesenchymal) (F). p values were determined by ANOVA with a Bonferroni post hoc test.

(legend continued on next page)
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Ras-Erk-p90RSK signaling and dampened AMPK induction.

Given that the Ras-Erk pathway is overactive in �25% of

human tumors, eEF2K may be inhibited in diverse tumors,

therefore restricting their capacity to survive when nutrients

are limited. However, we observed that RasV12- or EN-trans-

formed cells can adapt to nutrient stress, even with sustained

Ras-Erk activity. This is in agreement with previous studies

reporting that, although oncogenic Ras primarily sensitizes

fibroblasts to reduced nutrients (Chiaradonna et al., 2006), it

can also support adaptation to ND by increasing Glut1 and

glucose uptake in tumor cells (Yun et al., 2009). We propose

an additional mechanism for adaptation in which reactivation

of an AMPK-eEF2K axis occurs via the ability of these cells,

unexpectedly, to raise their AMP:ATP and ADP:ATP ratios. In

contrast, defective AMPK activation in nonadapted cells results

from sustained ATP levels, thus blocking the increase in

AMP:ATP and ADP:ATP ratios. This suggests that nonadapted

tumor cells may maintain specific anabolic processes under ND

that sustain ATP.

It is tempting to speculate that eEF2K-mediated adaptation

to ND mimics the process occurring in primary tumors sub-

jected to repeated cycles of metabolic stress. The mechanism

of ND-induced eEF2K activation in vitro appears to involve,

at least in part, activation of an AMPK-eEF2K pathway by

modulation of cellular AMP:ATP and ADP:ATP ratios. In vivo,

defects in eEF2K activity rendered tumor xenografts sensitive

to CR as reported for other models (Kalaany and Sabatini,

2009). Although reduction of glucose levels under CR is

modest compared to the severe conditions imposed in vitro,

this suggests that eEF2K-deficient tumors may be sensitive

to even moderate reductions in glucose in vivo. In addition, a

major effect of CR is to reduce plasma levels of insulin and

IGF1 (Kalaany and Sabatini, 2009). Because eEF2K is nega-

tively regulated by these factors (Wang et al., 2001), in vivo

necrosis in eEF2K-deficient tumors under CR may reflect

enhanced sensitivity of tumors to decreased plasma levels of

insulin and IGF1. We speculate that the combined effect of

compromised plasma nutrient availability, including modestly

reduced glucose levels, coupled with decreased insulin and

IGF1 levels, collaborate to render eEF2K-deficient tumors sen-

sitive to CR.

In summary, our data reinforce the importance of AMPK for

management of nutrient stress in tumors, as AMPK supports

adaptation to ND by activating eEF2K and blocking translation

elongation, in addition to inhibiting ACC and fatty acid synthesis

as reported (Jeon et al., 2012). Thus, eEF2K emerges as a critical

prosurvival factor that can be exploited by tumors to support

adaptation to metabolic stress. The development of therapeutic

strategies to target the eEF2K kinase in tumors, especially
(G and H) Kaplan-Meier estimates of overall survival for all glioma patients (G) o

indicated for time increments of 2,000 (G) or 500 days (H). p values were calcula

(I and J) IHC staining for phospho-eEF2 in primary tumors (I, 1–2) and correspond

primary MB (J). Black arrows indicate the tumor regions, and white triangles indi

(K) siRNA-mediated knockdown of eEF2K in d283 MB cells. Cells were transiently

eEF2K#20), grown in complete media for 72 hr, and harvested or placed under ND

SD for n = 3 (*p < 0.05).

See also Figure S7.
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aggressive human brain tumors, warrants further investigation.

Such strategies may be particularly relevant if combined with

CR mimetics such as 2-DG, angiogenesis inhibitors, or re-

sveratrol, as eEF2K may selectively protect tumors under CR

rather than under nonstress conditions. In conclusion, inhibition

of mRNA translation elongation represents an important mecha-

nism for tumor cells to adapt to ND, highlighting previously

unrecognized possibilities for therapeutic targeting of metaboli-

cally adapted tumor cells.

EXPERIMENTAL PROCEDURES

Cell Culture and Xenografts

NIH 3T3, MG63, HeLa, and d283 cells were purchased from ATCC. NIH 3T3

cells stably expressing EN or K-RasV12 were as described (Ng et al., 2012).

ImmortalizedWT and eEF2K-deficient MEFs were gifts fromDr. Alexey Ryaza-

nov (University of Medicine and Dentistry of New Jersey). ND was performed

with �50% subconfluent cultures in Hanks buffered saline solution (HBSS)-

HEPES (CaCl2$2H2O, 0.185 g/l; MgSO4$7H2O, 0.2 g/l; KCl, 0.4 g/l; KH2PO4

[anhydrous], 0.06 g/l; NaHCO3, 0.35 g/l; NaCl, 8 g/l; Na2HPO4$7H2O,

0.09 g/l; 20 mM HEPES, pH 7.4) containing no glucose, as for the indicated

times, and resupplemented with glucose (4.5 g/l; Fisher) and/or 13 MEM

essential and nonessential amino acid solutions (Invitrogen) and glutamine

(2 mM; Invitrogen) as indicated. For tumor xenografts, cells were injected sub-

cutaneously (5 3 105 cells per site) into flanks of nu/nu mice (Harlan Labora-

tories). CR experiments were carried out as described (Kalaany and Sabatini,

2009); mice in the CR group received 60% of the daily food intake of ad libitum

counterparts. Nine days postinjection, tumor tissues were either snap frozen in

liquid N2 or formalin fixed for IHC.

Protein Synthesis Rate

For [35S]-methionine-cysteine incorporation, cells were pulse labeled with

10 mCi [35S]-methionine and cysteine mix per ml (EasyTag EXPRESS, Perkin

Elmer) for 5 min in HBSS-HEPES as described (Ng et al., 2012). For AHA

incorporation assays, cells were incubated in methionine-free DMEM con-

taining 10% CS for 1 hr and pulse labeled with 50 mM L-AHA for 45 min in

methionine-free DMEM containing 10% CS or in HBSS-HEPES. Cells were

either processed as described in Somasekharan et al. (2012) or fixed, per-

meabilized, and labeled using a Click-iT Cell Reaction Buffer Kit (Invitrogen)

for the Alexa Fluor 488 azide probe (Invitrogen) and sorted by FACS (BD

Bioscience).

C. elegans Studies

C. elegans strains were cultured at 20�C on nematode growth media (NGM)

plates using standard protocols (Brenner, 1974). WT Bristol N2 strain worms

and efk-1(ok3609) deletion mutants were obtained from the Caenorhabditis

Genetics Centre (CGC) of the National Institutes of Health Center for Research

Resources.

SUPPLEMENTAL INFORMATION

Supplemental Information includes Extended Experimental Procedures and

seven figures and can be found with this article online at http://dx.doi.org/

10.1016/j.cell.2013.04.055.
r GBM patients (H) classified by eEF2K mRNA expression levels. Survival is

ted using a log rank test.

ing metastases (I, 3–4) from a mouse model of MB (Wu et al., 2012) or in human

cate adjacent normal cerebellar tissue.

transfected with 25 nM of control (siCTRL) or eEF2K siRNAs (si eEF2K#10 and
for 24 hr. Cell lysates were assayed for caspase-3 activity. Error bars indicate
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Figure 7. The eEF2K Ortholog efk-1 Supports Survival of C. elegans under ND In Vivo

(A) Lifespans of C. elegans WT (N2) and efk-1 (ok3609) homozygous deletion mutants under ambient growth conditions.

(B) Lifespans of N2 and efk-1 (ok3609) mutants at the L1 stage of development for the indicated days in the absence of food. Error bars indicate SEM for

n = 142–150.

(C) Quantitative RT-PCR for efk-1mRNA levels in N2 worms held at the L1 stage for 24 hr in the absence of food (starved) or then placed on food (OP50 bacteria)

for 3 hr (fed). Transcript levels were normalized to g-tubulin (tbg-1) levels. Error bars indicate SD for n = 3 (*p < 0.05).

(D) Quantitative RT-PCR for eEF2K transcripts in the indicated mammalian cell lines grown in complete media (Ctrl) or under ND for 24 hr. Transcript levels were

normalized to b-actin (actb). Results are shown as relative levels in ND versus control conditions for each cell line. Error bars indicate SD for n = 2 (*p < 0.05).

(E) Model for the proposed role of eEF2K/efk-1 in adaptation to ND in normal and tumor tissues. Gray arrows and bars indicate release from regulatory effects of

upstream pathways.
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Caro-Maldonado, A., and Muñoz-Pinedo, C. (2011). Dying for something to

eat: how cells respond to starvation. The Open Cell Signaling Journal 3, 42–51.

Chiaradonna, F., Sacco, E., Manzoni, R., Giorgio, M., Vanoni, M., and Alber-

ghina, L. (2006). Ras-dependent carbon metabolism and transformation in

mouse fibroblasts. Oncogene 25, 5391–5404.

Choo, A.Y., Kim, S.G., Vander Heiden, M.G., Mahoney, S.J., Vu, H., Yoon,

S.O., Cantley, L.C., and Blenis, J. (2010). Glucose addiction of TSC null cells

is caused by failed mTORC1-dependent balancing of metabolic demand

with supply. Mol. Cell 38, 487–499.

Dowling, R.J., Topisirovic, I., Alain, T., Bidinosti, M., Fonseca, B.D., Petroula-

kis, E., Wang, X., Larsson, O., Selvaraj, A., Liu, Y., et al. (2010). mTORC1-

mediated cell proliferation, but not cell growth, controlled by the 4E-BPs.

Science 328, 1172–1176.

Fan, H., and Penman, S. (1970). Regulation of protein synthesis in mammalian

cells. II. Inhibition of protein synthesis at the level of initiation during mitosis.

J. Mol. Biol. 50, 655–670.

Hardie, D.G. (2011). AMP-activated protein kinase: an energy sensor that reg-

ulates all aspects of cell function. Genes Dev. 25, 1895–1908.

Hay, N., and Sonenberg, N. (2004). Upstream and downstream of mTOR.

Genes Dev. 18, 1926–1945.

Inoki, K., Zhu, T., and Guan, K.L. (2003). TSC2 mediates cellular energy

response to control cell growth and survival. Cell 115, 577–590.

Jagoe, R.T., Lecker, S.H., Gomes, M., and Goldberg, A.L. (2002). Patterns of

gene expression in atrophying skeletal muscles: response to food deprivation.

FASEB J. 16, 1697–1712.

Jeon, S.M., Chandel, N.S., and Hay, N. (2012). AMPK regulates NADPH ho-

meostasis to promote tumour cell survival during energy stress. Nature 485,

661–665.

Johnson, T.E., Mitchell, D.H., Kline, S., Kemal, R., and Foy, J. (1984). Arresting

development arrests aging in the nematode Caenorhabditis elegans. Mech.

Ageing Dev. 28, 23–40.

Jones, R.G., and Thompson, C.B. (2009). Tumor suppressors and cell meta-

bolism: a recipe for cancer growth. Genes Dev. 23, 537–548.

Kalaany, N.Y., and Sabatini, D.M. (2009). Tumours with PI3K activation are

resistant to dietary restriction. Nature 458, 725–731.
1078 Cell 153, 1064–1079, May 23, 2013 ª2013 Elsevier Inc.
Knezevich, S.R., McFadden, D.E., Tao, W., Lim, J.F., and Sorensen, P.H.

(1998). A novel ETV6-NTRK3 gene fusion in congenital fibrosarcoma. Nat.

Genet. 18, 184–187.

Liang, J., Shao, S.H., Xu, Z.X., Hennessy, B., Ding, Z., Larrea, M., Kondo, S.,

Dumont, D.J., Gutterman, J.U., Walker, C.L., et al. (2007). The energy sensing

LKB1-AMPK pathway regulates p27(kip1) phosphorylation mediating the

decision to enter autophagy or apoptosis. Nat. Cell Biol. 9, 218–224.

Mathews, M.B., Sonenberg, N., and Hershey, J.W.B. (2007). Origin and princi-

ples of translational control. In Translational Control in Biology and Medicine,

M.B. Mathews, N. Sonenberg, and J.W.B. Hershey, eds. (Cold Spring Harbor,

NY: Cold Spring Harbor Laboratory Press), pp. 1–40.

Mauro, C., Leow, S.C., Anso, E., Rocha, S., Thotakura, A.K., Tornatore, L.,

Moretti, M., De Smaele, E., Beg, A.A., Tergaonkar, V., et al. (2011). NF-kB con-

trols energy homeostasis andmetabolic adaptation by upregulatingmitochon-

drial respiration. Nat. Cell Biol. 13, 1272–1279.

Nagy, J.A., Chang, S.H., Dvorak, A.M., and Dvorak, H.F. (2009). Why are

tumour blood vessels abnormal and why is it important to know? Br. J. Cancer

100, 865–869.

Ng, T.L., Leprivier, G., Robertson, M.D., Chow, C., Martin, M.J., Laderoute,

K.R., Davicioni, E., Triche, T.J., and Sorensen, P.H. (2012). The AMPK stress

response pathway mediates anoikis resistance through inhibition of mTOR

and suppression of protein synthesis. Cell Death Differ. 19, 501–510.

Northcott, P.A., Korshunov, A., Witt, H., Hielscher, T., Eberhart, C.G.,Mack, S.,

Bouffet, E., Clifford, S.C., Hawkins, C.E., French, P., et al. (2011). Medulloblas-

toma comprises four distinct molecular variants. J. Clin. Oncol. 29, 1408–1414.

Pan, K.Z., Palter, J.E., Rogers, A.N., Olsen, A., Chen, D., Lithgow, G.J., and

Kapahi, P. (2007). Inhibition of mRNA translation extends lifespan in

Caenorhabditis elegans. Aging Cell 6, 111–119.

Proud, C.G. (2007). Signalling to translation: how signal transduction pathways

control the protein synthetic machinery. Biochem. J. 403, 217–234.

Ryazanov, A.G., Shestakova, E.A., and Natapov, P.G. (1988). Phosphorylation

of elongation factor 2 by EF-2 kinase affects rate of translation. Nature 334,

170–173.

Sakagami, H., Nishimura, H., Saito, R., and Kondo, H. (2002). Transient up-

regulation of elongation factor-2 kinase (Ca2+/calmodulin-dependent protein

kinase III) messenger RNA in developing mouse brain. Neurosci. Lett. 330,

41–44.

Shim, H., Chun, Y.S., Lewis, B.C., and Dang, C.V. (1998). A unique glucose-

dependent apoptotic pathway induced by c-Myc. Proc. Natl. Acad. Sci.

USA 95, 1511–1516.

Somasekharan, S.P., Stoynov, N., Rotblat, B., Leprivier, G., Galpin, J.D.,

Ahern, C.A., Foster, L.J., and Sorensen, P.H. (2012). Identification and quanti-

fication of newly synthesized proteins translationally regulated by YB-1 using a

novel Click-SILAC approach. J. Proteomics 77, e1–e10.

Teleman, A.A., Chen, Y.W., and Cohen, S.M. (2005). 4E-BP functions as a

metabolic brake used under stress conditions but not during normal growth.

Genes Dev. 19, 1844–1848.

Tognon, C., Knezevich, S.R., Huntsman, D., Roskelley, C.D., Melnyk, N.,

Mathers, J.A., Becker, L., Carneiro, F., MacPherson, N., Horsman, D., et al.

(2002). Expression of the ETV6-NTRK3 gene fusion as a primary event in

human secretory breast carcinoma. Cancer Cell 2, 367–376.

Verhaak, R.G., Hoadley, K.A., Purdom, E., Wang, V., Qi, Y., Wilkerson, M.D.,

Miller, C.R., Ding, L., Golub, T., Mesirov, J.P., et al.; Cancer Genome Atlas

Research Network. (2010). Integrated genomic analysis identifies clinically

relevant subtypes of glioblastoma characterized by abnormalities in PDGFRA,

IDH1, EGFR, and NF1. Cancer Cell 17, 98–110.

Wang, X., Li, W., Williams, M., Terada, N., Alessi, D.R., and Proud, C.G. (2001).

Regulation of elongation factor 2 kinase by p90(RSK1) and p70 S6 kinase.

EMBO J. 20, 4370–4379.

Wu, H., Yang, J.M., Jin, S., Zhang, H., and Hait, W.N. (2006). Elongation

factor-2 kinase regulates autophagy in human glioblastoma cells. Cancer

Res. 66, 3015–3023.



Wu, X., Northcott, P.A., Dubuc, A., Dupuy, A.J., Shih, D.J., Witt, H., Croul, S.,

Bouffet, E., Fults, D.W., Eberhart, C.G., et al. (2012). Clonal selection drives

genetic divergence of metastatic medulloblastoma. Nature 482, 529–533.

Ye, J., Kumanova, M., Hart, L.S., Sloane, K., Zhang, H., De Panis, D.N.,

Bobrovnikova-Marjon, E., Diehl, J.A., Ron, D., and Koumenis, C. (2010). The

GCN2-ATF4 pathway is critical for tumour cell survival and proliferation in

response to nutrient deprivation. EMBO J. 29, 2082–2096.

Yun, J., Rago, C., Cheong, I., Pagliarini, R., Angenendt, P., Rajagopalan, H.,

Schmidt, K., Willson, J.K., Markowitz, S., Zhou, S., et al. (2009). Glucose depri-
vation contributes to the development of KRAS pathway mutations in tumor

cells. Science 325, 1555–1559.

Zaugg, K., Yao, Y., Reilly, P.T., Kannan, K., Kiarash, R., Mason, J., Huang, P.,

Sawyer, S.K., Fuerth, B., Faubert, B., et al. (2011). Carnitine palmitoyltrans-

ferase 1C promotes cell survival and tumor growth under conditions of meta-

bolic stress. Genes Dev. 25, 1041–1051.

Zoncu, R., Efeyan, A., and Sabatini, D.M. (2011). mTOR: from growth

signal integration to cancer, diabetes and ageing. Nat. Rev. Mol. Cell Biol.

12, 21–35.
Cell 153, 1064–1079, May 23, 2013 ª2013 Elsevier Inc. 1079


	The eEF2 Kinase Confers Resistance to Nutrient Deprivation by Blocking Translation Elongation
	Introduction
	Results
	Oncogenic Transformation Sensitizes Fibroblasts to Acute ND in Association with Defective eEF2 Signaling
	Adaptation of Transformed Cells to Chronic ND Correlates with Increased AMPK-eEF2K Pathway Activation
	Translation Elongation Is Deregulated in Transformed Fibroblasts under ND and Restricts Cell Survival
	eEF2K Is Critical for Cell Survival under ND
	eEF2K Is Critical for Survival of Human Tumor Cells under Nutrient Stress
	eEF2K Protects Tumors against Caloric-Restriction-Induced Cell Death In Vivo
	Expression of eEF2K Is Associated with Poor Prognosis in Medulloblastoma and Glioblastoma Multiforme
	The eEF2K Ortholog efk-1 Is Critical for Survival of C. elegans under ND

	Discussion
	efk-1/eEF2K Is a Component of the Stress Response to ND
	eEF2K Blocks Translation Elongation to Protect Cells from ND
	eEF2K Is Hijacked by Tumor Cells for Adaptation to ND

	Experimental Procedures
	Cell Culture and Xenografts
	Protein Synthesis Rate
	C. elegans Studies

	Supplemental Information
	Acknowledgments
	References


