Part 5. Stability Analysis of the System

We use the dimension-less version of the system.
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The Jacobian of the system is
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1) First Steady Point S;

J(0,0) = (é _ODJ

Therefore S; is an unstable saddle point

The Jacobian at the point S, is

NB: The larger the dissipative parameter D is, the more stable along V the system is — as we
expected.

2) Other Steady Point(s)

We are going to modify the expression of the Jacobian of the system
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The coordinates of the other Steady Points are linked by the system of equations
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Eventually we get the friendlier form of the Jacobian
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The Jacobian is very complex. We therefore split the stability study in two parts:
Study of the Sign of the Determinant
Study of the sign of the Trace



3) Study of the Determinant
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Det (J) has the same sign as Ez - 1_—802 , hence same sign as B(1+U )2 - (1— BO)J 2,
us (@+u)

Det (J) has same signas Q(U) =U 2(B + By —1)+ 2BU +B

The study of the sign of the determinant can be found in the scans available on this website. The
main results are:

Case 1: Rk1

There is another steady point (other than S1).
For this steady point , Det (J) is strictly positive

Case 2: R>1 B>1/R

There is another steady point (other than S1).
For this steady point , Det (J) is strictly positive

Case 3: R>1 B=1/R and By<(R-1)/R
There is another steady point (other than S1).
For this steady point , Det (J) is strictly positive

Case 4: R>1 B<1/R and B, <B(R-1)-2,/B(1-BR)

There are two steady point (other than S1).
For one this steady point , Det (J) is strictly positive.
For the other steady point Det (J) is strictly negative




4)  Study of the Trace

The trace of the Jacobian is Tr(J ): (B U T ) ((i'_ﬁc;z J — DF:/
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The trace therefore has the same sign as 3 -D
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We obtain a simple result on the sign of the trace of the Jacobian :

If Bo>1 then Tr(J) is strictly negative regardless of D
Conversely if By<1 the sign of the Trace changes as D increases

If D < Dy, then Tr(J) is strictly positive
If D = Dy, then Tr(J) =0
If D> Dy, then Tr(J) <0

where the limit value of D is Dy, = UBR (1_ By )
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5)

Graphic Summary of the Stability Analysis

First Case R <1

B=1/R

Zone 2:
1 Saddle Point
S1(0,0)

Zone 1-A:

2 steady Points

S4(0,0): Saddle Point
Other Point : Stable Point
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Zone 1-B:

2 steady Points

S4(0,0): Saddle Point

Other Point :
- Unstable Point if D<Dj,
- Center if D = Dy,
- Stable Point if D>Dy,




Second Case R>1

B, B=1/R
Zone 4:
! Sagd(lg g)o int Zone 1-A:
v 2 steady Points

S4(0,0): Saddle Point
Other Point : Stable Point
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,oj Zone 1-B:
2 steady Points
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Other Point :

S1(0,0): Saddle Point

- Unstable Point if D<Dj,
- Center if D = Dy,
- Stable Point if D>Dy;,

Zone 3:
3 steady Points

Last Point :

2 Saddle Points (including S,(0,0))

Zone 2:
2 steady Points

Other Point :

S4(0,0): Saddle Point

- Unstable Point if D<Dj,
- Center if D = Dy,
- Stable Point if D>Dj,

- Unstable Point if D<Dj,
- Center if D = Dy,
- Stable Point if D>Dj,




