Part 5: Stability Analysis of the System

We use the dimension-less version of the system.

$$\left(\frac{dU}{ds} = \frac{U}{1+U} - \frac{BUV}{B_0 + U}\right)$$
$$\frac{dV}{ds} = \frac{CUV}{1+UV} - DV$$

The Jacobian of the system is

$$J(U,V) = \begin{pmatrix} \frac{1}{(1+U)^2} - \frac{BB_0V}{(B_0+U)^2} & -\frac{BU}{B_0+U} \\ \frac{CV}{(1+UV)^2} & \frac{CU}{(1+UV)^2} - D \end{pmatrix}$$

1) First Steady Point S₁

The Jacobian at the point S₁ is

$$J(0,0) = \begin{pmatrix} 1 & 0 \\ 0 & -D \end{pmatrix}$$

Therefore

S₁ is an unstable saddle point

NB: The larger the dissipative parameter D is, the more stable along V the system is – as we expected.

Other Steady Point(s)

We are going to modify the expression of the Jacobian of the system

$$J(U,V) = \begin{pmatrix} \frac{1}{(1+U)^2} - \frac{BB_0V}{(B_0+U)^2} & -\frac{BU}{B_0+U} \\ \frac{CV}{(1+UV)^2} & \frac{CU}{(1+UV)^2} - D \end{pmatrix}$$

The coordinates of the other Steady Points are linked by the system of equations

$$(\otimes) \Leftrightarrow \begin{cases} BV = \frac{B_0 + U}{1 + U} \\ V = R - \frac{1}{U} \end{cases}$$

It follows that
$$\frac{1}{1+UV} = \frac{D}{CU}$$
 and

It follows that
$$\frac{1}{1+UV} = \frac{D}{CU} \text{ and } \begin{cases} \frac{CU}{\left(1+UV\right)^2} - D = \frac{D^2}{CU} - D = \frac{D^2}{C} \left(\frac{1}{U} - R\right) = -\frac{D^2}{C}V \\ \frac{CV}{\left(1+UV\right)^2} = \frac{D^2V}{CU^2} \end{cases}$$

$$J_{11} = \frac{1}{(1+U)^2} - \frac{BB_0V}{(B_0+U)^2} = \frac{1}{(1+U)^2} - \frac{B_0}{(B_0+U)^2} \left(\frac{B_0+U}{1+U}\right)$$

$$J_{11} = \frac{1}{(1+U)^2} - \frac{B_0}{(B_0+U)} \left(\frac{1}{1+U}\right) = \frac{1}{(1+U)^2} \left(1 - \frac{B_0(1+U)}{(B_0+U)}\right)$$

and finally

$$J_{11} = \frac{U}{(1+U)^2} \left(\frac{1-B_0}{(B_0+U)} \right)$$

Eventually we get the friendlier form of the Jacobian

$$J(U,V) = \begin{pmatrix} \frac{U}{(B_0 + U)} \left(\frac{1 - B_0}{(1 + U)^2} \right) & -\frac{BU}{B_0 + U} \\ \frac{D^2 V}{CU^2} & -\frac{D^2 V}{C} \end{pmatrix}$$

The Jacobian is very complex. We therefore split the stability study in two parts:

- Study of the Sign of the Determinant
- Study of the sign of the Trace

3) Study of the Determinant

$$Det(J) = \frac{D^{2}UV}{C(B_{0} + U)} \left(\frac{B}{U^{2}} - \left(\frac{1 - B_{0}}{(1 + U)^{2}} \right) \right)$$

Det (J) has the same sign as $\frac{B}{U^2} - \left(\frac{1-B_0}{\left(1+U\right)^2}\right)$, hence same sign as $B(1+U)^2 - \left(1-B_0\right)U^2$.

Det (J) has same sign as
$$Q(U) = U^2(B + B_0 - 1) + 2BU + B$$

The study of the sign of the determinant can be found in the scans available on this website. The main results are:

Case 1: R<1

There is another steady point (other than S1). For this steady point, Det (J) is strictly positive

Case 2: R>1 B>1/R

There is another steady point (other than S1). For this steady point , Det (J) is strictly positive

Case 3: R>1 B=1/R and $B_0 < (R-1)/R$

There is another steady point (other than S1). For this steady point, Det (J) is strictly positive

Case 4: R>1 B<1/R and $B_0 \le B(R-1) - 2\sqrt{B(1-BR)}$

There are two steady point (other than S1). For one this steady point, Det (J) is strictly positive. For the other steady point Det (J) is strictly negative

4) Study of the Trace

The trace of the Jacobian is
$$Tr(J) = \frac{U}{\left(B_0 + U\right)} \left(\frac{1 - B_0}{\left(1 + U\right)^2}\right) - \frac{DV}{R}$$
 which can be modified as $Tr(J) = \frac{U}{\left(B_0 + U\right)} \left(\frac{1 - B_0}{\left(1 + U\right)^2}\right) - \frac{D}{BR} \left(\frac{B_0 + U}{1 + U}\right)$

The trace therefore has the same sign as
$$\frac{UBR}{\left(B_0+U\right)^2}\left(\frac{1-B_0}{\left(1+U\right)}\right)-D$$

We obtain a simple result on the sign of the trace of the Jacobian:

If B₀>1 then Tr(J) is strictly negative regardless of D Conversely if B₀≤1 the sign of the Trace changes as D increases

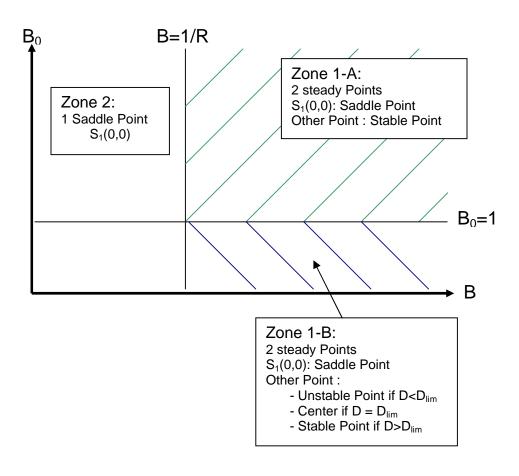
If $D < D_{\lim}$ then Tr(J) is strictly positive

If $D=D_{\mathrm{lim}}$ then $\mathrm{Tr}(\mathrm{J})$ =0 If $D>D_{\mathrm{lim}}$ then $\mathrm{Tr}(\mathrm{J})$ <0

where the limit value of D is $D_{\text{lim}} = \frac{UBR}{(B_0 + U)^2} \left(\frac{1 - B_0}{(1 + U)} \right)$

5) Graphic Summary of the Stability Analysis

First Case R ≤ 1



Second Case R>1

