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SUMMARY

Here we show that yeast strains with reduced target
of rapamycin (TOR) signaling have greater overall
mitochondrial electron transport chain activity during
growth that is efficiently coupled to ATP production.
This metabolic alteration increases mitochondrial
membrane potential and reactive oxygen species
(ROS) production, which we propose supplies an
adaptive signal during growth that extends chrono-
logical life span (CLS). In strong support of this
concept, uncoupling respiration during growth or
increasing expression of mitochondrial manganese
superoxide dismutase significantly curtails CLS
extension in tor14 strains, and treatment of wild-
type strains with either rapamycin (to inhibit TORC1)
or menadione (to generate mitochondrial ROS) during
growth is sufficient to extend CLS. Finally, extension
of CLS by reduced TORC1/Sch9p-mitochondrial sig-
naling occurs independently of Rim15p and is not
a function of changes in media acidification/compo-
sition. Considering the conservation of TOR-pathway
effects on life span, mitochondrial ROS signaling may
be an important mechanism of longevity regulation in
higher organisms.

INTRODUCTION

Active signaling through the conserved TOR pathway limits life
span in budding yeast (Bonawitz et al., 2007; Kaeberlein et al.,
2005; Lavoie and Whiteway, 2008; Pan and Shadel, 2009;
Powers et al., 2006), nematodes (Vellai et al., 2003), fruit flies
(Kapahi et al., 2004), and mice (Selman et al., 2009). In fact, treat-
ment of mice with the TOR inhibitor rapamycin, even starting
relatively late in life, extends life span, representing the first phar-
macological antiaging regimen in mammals (Harrison et al.,
2009). The TOR pathway controls many aspects of cell physi-
ology, including ribosome biogenesis, translation, autophagy,
cell growth, and proliferation (Wullschleger et al., 2006), and
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hence it remains unclear precisely which aspects of TOR
signaling contribute most significantly to aging and life span
regulation (Blagosklonny and Hall, 2009).

In budding yeast, TOR signaling requires two PI3-kinase-like,
serine-threonine kinases encoded by the TOR7 and TOR2
genes, which assemble into two signaling complexes (TORC1
and TORC2) with unique subunit compositions (Loewith et al.,
2002). TORC1 can contain either Tor1p or Tor2p, while TORC2
only contains Tor2p, rendering tor24 lethal and tor714 a viable
genetic background with reduced TORC1 signaling. Signaling
through rapamycin-sensitive TORC1 regulates ribosome
biogenesis and translation in part via activation of the protein
kinase Sch9p, which is an ortholog of mammalian ribosomal
S6 kinase 1 (S6K1) (Urban et al., 2007). Yeast TORC2 appears
to control separate pathways involved in cell-cycle regulation
and cytoskeleton dynamics and is much less sensitive to rapa-
mycin (Cybulski and Hall, 2009).

Mitochondria are involved in aging and age-related pathology
(Balaban et al., 2005; Bonawitz and Shadel, 2007; Shadel, 2008)
and are the cornerstones of the mitochondrial and free radical
theories of aging (Balaban et al., 2005; Wallace, 2005). Mito-
chondrial respiration is a major source of superoxide, which
directly causes oxidative damage to mitochondrial and cellular
molecules or is converted to other ROS that induce aging-asso-
ciated damage (Balaban et al., 2005). We (Bonawitz et al., 2007;
Bonawitz et al., 2006; Pan and Shadel, 2009) and others (Barros
et al., 2004; Fabrizio et al., 2003; Lavoie and Whiteway, 2008;
Longo et al., 1999; Piper et al., 2006) have documented complex
relationships between TOR signaling, mitochondrial function,
ROS, and yeast chronological life span (CLS), defined by the
length of time yeast cells can survive in a nondividing population
in postdiauxic and stationary-phase cultures (Fabrizio and
Longo, 2007; Parrella and Longo, 2008). We showed that CLS
extension in tor14 yeast requires mitochondrial respiration and
is associated with an increase in translation of mtDNA-encoded
subunits of the oxidative phosphorylation (OXPHOS) system
(Bonawitz et al., 2007) and OXPHOS complex density, which
are mediated through downregulation of Sch9p (Bonawitz
et al., 2007; Pan and Shadel, 2009). Importantly, the observed
increases in mitochondrial translation and mitochondrial oxygen
consumption are only manifest during logarithmic and early
postdiauxic growth stages (Pan and Shadel, 2009). Although
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Figure 1. Analysis of Mitochondrial Respiration
Parameters In Vivo and In Vitro in tor14 and sch94
Strains

(A) Mitochondrial membrane potential of DBY2006 (wt) and
tor14 strains during mid-log (12 hr after inoculation), late-
log/postdiauxic (20 hr after inoculation), and early stationary
phase (36 hr after inoculation) measured by DiOC6 staining.
(B) Oxygen consumption of DBY2006 (wt) and tor714 in the
presence (TET) or absence (mock) of 100 uM TET.

A B
350, [=wt — 25, [ mock .
© tor1A c TET
2 300 - £ 20 - L1
Q 5 <
B 250 £
= 200 2 15 ns
t ] O
g 150 ’—1 S 1.0
S 100 o
5 < 05
= 50 ’—| o
00 T T
log post- stationary wt tor1A
diauxic
c D

] NADH-oxidizing

[ mock
mm DNP

oxygen consumption
ATP/O

tor1A O
I P

wild-type yeast exhibit minimal TOR activity in stationary phase,
TOR1 or SCH9 deletion results in fewer ROS in stationary phase,
accompanied by upregulation of Sod2p, the yeast mitochondrial
manganese superoxide dismutase (Bonawitz et al., 2007). Based
on these results, we proposed that relieving TOR inhibition of
respiration during growth stages preconditions yeast to better
survive the stressful conditions of stationary phase (Bonawitz
and Shadel, 2007; Pan and Shadel, 2009).

Active TOR signaling represses stress responses and entry
into stationary phase, in part, by inhibiting the transcription
factors Msn2p/4p and Gis1p (Cameroni et al., 2004). These tran-
scription factors are activated by the kinase Rim15p, lack of
which curtails the CLS extension of strains with genetically or
pharmacologically repressed TOR activity (Fabrizio et al., 2001;
Wei et al., 2008). Thus, there is substantial evidence that reduced
TOR signaling derepresses Rim15p, which activates down-
stream transcription factors to augment CLS extension (Agarwal
et al., 2005; Fabrizio et al., 2001; Wei et al., 2008).

It has recently been proposed that the accumulation of acetic
acid in the culture medium creates a toxic environment that limits
CLS (Burtner et al., 2009; Kaeberlein, 2010) and that deletion of
SCH9 extends CLS by increasing resistance to acid stress (Burt-
ner et al., 2009). Similarly, TORC1 regulates metabolic reconfigu-
ration in stationary phase, resulting in altered levels of ethanol
and glycerol that promote survival (Fabrizio et al., 2005; Wei
et al.,, 2009). The connections between TOR-regulated mito-
chondrial respiration, metabolite accumulation, stress-resis-
tance pathways, and other aspects of cell physiology implicated
in yeast CLS remain largely unknown (Fontana et al., 2010).

In this study, we have revealed that reduced TORC1 signaling
mediates CLS extension, to a significant degree, by cell-intrinsic
regulation of mitochondrial respiratory coupling that elevates
mitochondrial membrane potential and ROS during growth.
Furthermore, we provide evidence that elevated ROS (e.g.,
superoxide) during growth is an adaptive mitochondrial signal
that programs the downregulation of mitochondrial potential
and ROS in stationary phase to promote longevity.
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(C) Oxygen consumption of wild-type (wt) and tor74 in the
presence or absence of 10 uM DNP.

(D) ATP/O ratio of mitochondria isolated from wild-type (wt),
tor14, and sch94 strains under NADH- or succinate-
oxidizing conditions. Error bars represent the mean + SD
with p values from a Student’s unpaired t test denoted as
follows: *=p < 0.05, ™ =p < 0.01, and “ns” denoting no
significance (p > 0.05) between the indicated comparisons.
See also Figures S1 and S2.
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RESULTS

Reduced TORC1 Signaling Enhances Mitochondrial
Respiratory Capacity and Coupling
To date, the relative contributions of TORC1 and TORC2
signaling with regard to CLS and age-associated mitochondrial
phenotypes have not been established. To this end, we analyzed
a yeast strain lacking the TCO89 gene, which encodes a protein
subunit unique to TORC1 (Reinke et al., 2004). Compared to an
isogenic wild-type control strain, this strain has a significantly
longer CLS (Figure S1A) and, as we reported previously in
tor1 4 strains (Bonawitz et al., 2007), had increased mitochondrial
oxygen consumption (Figure S1B), but decreased mitochondrial
and cellular ROS in early stationary phase (Figures S1C and S1D).
We next analyzed strains that were deleted for either AVO2 or
BIT61, nonessential genes that encode protein subunits unique
to TORC2 (Wullschleger et al., 2005), and found that they also
exhibited increased CLS (Figure S1E), however to alesser degree
than deletion of TCO89 (Figure S1A). Similarly, mitochondrial
oxygen consumption was increased moderately in these strains
(Figure S2F). The reductions in mitochondrial and cellular ROS
were similar in bit614, avo24 and tco894 strains (Figures S1C,
S1D, S1G, and S1H). These data solidify the hypothesis that
reduced TORC1 activity specifically mediates the majority of
the previously ascribed effects of reduced TOR signaling on mito-
chondrial function, ROS and CLS, but also demonstrate that
TORC2 can similarly, although less dramatically, affect these
parameters through a mechanism that remains to be determined.
Mitochondrial membrane potential is determined by a balance
between electron transport chain-driven pumping of protons
outward across the inner mitochondrial membrane and dissipa-
tion of the proton gradient, either by ATP synthase-driven proton
translocation or unproductive proton leak. We measured mito-
chondrial membrane potential during various growth and
stationary phases. At 36 hr postinoculation, when cultures are
in early stationary phase, tor14 strains had lower membrane
potential than wild-type strains (Figure 1A), similarly to what we
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Figure 2. Effects of Uncoupling Respiration on
CLS of Wild-Type and tor14 Strains

(A and B) CLS assays (viability as a function of time after
inoculation) of tor714 (A) or wild-type (B) strains treated
with 10 uM DNP (tor74, DNP) or vehicle (tor14, mock) for
the first 24 hr after inoculation (gray box).

(C and D) CLS assays of wild-type (C) or tor14 (D) strains
treated with 10 pM DNP from inoculation until termina-
tion of the aging experiment. Error bars represent the
mean + SD.
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Coupled Respiration Contributes

to Reduced TORC1-Mediated CLS
Extension

TORC1 is most active during logarithmic
growth, downregulated as cells progress
through postdiauxic growth (late logarithmic),
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reported previously at 24 hr postinoculation (Pan and Shadel,
2009). Yet during mid-logarithmic growth (12 hr postinoculation),
tor1 4 strains showed elevated membrane potential compared to
wild-type strains, while no difference was observed between
these strains at 20 hr postinoculation, as cultures approach the
postdiauxic shift (Figure 1A). These differences are likely due to
the wild-type strain building and maintaining membrane poten-
tial in early stationary phase (following increased respiration
during diauxic and postdiauxic growth), while the tor74 null
strain has greater respiration early in logarithmic phase that
steadily decreases as a function of time in culture (Bonawitz
et al., 2007). When electron transport chain activity is coupled
tightly to ATP synthesis, inhibition of the ATP synthase prevents
dissipation of the proton gradient to result in decreased electron
transport and mitochondrial oxygen consumption. To identify the
source of elevated membrane potential in tor74 yeast during
growth and determine if reduced TORC1 signaling affects mito-
chondrial coupling, we evaluated relative responses to respira-
tion inhibitors in vivo and respiration in isolated mitochondria
from logarithmically growing yeast. When treated with the ATP
synthase inhibitor triethyl-tin bromide (TET), cultures of the
tor14 strain, but not the wild-type strain, responded by
decreasing oxygen consumption (Figure 1B), indicating that
ATP production is better coupled to electron transport in the
tor14 strain. When cultures of these strains were treated with
dinitrophenol (DNP), which causes proton leak and complete
uncoupling of electron transport from ATP synthesis, the tor14
strain robustly increased oxygen consumption, while wild-type
strains were relatively unaffected (Figure 1C). Consistent with
in vivo results, we observed higher ATP/O ratios, NADH- and
succinate-driven oxygen consumption, and increased complex
Il and IV activities in mitochondria isolated from tor74 and
sch94 strains compared to wild-type (Figures 1D, S2A, and
S2B). From these results, we conclude that during early logarith-
mic growth, reduced TOR signaling increases electron transport
chain capacity and coupled ATP synthesis.
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and largely inactive in stationary phase (Wulls-
chleger et al., 2006), yet reduced TORC1 sig-
naling results in extended stationary phase
survival and CLS. To test the hypothesis that
increased coupling and membrane potential
during growth contributes to extended CLS in yeast with
reduced TORC1 signaling, we treated tor7 4 and wild-type yeast
cultures with DNP for the first 24 hr of growth (Figures 2A and 2B,
gray box) and then shifted yeast into conditioned media lacking
the drug. This growth-phase DNP treatment virtually eliminated
the extended CLS of the tor14 strain relative to vehicle-only
controls, but had little effect on CLS in identically treated wild-
type strains (Figures 2A and 2B). In contrast, adding DNP to
wild-type cultures during growth and stationary phase slightly
increased CLS (Figure 2C), as reported previously (Barros
et al., 2004). However, similar to DNP treatment during growth
only, DNP treatment of tor14 cultures during growth and
stationary phase severely attenuated CLS extension (Figure 2D).
Together, these results indicate that mild uncoupling during
stationary phase can slightly extend CLS of wild-type strains,
but that increased coupled respiration during some phase of
active growth is important for extension of CLS imparted by
reduced TORC1 signaling.

Elevated Mitochondrial ROS during Growth Are Needed
for Full CLS Extension

The results presented so far suggested that reduced TORC1
signaling enhances respiratory coupling during growth to
somehow elicit an adaptive, CLS-extending response in sta-
tionary phase. Although mitochondrial membrane potential
could be sensed directly, we pursued a hypothesis in which
elevated membrane potential during growth generates mito-
chondrial ROS, which have known functions in cellular signaling
(Hamanaka and Chandel, 2009; Linnane et al., 2007; Starkov,
2008).

As we documented previously (Bonawitz et al., 2007), tor14
strains have reduced ROS based on DHE staining relative to
wild-type strains in early stationary phase (Figure 3A). However,
during logarithmic growth, where we already have documented
increased mitochondrial membrane potential (Figure 1A), tor14
strains have elevated DHE staining (Figure 3A). To determine if
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reduced TORC1 signaling specifically elevates mitochondrial
ROS, we analyzed the pattern of DHE staining in logarithmically
growing cells. Upon oxidation, DHE intercalates into proximal
nucleic acids (usually DNA) to generate a fluorescent signal
(Vanden Hoek et al., 1997; Benov et al., 1998). In wild-type cells,
low levels of ROS throughout the cytoplasm induce DHE interca-
lation into nuclear DNA, resulting in a single focus of fluores-
cence (Figure 3B, top). In contrast, in tor1 4 strains, the presence
of multiple foci of DHE fluorescence and tubular structures
(Figure 3B, bottom, arrows) in over 80% of cells indicates DHE
intercalation with mtDNA following oxidation by mitochondrial
ROS. Finally, to determine if coupled respiration drives ROS
production during growth in tor74 yeast, we treated cells with
DNP for the first 24 hr of growth and measured DHE fluorescence
at the conclusion of DNP treatment. Consistent with more un-
coupled respiration in wild-type yeast during growth, DNP did
not affect wild-type cellular ROS (Figure 3C). However, DNP
treatment reduced DHE staining of tor714 to wild-type levels,
supporting that reduced TORC1 signaling couples respiration,
increases membrane potential, and drives mitochondrial ROS
production during growth. Since DHE is primarily used to detect
superoxide, but can also react with other ROS, we analyzed wild-
type and tor1 4 strains with DHR, which preferentially reacts with
hydrogen peroxide (Henderson and Chappell, 1993). In contrast
to our DHE results, tor1 4 strains exhibit consistently lower DHR
staining than wild-type (Figure S3A). Finally, overexpression of
SOD2, which encodes mitochondrial manganese superoxide
dismutase, significantly curtails CLS extension in a tor14 strain,
but has no effect in the isogenic wild-type strain (Figure S3B).
Therefore, we conclude that mitochondrial superoxide produced
during growth in a TORC1-inhibited strain can act as an adaptive
signal to extend CLS.

Growth-Phase TORC1 Inhibition or Enhanced
Mitochondrial ROS Extends CLS

If mitochondrial superoxide during growth determines a signifi-
cant portion of extended CLS in strains with reduced TORC1
activity, elevating mitochondrial superoxide levels in wild-type
yeast should extend CLS. We treated wild-type and tor7 4 yeast
with menadione (MD), which participates in redox cycling to
generate superoxide (Castro et al., 2008). FACS analysis of
DHE-stained cells indicated that MD treatment causes a signifi-
cant increase in cellular superoxide of wild-type cells, and the
pattern of DHE fluorescence colocalizes with mitochondria-
targeted GFP in >50% of MD-treated cells (Figures S4A and
S4B), indicating that mitochondrial superoxide is being pro-
duced. As shown in Figure 4A, MD treatment for the first 24 hr
of growth extends CLS of wild-type yeast relative to vehicle-
treated controls. Similar to reduced TORC1 signaling, MD treat-
ment during growth also led to an adaptive decrease in mito-
chondrial membrane potential and DHE staining in stationary
phase (Figures 4C and 4D). Therefore, elevating mitochondrial
superoxide during growth in wild-type strains phenocopies
the reduced mitochondrial membrane potential and reduced
superoxide levels observed in stationary phase of tor14 strains
and extends CLS. Furthermore, the inability of the same treat-
ment to further alter these stationary-phase parameters and
extend CLS in the tor1 4 strain (Figures 4B-4D) strongly suggests
that, during growth, reduced TORC1 signaling and elevated
mitochondrial superoxide function in the same pathway to regu-
late CLS.

Growth phase appears to be a critical window during which
reduced TORC1 signaling influences CLS. Consistent with this
hypothesis, treating a wild-type strain with rapamycin just during
growth increased CLS (Figure 4E), which was accompanied by
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Figure 4. Elevating Superoxide via Menadione or
Rapamycin Treatment Only during Growth Extends
CLS of Wild-Type Yeast

(A and B) CLS assays of wild-type (A) or tor14 (B) strains
treated with 1 uM menadione (MD) or vehicle (mock) for
the first 24 hr of growth (gray box).

(C) FACS analysis of stationary-phase DHE staining of
wild-type (wt) and tor714 strains that were treated with
menadione (+MD) or vehicle for the first 24 hr of growth.
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(F) DHE fluorescence of a wild-type strain treated with
rapamycin or vehicle (mock) for the first 24 hr of growth.
Bars on the left indicate DHE staining during growth with
and without rapamycin treatment; bars on the right indi-
cate DHE staining in stationary phase following rapamycin
treatment during growth. Error bars represent the mean +
SD with p values indicated as described in the legend to
Figure 1. See also Figure S4.
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chondrial response to media neutralization in
wild-type yeast that is important for CLS exten-
sion. Interestingly, although media neutraliza-
tion extended CLS of a tor14 strain to
some extent, oxygen consumption, DHE stain-
ing, and mitochondrial membrane potential in

growth
(rap treatment)

significantly elevated DHE staining during growth and reduced
DHE staining in stationary phase relative to untreated cells (Fig-
ure 4F). Importantly, neither MD nor rapamycin treatment in
stationary phase extended CLS (Figures S4C and S4D), confirm-
ing that increased mitochondrial ROS during growth phase is
a key determinant of CLS.

Reduced TORC1-Mediated CLS Extension

Is Cell-Intrinsic and Rim15p-Independent

It was recently reported that extracellular accumulation of meta-
bolic organic acid by-products is the major parameter that limits
yeast CLS (Burtner et al., 2009). As reported by others (Burtner
et al,, 2009), we found that neutralizing the culture medium
extended CLS of wild-type and tor14 yeast strains (Figure 5A),
although the latter to a lesser extent. Because our results impli-
cate mitochondrial function as a key determinant of CLS, we
investigated mitochondrial parameters in neutralized and un-
treated cultures and found that, in wild-type strains, oxygen
consumption is gradually modulated in response to neutraliza-
tion, resulting in a reduced rate of oxygen consumption 24 and
48 hr (Figures 5B and S5A) after neutralizing the media. Media
neutralization also reduced DHE staining and mitochondrial
membrane potential in wild-type stationary-phase cultures
(Figures 5C and 5D), supporting the correlation between these
parameters and CLS. Together, these results support a mito-
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stationary

stationary phase were not additionally de-
creased in this strain (Figures 5C, 5D, and
S5B). These results suggest that reducing
TORCH1 activity does not extend CLS exclusively
by reducing media acidification and that media
neutralization partially determines CLS by mechanisms that are
independent of mitochondrial function.

We next examined whether any cell-extrinsic factor was
responsible for the ability of reduced TOR signaling to extend
CLS. We grew wild-type, tor1 4, and sch94 strains to the begin-
ning of stationary phase (when the largest changes in pH mani-
fest) and exchanged the growth medium for the remainder of
the aging experiment. This media exchange between either
wild-type and tor74 (Figure 5E) or wild-type and sch94 (Fig-
ure 5F) cultures had no effect on CLS of any of the strains. This
demonstrates that the effects of reduced TORC1 activity on
CLS are cell-intrinsic and not a function of acidification or
increases in ethanol in stationary-phase media that we observed
in tor14 and sch94 cultures (Figure S6).

The Rim15p kinase relays input from several signaling path-
ways, including TORC1-Sch9p, to transcription factors that
mediate cellular stress responses and is an important determi-
nant of yeast CLS. Hence, we examined if Rim15p functions
downstream of the TORC1/Schp9 mitochondrial pathway to
regulate CLS. In agreement with the findings of others (Wei
et al.,, 2008), we observe that deletion of RIM15 curtails CLS
(Figure 6A). However, deletion of SCH9 extended CLS of the
rim154 strain to a similar degree as it does its isogenic wild-
type control strain, demonstrating that SCH9 deletion can
extend CLS independently of Rim15p. Furthermore, CLS of the
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Life Span in Synthetic Dextrose Medium, but
Extended CLS in tor14 and sch94 Strains is Due
to Cell-Intrinsic Effects

(A) CLS curves of wild-type (wt) and tor1 4 in unneutralized
(mock) and NaOH-neutralized (neutralized) SD media.
Media was neutralized at the beginning of stationary
phase.

(B) Oxygen consumption of neutralized (wt neutralized) or
not (wt mock treated) wild-type cells 4 and 24 hr after
neutralization.

(C) Stationary phase DHE fluorescence of wild-type (wt)
and tor14 cells neutralized or untreated (mock).

(D) Mitochondrial membrane potential of cells treated as
described in (C).

(E) CLS of wild-type and tor74 in original media (open
symbols) or subjected to media swap (swap) in stationary
phase.

(F) Same as (E), except wild-type and sch94 strains were
analyzed. Error bars represent the mean + SD with p
values indicated as described in the legend to Figure 1.
See also Figures S5 and S6.
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rim154/sch94 strain was intermediate to wild-type and sch94
(Figure 6A), showing that much, but not all, of the CLS-extending
effects of SCH9 deletion in a wild-type strain can be attributed to
Rim15p activation.

We next investigated whether changes in mitochondrial func-
tion and/or stress response pathways could explain the ability of
SCH9 deletion to extend CLS in the absence of Rim15p. First,
rim154 strains had greater mitochondrial oxygen consumption
during growth and greater mitochondrial membrane potential
and ROS in stationary phase, the latter of which likely contribute
to shortened CLS. As it does in a wild-type background, deletion
of SCH9 in the rim15 4 background further increased mitochon-
drial oxygen consumption (Figure 6B), yet stationary-phase
mitochondrial membrane potential and ROS were reduced to
below wild-type levels (Figures 6C-6E). Next, we determined if
the ability of SCH9 deletion to rescue the decreased CLS of
arim154 strain could also be explained by Rim15p-independent
activation of Gis1p and Msn4p, transcription factors down-
stream of Rim15p. We measured abundance of two mRNAs,
SSA3 and SHC1, whose transcription is induced by Gis1p
(Zhang and Oliver, 2010; Zhang et al., 2009). As expected,
expression of both target mMRNAs was increased in strains lack-
ing SCHY (Figures S6A and S6B), and deletion of RIM15 did not
decrease Gis1p target gene expression, consistent with parallel
pathways of Gis1p regulation (Zhang and Oliver, 2010; Zhang
et al., 2009). However, deletion of both RIM15 and SCH9
substantially increased expression, suggesting that Gis1p might

10 stationary phase (Figure S6C), suggesting that
deleting SCH9 can induce Msn4-GFP nuclear
localization independently of Rim15p. Alto-
gether, these results suggest that, in addition

to altering mitochondrial respiration and ROS production,

deleting SCH9 can also enhance stress responses in a

Rim15p-independent manner, both of which likely contribute

significantly to the rescue of the curtailed CLS of a rim154 strain.

DISCUSSION

While the involvement of mitochondria in aging and longevity is
well accepted, the precise mechanisms involved remain unre-
solved. Cellular oxidative damage and stress mediated by
enhanced mitochondrial ROS production are commonly invoked
as mediators of the mitochondrial effects on aging; however, the
emergence of mitochondria and ROS as signaling entities has
invited speculation on more intricate mitochondrial theories of
aging (Fleury et al., 2002; Hamanaka and Chandel, 2009;
Schieke et al., 2006; Starkov, 2008). In this study, we examined
how TOR signaling influences mitochondrial function, ROS, and
yeast CLS. From our results, we conclude that reduced TORCH1
signaling reconfigures mitochondrial respiration toward a more
coupled state that increases mitochondrial membrane potential
and ROS production during active growth phases, providing an
adaptive ROS signal that enhances survival in stationary phase
and extends CLS (Figures 1A-2A and 7). The main results that
support this conclusion are (1) mitochondria in tor14 strains
have higher membrane potential and produce more mitochon-
drial ROS during growth due to enhanced coupling of electron
transport to ATP synthesis (Figures 1 and 3), (2) uncoupling
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Figure 6. The Reduced Chronological Life
Span of a rim154 Strain is Rescued by Dele-
tion of SCH9 via Effects on Mitochondrial
Respiration and ROS

(A-E) Chronological life span (A), mitochondrial
oxygen consumption (B), mitochondrial membrane
potential (C), MitoSOX fluorescence (D), and DHE
fluorescence (E) of DBY2006 (wt) and isogenic
rim154, sch94, and rim154/sch94 strains. Mito-
chondrial parameters were measured in early

stationary phase as described in Experimental
Procedures. Error bars represent the mean + SD
with p values indicated as described in the legend to
Figure 1. See also Figure S7.

(Castro et al., 2008) to extend CLS strongly
supports this conclusion (Figures 4A, S4A,
and S4B). Additionally, similar treatment of
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respiration during growth alone or overexpressing SOD2
prevents CLS extension in tor14 strains (Figures 2, 3, and S3),
and (3) inhibiting TORC1 with rapamycin or generating an artifi-
cial mitochondrial ROS signal with MD in a wild-type strain just
during growth is sufficient to extend CLS (Figure 4).

As we showed previously for mitochondrial oxygen consump-
tion and translation of mtDNA-encoded OXPHOS subunits (Pan
and Shadel, 2009), mitochondrial membrane potential in tor14
strains is higher than in wild-type strains during active growth,
but gradually declines to levels below wild-type in stationary
phase (Figure 1A). Since yeast have no known uncoupling
proteins, which in mammals can be induced to uncouple respira-
tion and reduce membrane potential (Azzu et al., 2010; Kaden-
bach, 2003), we propose that mitochondrial membrane potential
is likely greater during growth in tor74 strains due to (1) more
electron transport chain complexes available to pump protons
out of the matrix and (2) protons being shuttled back into the
matrix in a more controlled fashion through ATP synthase, versus
leaking across the inner membrane. Thus, in yeast, we conclude
TORC1 dynamically controls the degree of respiration coupling,
which in turn regulates mitochondrial membrane potential.

Since membrane potential is a major determinant of mitochon-
drial ROS production capacity (Kadenbach, 2003), we hypothe-
sized that increased mitochondrial ROS may be an adaptive
signal during growth involved in CLS extension imparted by
reduced TORC1 signaling. Consistent with this concept, we
observe more DHE staining in mitochondria-like patterns during
growth in tor14 strains (Figures 3A and 3B). Furthermore, DHE
readily reacts with superoxide, while DHR is more specific for
hydrogen peroxide (Vanden Hoek et al., 1997; Benov et al.,
1998; Henderson and Chappell, 1993). Because tor14 yeast
have lower DHR fluorescence (Figure S3), we conclude that
increased mitochondrial superoxide production during growth
is an adaptive longevity signal in yeast. Our result that treating
wild-type yeast with a sublethal concentration (1 uM) of MD
during growth (as opposed to higher concentrations, see Fabri-
zio et al., 2005) generates a mitochondrial superoxide signal

674 Cell Metabolism 713, 668-678, June 8, 2011 ©2011 Elsevier Inc.

a tor14 strain has no effect on CLS, and
inhibition of TORC1 with rapamycin during
the same growth window is sufficient to
extend CLS of wild-type (Figures 4B and
4E). Finally, overexpression of SOD2 specifically curtails the
CLS of tor14 yeast (Figure S3B), consistent with a requirement
for elevated mitochondrial superoxide in full life span extension
of tor14 yeast. That SOD2 overexpression alone significantly
affects the CLS of tor74 is consistent with previous reports
that combined SOD7 and SOD2 overexpression is required for
CLS extension in wild-type yeast (Fabrizio et al., 2003) and that
SOD overexpression has variable effects on CLS in strains with
altered mitochondrial function and gene expression (Bonawitz
et al., 2006). Our previous finding that hypoxia during growth
extends CLS in wild-type, but not tor714, strains may also
support an adaptive signaling role for ROS, as hypoxia induces
mitochondrial ROS production (Bonawitz et al., 2007; Dirmeier
et al., 2002). We therefore propose that increasing mitochondrial
superoxide production during growth elicits an adaptive
response that reduces mitochondrial membrane potential and
ROS in stationary phase and, in conjunction with enhanced
stress responses, result in the robust CLS extension observed
when TORCH1 signaling is inhibited (Figure 7). Fully under-
standing the mechanism of superoxide-mediated mitochondrial
adaptive signaling will require future identification of factors that
sense elevated mitochondrial superoxide, which could include
conserved ROS-sensing kinases, phosphatases, and transcrip-
tion factors (Veal et al., 2007).

Rim15p activates a stress-responsive transcription program
that contributes significantly to the extension of CLS in strains
with reduced TOR signaling (Wei et al., 2008). Based on our
results, we propose two pathways by which reduced TORC1
signaling ultimately regulates CLS: Rim15p-dependent stress
resistance mechanisms that eliminate ROS (Wei et al., 2008; Fab-
rizio et al., 2001; Wanke et al., 2008; Agarwal et al., 2005) and
Rim15-independent mitochondrial alterations (Figures 6B—6E)
to produce fewer ROS (Figure 7). We also recognize the possi-
bility for crosstalk between these branches (Burtner et al., 2009;
Wanke et al., 2008). Determining precisely how Rim15p-depen-
dent and Rim15p-independent TORC1 signaling cooperate to
regulate yeast CLS will be an important focus of future work.
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Figure 7. Adaptive Mitochondrial ROS Signaling and Activation of
Rim15p-Dependent Stress Responses Collaborate to Mediate CLS
Extension by Reduced TORC1 Signaling

A speculative model of how reduced TORC1 signaling extends CLS by activating
both adaptive mitochondrial ROS signaling (right arm) and Rim15-dependent
stress-resistance pathways (left arm). These responses would cooperate in
CLS extension by enhancing ROS detoxification and stress resistance and by
an adaptive response to elevated cellular superoxide and/or other ROS during
growth that alters mitochondria function to decrease membrane potential
and produce fewer ROS in stationary phase. This adaptive signal may activate
some redox-sensitve factor that controls nuclear-encoded mitochondria
and/or stress response genes (horizontal arrow), perhaps via epigenetic regu-
lation, and results in altered respiration and enhanced stress responses in
stationary phase. This model is meant to encapsulate those aspects of CLS
extension by TOR inhibition involving ROS, mitochondria, and oxidative-stress
resistance. We acknowledge that reduced TOR signaling has other effects on
cell physiology that are also important for CLS, which are not pictured here.

chronological life span
extension

Our results are consistent with a growing body of literature that
mitochondrial ROS can act as mediators of adaptive/hormetic
effects on yeast life span (Agarwal et al., 2005; Kharade et al.,
2005; Piper et al., 2006), including a relevant recent study
showing that caloric restriction elevates hydrogen peroxide in
early stationary phase, which induces superoxide dismutase
activity to help extend CLS (Mesquita et al., 2010; Weinberger
et al.,, 2010). That we implicate superoxide as the adaptive/
hormetic signaling molecule suggests that various ROS may
promote adaptive signaling during different stages of growth
(e.g., superoxide during logarithmic growth and H,O, during
stationary phase) or that there are mechanistic differences in
life span extension induced by reduced TOR signaling and
calorie restriction (CR). The observation that CR further extends
the life span of sch94 strains supports the latter possibility (Wei
et al., 2008; Weinberger et al., 2010). Furthermore, numerous
studies in C. elegans provide strong evidence for mitochondria-
and ROS-mediated adaptive/hormetic regulation of life span
(Dillin et al., 2002; Gems and Partridge, 2008; Yang and Hekimi,
2010; Ristow and Zarse, 2010; Schulz et al., 2007). Finally, lower
mitochondrial membrane potential, which we propose is a down-
stream consequence of adaptive mitochondrial signaling, corre-
lates extremely well with longer life span in worms with genetic

alterations in various longevity pathways (Lemire et al., 2009).
In the context of these studies, our findings strongly suggest
that pathways that conditionally regulate mitochondrial mem-
brane potential and/or ROS production during specific growth
or developmental windows, like TORC1, could be key regulators
of longevity.

Media metabolites have also been shown to regulate yeast
CLS (Aerts et al., 2009; Fabrizio et al., 2005; Wei et al., 2009).
While our results (Figure 6A) are consistent with media acidifica-
tion as one determinant of CLS (Burtner et al., 2009), we conclude
from our media-swap experiments (Figures 6E and 6F) that
reduced production or release of extracellular molecules does
not underlie the extension of CLS in tor14 and sch94 strains,
and hence the effects we describe in this study are cell-intrinsic.
The additional finding that media neutralization reduces mito-
chondria membrane potential and cellular ROS (Figure 6) high-
lights the involvement of mitochondria in acid stress response
and suggests that media acidification in yeast CLS experiments
ultimately regulates general cell-intrinsic stress responses that
are relevant to conserved mechanisms of aging. Finally, we
observe a slight reduction in stationary-phase media ethanol
levels in tor14 and wild-type cultures treated with rapamycin
during growth (Figure S6). While our media-swap experiments
indicate that differences in ethanol concentration at the time of
swap do not determine CLS, we cannot exclude the possibility
that enhanced extracellular ethanol depletion, via utilization as
an alternate carbon source, in TOR-inhibited strains later in
stationary phase contributes to CLS extension as proposed by
others (Fabrizio et al., 2005). In fact, such metabolic reconfigura-
tions may be part of the adaptive response in stationary phase to
mitochondrial ROS signaling events during growth.

Reduced TORC1 signaling increases life span in organisms
ranging from yeast to mammals and has other beneficial effects
that are of potential therapeutic value for human disease (Fon-
tana et al., 2010). Our results shed significant light on the involve-
ment of mitochondrial adaptive/hormetic signaling in the TORCA1
longevity pathway and therefore likely represent an important
avenue that might be exploited in these regards.

EXPERIMENTAL PROCEDURES

Yeast Strains

All experiments were performed in the DBY2006 strain background (MAT«
his3-4200 leu2-3,-112 ura3-52 trp1-41 ade2-1) or the BY4742 background
(MAT« his341 leu240 lys240 ura340) as indicated. The tor14 and sch94
strains have been described (Bonawitz et al., 2007; Pan and Shadel, 2009).
The RIM15 ORF in DBY2006 and in DBY2006 sch94 was deleted with a kana-
mycin cassette that was PCR amplified from the rim154 strain in the yeast
DBY4742 knockout collection (Open Biosystems) with primers AATTA
TCCCGGGTCCATATTGCCCTAGGTCTTG and AATTATCCCGGGGCCTCGA
AATTGAGAAATGAA. Gel-purified amplicons were used in transformation
and G-481-resistant colonies were selected. Successful integration was veri-
fied by PCR. The sch94 and rim154/sch94 strains were transformed with an
MSN4-GFP plasmid (Bonawitz et al., 2006). DBY2006 was transformed with
the plasmid pYX142-SU9-GFP (Westermann and Neupert, 2000). All strains
were grown in standard SD medium with appropriate nutrients (Sherman,
1991).

Oxygen Consumption and CLS Assays

Oxidative phosphorylation and coupling assays using purified mitochondria were
performed as described (Ocampo et al., 2010). Cellular oxygen consumption was
assayed as described (Bonawitz et al., 2007). Mean oxygen consumption as
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percent oxygen/minute/ODgq + standard deviation of three biological replicates
normalized to wild-type is shown. Chronological life span was determined as in
(Bonawitz et al., 2006, 2007). For strain comparisons and drug treatments in
which all cultures demonstrated comparable growth rates, percent viability is
plotted as a function of “days,” with the day of inoculation indicated as day 0
(the cultures reach stationary phase at day 1). During rapamycin treatment or
CLS assays of sch9 and sch9/rim15 strains, which show reduced logarithmic
growth rate, culture inoculation was staggered such that all cultures reach
stationary phase within several hours. Percent viability is plotted as a function
of “days,” with the day of wild-type inoculation indicated as day 0. Percent
viability was determined by counting the number of cells stained with 0.4% trypan
blue. Data points represent the mean of three replicates inoculated from single
colonies of the same strain; error bars represent standard deviation.

Chemical Treatments

TET (Sigma) or DNP (MP Biomedicals) was added to SD medium to final
concentrations of 100 uM and 10 pM, respectively. Cultures were then inocu-
lated to ODggp Of 0.1 and grown for 24 hr before oxygen consumption was
monitored. An equal volume of drug vehicle (DMSO for TET or water for
DNP) was added as a control. MD (Sigma) was added to SD medium to a final
concentration of 1 pM from a 4 mg/ml stock; rapamycin (Sigma) was added to
media to a final concentration of 200 nM. An equivalent volume of 100%
ethanol was added to mock-treated cultures in MD and rapamycin experi-
ments. For treatments during growth only, DNP or MD was added to 50 ml
SD and cultures inoculated to an ODggo of 0.1 and grown for 24 hr. Cells
were then pelleted, the medium containing drug or vehicle discarded, and cells
were resuspended in filtered, equivalently conditioned medium from a parallel
culture of the same strain. In the case of rapamycin (Figure 4E), drug treatment
significantly slowed growth and was thus continued until the culture reached
stationary phase, after which the media was swapped as described for MD
and DNP. For drug treatments in stationary phase, drug or vehicle was added
to cultures inoculated as above after 48 hr of growth. Due to light sensitivity,
MD- and DNP-treated cultures were grown in the dark.

Fluorescence Microscopy

Fluorescence microscopy was conducted as described previously (Bonawitz
et al., 2006). Briefly, 7 ul of culture expressing GFP was mounted without fixa-
tion and visualized with an Olympus IX-71 inverted fluorescence microscope
using the GFP filter. For analysis of DHE fluorescence, cells were stained
with DHE as described for Flow Cytometry and visualized using the rhodamine
filter. Images were captured at 100x magnification with Olympus Metamorph
software. Merged images were generated with Adobe Photoshop.

Flow Cytometry

All measurements were performed on a Becton-Dickinson FACSCalibur. Anal-
ysis of yeast cellular superoxide using DHE (FL3 channel) was conducted as
described previously (Bonawitz et al., 2006). For analysis of mitochondrial
superoxide, 500 pl of culture was pelleted, washed once with phosphate-buff-
ered saline (PBS), and incubated with 5 uM MitoSOX (Molecular Probes, Inc.)
in PBS for 45 min at 30°C. Cells were then washed twice with PBS, and fluo-
rescence intensity in the FL3 channel was measured. Analysis of mitochondrial
potential was performed with DIOC6 (FL1 channel) as described (Pan and
Shadel, 2009).

Media-Neutralization and Media-Swap Experiments

Cultures were inoculated to ODggg of 0.1 in 50 ml SD and grown for 20 hr. Cells
were then pelleted, and the medium was vacuum filtered. The pH of the
medium was neutralized to between 6.5 and 7.0 with NaOH, and cells were re-
suspended in neutralized medium. In the media-swap experiments, cultures
were grown for 48 hr and harvested by centrifugation. Cell pellets were subse-
quently resuspended in the filtered original medium (nonswap) or equivalently
conditioned medium of the indicated strain (swap).

SUPPLEMENTAL INFORMATION
Supplemental Information includes seven figures, Supplemental Experimental
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