

Regulation of Yeast Chronological Life Span by TORC1 via Adaptive Mitochondrial ROS Signaling

Yong Pan,^{1,2,6} Elizabeth A. Schroeder,^{1,3,6} Alejandro Ocampo,⁴ Antoni Barrientos,^{4,5} and Gerald S. Shadel^{1,3,*}

¹Department of Pathology

²Department of Cell Biology

³Department of Genetics

Yale University School of Medicine, New Haven, CT 06520, USA

⁴Department of Biochemistry and Molecular Biology

⁵Department of Neurology

University of Miami Miller School of Medicine, Miami, FL 33136, USA

⁶These authors contributed equally to this work

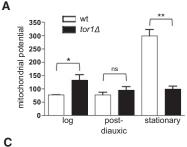
*Correspondence: gerald.shadel@yale.edu

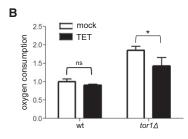
DOI 10.1016/j.cmet.2011.03.018

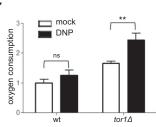
SUMMARY

Here we show that yeast strains with reduced target of rapamycin (TOR) signaling have greater overall mitochondrial electron transport chain activity during growth that is efficiently coupled to ATP production. This metabolic alteration increases mitochondrial membrane potential and reactive oxygen species (ROS) production, which we propose supplies an adaptive signal during growth that extends chronological life span (CLS). In strong support of this concept, uncoupling respiration during growth or increasing expression of mitochondrial manganese superoxide dismutase significantly curtails CLS extension in tor1 △ strains, and treatment of wildtype strains with either rapamycin (to inhibit TORC1) or menadione (to generate mitochondrial ROS) during growth is sufficient to extend CLS. Finally, extension of CLS by reduced TORC1/Sch9p-mitochondrial signaling occurs independently of Rim15p and is not a function of changes in media acidification/composition. Considering the conservation of TOR-pathway effects on life span, mitochondrial ROS signaling may be an important mechanism of longevity regulation in higher organisms.

INTRODUCTION


Active signaling through the conserved TOR pathway limits life span in budding yeast (Bonawitz et al., 2007; Kaeberlein et al., 2005; Lavoie and Whiteway, 2008; Pan and Shadel, 2009; Powers et al., 2006), nematodes (Vellai et al., 2003), fruit flies (Kapahi et al., 2004), and mice (Selman et al., 2009). In fact, treatment of mice with the TOR inhibitor rapamycin, even starting relatively late in life, extends life span, representing the first pharmacological antiaging regimen in mammals (Harrison et al., 2009). The TOR pathway controls many aspects of cell physiology, including ribosome biogenesis, translation, autophagy, cell growth, and proliferation (Wullschleger et al., 2006), and


hence it remains unclear precisely which aspects of TOR signaling contribute most significantly to aging and life span regulation (Blagosklonny and Hall, 2009).


In budding yeast, TOR signaling requires two PI3-kinase-like, serine-threonine kinases encoded by the TOR1 and TOR2 genes, which assemble into two signaling complexes (TORC1 and TORC2) with unique subunit compositions (Loewith et al., 2002). TORC1 can contain either Tor1p or Tor2p, while TORC2 only contains Tor2p, rendering $tor2\Delta$ lethal and $tor1\Delta$ a viable genetic background with reduced TORC1 signaling. Signaling through rapamycin-sensitive TORC1 regulates ribosome biogenesis and translation in part via activation of the protein kinase Sch9p, which is an ortholog of mammalian ribosomal S6 kinase 1 (S6K1) (Urban et al., 2007). Yeast TORC2 appears to control separate pathways involved in cell-cycle regulation and cytoskeleton dynamics and is much less sensitive to rapamycin (Cybulski and Hall, 2009).

Mitochondria are involved in aging and age-related pathology (Balaban et al., 2005; Bonawitz and Shadel, 2007; Shadel, 2008) and are the cornerstones of the mitochondrial and free radical theories of aging (Balaban et al., 2005; Wallace, 2005). Mitochondrial respiration is a major source of superoxide, which directly causes oxidative damage to mitochondrial and cellular molecules or is converted to other ROS that induce aging-associated damage (Balaban et al., 2005). We (Bonawitz et al., 2007; Bonawitz et al., 2006; Pan and Shadel, 2009) and others (Barros et al., 2004; Fabrizio et al., 2003; Lavoie and Whiteway, 2008; Longo et al., 1999; Piper et al., 2006) have documented complex relationships between TOR signaling, mitochondrial function, ROS, and yeast chronological life span (CLS), defined by the length of time yeast cells can survive in a nondividing population in postdiauxic and stationary-phase cultures (Fabrizio and Longo, 2007; Parrella and Longo, 2008). We showed that CLS extension in tor1 / yeast requires mitochondrial respiration and is associated with an increase in translation of mtDNA-encoded subunits of the oxidative phosphorylation (OXPHOS) system (Bonawitz et al., 2007) and OXPHOS complex density, which are mediated through downregulation of Sch9p (Bonawitz et al., 2007; Pan and Shadel, 2009). Importantly, the observed increases in mitochondrial translation and mitochondrial oxygen consumption are only manifest during logarithmic and early postdiauxic growth stages (Pan and Shadel, 2009). Although

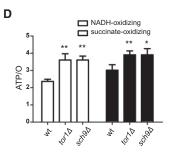


Figure 1. Analysis of Mitochondrial Respiration Parameters In Vivo and In Vitro in tor1 △ and sch9 △ Strains

(A) Mitochondrial membrane potential of DBY2006 (wt) and $tor1\Delta$ strains during mid-log (12 hr after inoculation), latelog/postdiauxic (20 hr after inoculation), and early stationary phase (36 hr after inoculation) measured by DiOC6 staining. (B) Oxygen consumption of DBY2006 (wt) and $tor1\Delta$ in the presence (TET) or absence (mock) of 100 μ M TET.

(C) Oxygen consumption of wild-type (wt) and $tor1\Delta$ in the presence or absence of 10 μ M DNP.

(D) ATP/O ratio of mitochondria isolated from wild-type (wt), $tor1\Delta$, and $sch9\Delta$ strains under NADH- or succinate-oxidizing conditions. Error bars represent the mean \pm SD with p values from a Student's unpaired t test denoted as follows: * = p \leq 0.05, ** = p \leq 0.01, and "ns" denoting no significance (p > 0.05) between the indicated comparisons. See also Figures S1 and S2.

wild-type yeast exhibit minimal TOR activity in stationary phase, *TOR1* or *SCH9* deletion results in fewer ROS in stationary phase, accompanied by upregulation of Sod2p, the yeast mitochondrial manganese superoxide dismutase (Bonawitz et al., 2007). Based on these results, we proposed that relieving TOR inhibition of respiration during growth stages preconditions yeast to better survive the stressful conditions of stationary phase (Bonawitz and Shadel, 2007; Pan and Shadel, 2009).

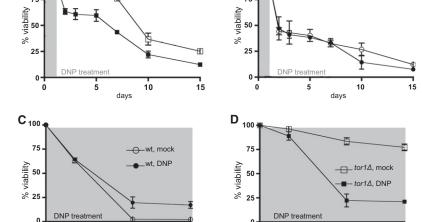
Active TOR signaling represses stress responses and entry into stationary phase, in part, by inhibiting the transcription factors Msn2p/4p and Gis1p (Cameroni et al., 2004). These transcription factors are activated by the kinase Rim15p, lack of which curtails the CLS extension of strains with genetically or pharmacologically repressed TOR activity (Fabrizio et al., 2001; Wei et al., 2008). Thus, there is substantial evidence that reduced TOR signaling derepresses Rim15p, which activates downstream transcription factors to augment CLS extension (Agarwal et al., 2005; Fabrizio et al., 2001; Wei et al., 2008).

It has recently been proposed that the accumulation of acetic acid in the culture medium creates a toxic environment that limits CLS (Burtner et al., 2009; Kaeberlein, 2010) and that deletion of *SCH9* extends CLS by increasing resistance to acid stress (Burtner et al., 2009). Similarly, TORC1 regulates metabolic reconfiguration in stationary phase, resulting in altered levels of ethanol and glycerol that promote survival (Fabrizio et al., 2005; Wei et al., 2009). The connections between TOR-regulated mitochondrial respiration, metabolite accumulation, stress-resistance pathways, and other aspects of cell physiology implicated in yeast CLS remain largely unknown (Fontana et al., 2010).

In this study, we have revealed that reduced TORC1 signaling mediates CLS extension, to a significant degree, by cell-intrinsic regulation of mitochondrial respiratory coupling that elevates mitochondrial membrane potential and ROS during growth. Furthermore, we provide evidence that elevated ROS (e.g., superoxide) during growth is an adaptive mitochondrial signal that programs the downregulation of mitochondrial potential and ROS in stationary phase to promote longevity.

RESULTS

Reduced TORC1 Signaling Enhances Mitochondrial Respiratory Capacity and Coupling


To date, the relative contributions of TORC1 and TORC2 signaling with regard to CLS and age-associated mitochondrial phenotypes have not been established. To this end, we analyzed a yeast strain lacking the TCO89 gene, which encodes a protein subunit unique to TORC1 (Reinke et al., 2004). Compared to an isogenic wild-type control strain, this strain has a significantly longer CLS (Figure S1A) and, as we reported previously in tor1 \(\Delta\) strains (Bonawitz et al., 2007), had increased mitochondrial oxygen consumption (Figure S1B), but decreased mitochondrial and cellular ROS in early stationary phase (Figures S1C and S1D). We next analyzed strains that were deleted for either AVO2 or BIT61, nonessential genes that encode protein subunits unique to TORC2 (Wullschleger et al., 2005), and found that they also exhibited increased CLS (Figure S1E), however to a lesser degree than deletion of TCO89 (Figure S1A). Similarly, mitochondrial oxygen consumption was increased moderately in these strains (Figure S2F). The reductions in mitochondrial and cellular ROS were similar in bit61 △, avo2 △ and tco89 △ strains (Figures S1C, S1D, S1G, and S1H). These data solidify the hypothesis that reduced TORC1 activity specifically mediates the majority of the previously ascribed effects of reduced TOR signaling on mitochondrial function, ROS and CLS, but also demonstrate that TORC2 can similarly, although less dramatically, affect these parameters through a mechanism that remains to be determined.

Mitochondrial membrane potential is determined by a balance between electron transport chain-driven pumping of protons outward across the inner mitochondrial membrane and dissipation of the proton gradient, either by ATP synthase-driven proton translocation or unproductive proton leak. We measured mitochondrial membrane potential during various growth and stationary phases. At 36 hr postinoculation, when cultures are in early stationary phase, *tor1* △ strains had lower membrane potential than wild-type strains (Figure 1A), similarly to what we

Α

100

В

--wt, mock

_wt. DNP

tor1∆, mock

tor1∆, DNP

reported previously at 24 hr postinoculation (Pan and Shadel, 2009). Yet during mid-logarithmic growth (12 hr postinoculation), tor1 \(\textit{\pi} \) strains showed elevated membrane potential compared to wild-type strains, while no difference was observed between these strains at 20 hr postinoculation, as cultures approach the postdiauxic shift (Figure 1A). These differences are likely due to the wild-type strain building and maintaining membrane potential in early stationary phase (following increased respiration during diauxic and postdiauxic growth), while the tor1 △ null strain has greater respiration early in logarithmic phase that steadily decreases as a function of time in culture (Bonawitz et al., 2007). When electron transport chain activity is coupled tightly to ATP synthesis, inhibition of the ATP synthase prevents dissipation of the proton gradient to result in decreased electron transport and mitochondrial oxygen consumption. To identify the source of elevated membrane potential in tor1 △ yeast during growth and determine if reduced TORC1 signaling affects mitochondrial coupling, we evaluated relative responses to respiration inhibitors in vivo and respiration in isolated mitochondria from logarithmically growing yeast. When treated with the ATP synthase inhibitor triethyl-tin bromide (TET), cultures of the tor1 d strain, but not the wild-type strain, responded by decreasing oxygen consumption (Figure 1B), indicating that ATP production is better coupled to electron transport in the tor1 d strain. When cultures of these strains were treated with dinitrophenol (DNP), which causes proton leak and complete uncoupling of electron transport from ATP synthesis, the tor1 △ strain robustly increased oxygen consumption, while wild-type strains were relatively unaffected (Figure 1C). Consistent with in vivo results, we observed higher ATP/O ratios, NADH- and succinate-driven oxygen consumption, and increased complex II and IV activities in mitochondria isolated from $tor1\Delta$ and sch9∆ strains compared to wild-type (Figures 1D, S2A, and S2B). From these results, we conclude that during early logarithmic growth, reduced TOR signaling increases electron transport chain capacity and coupled ATP synthesis.

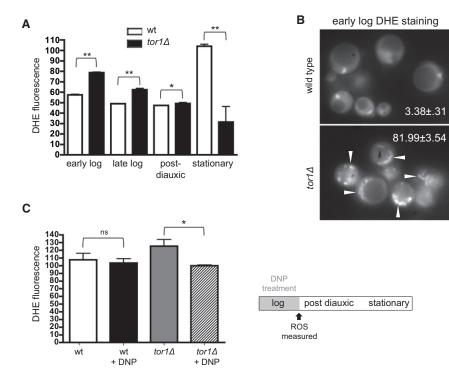
Figure 2. Effects of Uncoupling Respiration on CLS of Wild-Type and $tor1 \triangle$ Strains

(A and B) CLS assays (viability as a function of time after inoculation) of $tor1\Delta$ (A) or wild-type (B) strains treated with 10 μ M DNP ($tor1\Delta$, DNP) or vehicle ($tor1\Delta$, mock) for the first 24 hr after inoculation (gray box).

(C and D) CLS assays of wild-type (C) or $tor1\,\varDelta$ (D) strains treated with 10 μM DNP from inoculation until termination of the aging experiment. Error bars represent the mean \pm SD.

Coupled Respiration Contributes to Reduced TORC1-Mediated CLS Extension

TORC1 is most active during logarithmic growth, downregulated as cells progress through postdiauxic growth (late logarithmic), and largely inactive in stationary phase (Wullschleger et al., 2006), yet reduced TORC1 signaling results in extended stationary phase survival and CLS. To test the hypothesis that increased coupling and membrane potential


during growth contributes to extended CLS in yeast with reduced TORC1 signaling, we treated tor1 △ and wild-type yeast cultures with DNP for the first 24 hr of growth (Figures 2A and 2B, gray box) and then shifted yeast into conditioned media lacking the drug. This growth-phase DNP treatment virtually eliminated the extended CLS of the tor1 d strain relative to vehicle-only controls, but had little effect on CLS in identically treated wildtype strains (Figures 2A and 2B). In contrast, adding DNP to wild-type cultures during growth and stationary phase slightly increased CLS (Figure 2C), as reported previously (Barros et al., 2004). However, similar to DNP treatment during growth only, DNP treatment of tor1 d cultures during growth and stationary phase severely attenuated CLS extension (Figure 2D). Together, these results indicate that mild uncoupling during stationary phase can slightly extend CLS of wild-type strains, but that increased coupled respiration during some phase of active growth is important for extension of CLS imparted by reduced TORC1 signaling.

Elevated Mitochondrial ROS during Growth Are Needed for Full CLS Extension

The results presented so far suggested that reduced TORC1 signaling enhances respiratory coupling during growth to somehow elicit an adaptive, CLS-extending response in stationary phase. Although mitochondrial membrane potential could be sensed directly, we pursued a hypothesis in which elevated membrane potential during growth generates mitochondrial ROS, which have known functions in cellular signaling (Hamanaka and Chandel, 2009; Linnane et al., 2007; Starkov, 2008).

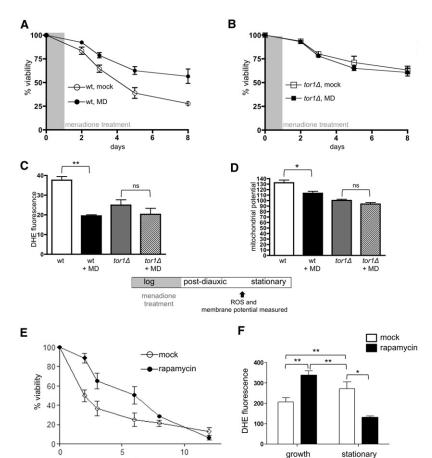
As we documented previously (Bonawitz et al., 2007), $tor1\Delta$ strains have reduced ROS based on DHE staining relative to wild-type strains in early stationary phase (Figure 3A). However, during logarithmic growth, where we already have documented increased mitochondrial membrane potential (Figure 1A), $tor1\Delta$ strains have elevated DHE staining (Figure 3A). To determine if

Figure 3. Coupled Respiration Drives Mitochondria ROS Production in *tor1* Δ Yeast

(A) FACS analysis of DHE-stained wild-type and $tor1\Delta$ strains during early log (6 hr after inoculation), late log (16 hr after inoculation), postdiauxic (20 hr after inoculation), and stationary phase (36 hr after inoculation).

(B) Microscopy of DHE fluorescence in wild-type (top) and tor1∆ (bottom) in early log (6 hr after inoculation). Arrows indicate punctate and tubular, mitochondria-like structures. Numbers represent the average percentage of cells displaying more than two foci of DHE fluorescence per cell plus the standard deviation of three biological replicates. Over 200 cells were counted for each replicate.

(C) DHE fluorescence of wild-type and $tor1\Delta$ strains treated with 10 μ M DNP (+DNP) or vehicle for the first 20 hr of growth. FACS analysis was performed in late logarithmic/postdiauxic growth (as indicated to the right). Error bars represent the mean \pm SD with p values indicated as described in the legend to Figure 1. See also Figure S3.


reduced TORC1 signaling specifically elevates mitochondrial ROS, we analyzed the pattern of DHE staining in logarithmically growing cells. Upon oxidation, DHE intercalates into proximal nucleic acids (usually DNA) to generate a fluorescent signal (Vanden Hoek et al., 1997; Benov et al., 1998). In wild-type cells, low levels of ROS throughout the cytoplasm induce DHE intercalation into nuclear DNA, resulting in a single focus of fluorescence (Figure 3B, top). In contrast, in tor1 △ strains, the presence of multiple foci of DHE fluorescence and tubular structures (Figure 3B, bottom, arrows) in over 80% of cells indicates DHE intercalation with mtDNA following oxidation by mitochondrial ROS. Finally, to determine if coupled respiration drives ROS production during growth in tor1 d yeast, we treated cells with DNP for the first 24 hr of growth and measured DHE fluorescence at the conclusion of DNP treatment. Consistent with more uncoupled respiration in wild-type yeast during growth, DNP did not affect wild-type cellular ROS (Figure 3C). However, DNP treatment reduced DHE staining of tor1 △ to wild-type levels, supporting that reduced TORC1 signaling couples respiration, increases membrane potential, and drives mitochondrial ROS production during growth. Since DHE is primarily used to detect superoxide, but can also react with other ROS, we analyzed wildtype and tor1 △ strains with DHR, which preferentially reacts with hydrogen peroxide (Henderson and Chappell, 1993). In contrast to our DHE results, tor1 \(\triangle \) strains exhibit consistently lower DHR staining than wild-type (Figure S3A). Finally, overexpression of SOD2, which encodes mitochondrial manganese superoxide dismutase, significantly curtails CLS extension in a tor1 △ strain, but has no effect in the isogenic wild-type strain (Figure S3B). Therefore, we conclude that mitochondrial superoxide produced during growth in a TORC1-inhibited strain can act as an adaptive signal to extend CLS.

Growth-Phase TORC1 Inhibition or Enhanced Mitochondrial ROS Extends CLS

If mitochondrial superoxide during growth determines a significant portion of extended CLS in strains with reduced TORC1 activity, elevating mitochondrial superoxide levels in wild-type yeast should extend CLS. We treated wild-type and tor1 △ yeast with menadione (MD), which participates in redox cycling to generate superoxide (Castro et al., 2008). FACS analysis of DHE-stained cells indicated that MD treatment causes a significant increase in cellular superoxide of wild-type cells, and the pattern of DHE fluorescence colocalizes with mitochondriatargeted GFP in >50% of MD-treated cells (Figures S4A and S4B), indicating that mitochondrial superoxide is being produced. As shown in Figure 4A, MD treatment for the first 24 hr of growth extends CLS of wild-type yeast relative to vehicletreated controls. Similar to reduced TORC1 signaling, MD treatment during growth also led to an adaptive decrease in mitochondrial membrane potential and DHE staining in stationary phase (Figures 4C and 4D). Therefore, elevating mitochondrial superoxide during growth in wild-type strains phenocopies the reduced mitochondrial membrane potential and reduced superoxide levels observed in stationary phase of tor1 △ strains and extends CLS. Furthermore, the inability of the same treatment to further alter these stationary-phase parameters and extend CLS in the tor1 △ strain (Figures 4B–4D) strongly suggests that, during growth, reduced TORC1 signaling and elevated mitochondrial superoxide function in the same pathway to regu-

Growth phase appears to be a critical window during which reduced TORC1 signaling influences CLS. Consistent with this hypothesis, treating a wild-type strain with rapamycin just during growth increased CLS (Figure 4E), which was accompanied by

(rap treatment)

significantly elevated DHE staining during growth and reduced DHE staining in stationary phase relative to untreated cells (Figure 4F). Importantly, neither MD nor rapamycin treatment in stationary phase extended CLS (Figures S4C and S4D), confirming that increased mitochondrial ROS during growth phase is a key determinant of CLS.

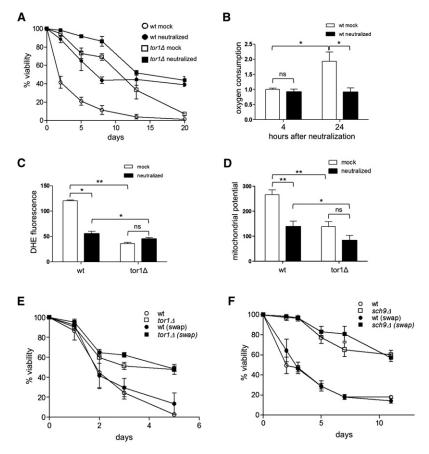
Reduced TORC1-Mediated CLS Extension Is Cell-Intrinsic and Rim15p-Independent

It was recently reported that extracellular accumulation of metabolic organic acid by-products is the major parameter that limits yeast CLS (Burtner et al., 2009). As reported by others (Burtner et al., 2009), we found that neutralizing the culture medium extended CLS of wild-type and tor1 △ yeast strains (Figure 5A), although the latter to a lesser extent. Because our results implicate mitochondrial function as a key determinant of CLS, we investigated mitochondrial parameters in neutralized and untreated cultures and found that, in wild-type strains, oxygen consumption is gradually modulated in response to neutralization, resulting in a reduced rate of oxygen consumption 24 and 48 hr (Figures 5B and S5A) after neutralizing the media. Media neutralization also reduced DHE staining and mitochondrial membrane potential in wild-type stationary-phase cultures (Figures 5C and 5D), supporting the correlation between these parameters and CLS. Together, these results support a mito-

Figure 4. Elevating Superoxide via Menadione or Rapamycin Treatment Only during Growth Extends CLS of Wild-Type Yeast

(A and B) CLS assays of wild-type (A) or $tor1 \triangle$ (B) strains treated with 1 μ M menadione (MD) or vehicle (mock) for the first 24 hr of growth (gray box).

- (C) FACS analysis of stationary-phase DHE staining of wild-type (wt) and tor1 extstyle extsty
- (D) Stationary-phase mitochondrial membrane potential measured by DiOC6 fluorescence of wild-type and *tor1* Δ strains treated as described in (C).
- (E) CLS assays of a wild-type strain treated with 200 nM rapamycin or vehicle (mock) for the first 24 hr of growth (gray box).
- (F) DHE fluorescence of a wild-type strain treated with rapamycin or vehicle (mock) for the first 24 hr of growth. Bars on the left indicate DHE staining during growth with and without rapamycin treatment; bars on the right indicate DHE staining in stationary phase following rapamycin treatment during growth. Error bars represent the mean ± SD with p values indicated as described in the legend to Figure 1. See also Figure S4.


chondrial response to media neutralization in wild-type yeast that is important for CLS extension. Interestingly, although media neutralization extended CLS of a *tor1* △ strain to some extent, oxygen consumption, DHE staining, and mitochondrial membrane potential in stationary phase were not additionally decreased in this strain (Figures 5C, 5D, and S5B). These results suggest that reducing TORC1 activity does not extend CLS exclusively by reducing media acidification and that media

neutralization partially determines CLS by mechanisms that are independent of mitochondrial function.

We next examined whether any cell-extrinsic factor was responsible for the ability of reduced TOR signaling to extend CLS. We grew wild-type, $tor1\Delta$, and $sch9\Delta$ strains to the beginning of stationary phase (when the largest changes in pH manifest) and exchanged the growth medium for the remainder of the aging experiment. This media exchange between either wild-type and $tor1\Delta$ (Figure 5E) or wild-type and $sch9\Delta$ (Figure 5F) cultures had no effect on CLS of any of the strains. This demonstrates that the effects of reduced TORC1 activity on CLS are cell-intrinsic and not a function of acidification or increases in ethanol in stationary-phase media that we observed in $tor1\Delta$ and $sch9\Delta$ cultures (Figure S6).

The Rim15p kinase relays input from several signaling pathways, including TORC1-Sch9p, to transcription factors that mediate cellular stress responses and is an important determinant of yeast CLS. Hence, we examined if Rim15p functions downstream of the TORC1/Schp9 mitochondrial pathway to regulate CLS. In agreement with the findings of others (Wei et al., 2008), we observe that deletion of *RIM15* curtails CLS (Figure 6A). However, deletion of *SCH9* extended CLS of the *rim15*Δ strain to a similar degree as it does its isogenic wild-type control strain, demonstrating that *SCH9* deletion can extend CLS independently of Rim15p. Furthermore, CLS of the

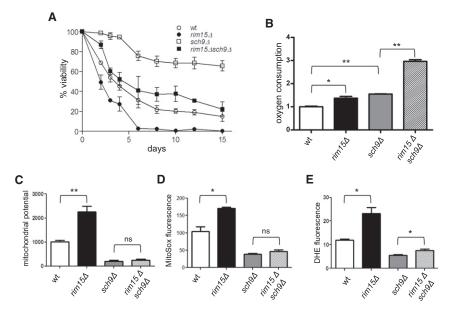
 $rim15\Delta/sch9\Delta$ strain was intermediate to wild-type and $sch9\Delta$ (Figure 6A), showing that much, but not all, of the CLS-extending effects of *SCH9* deletion in a wild-type strain can be attributed to Rim15p activation.

We next investigated whether changes in mitochondrial function and/or stress response pathways could explain the ability of SCH9 deletion to extend CLS in the absence of Rim15p. First, rim15∆ strains had greater mitochondrial oxygen consumption during growth and greater mitochondrial membrane potential and ROS in stationary phase, the latter of which likely contribute to shortened CLS. As it does in a wild-type background, deletion of SCH9 in the rim15∆ background further increased mitochondrial oxygen consumption (Figure 6B), yet stationary-phase mitochondrial membrane potential and ROS were reduced to below wild-type levels (Figures 6C-6E). Next, we determined if the ability of SCH9 deletion to rescue the decreased CLS of a rim15∆ strain could also be explained by Rim15p-independent activation of Gis1p and Msn4p, transcription factors downstream of Rim15p. We measured abundance of two mRNAs, SSA3 and SHC1, whose transcription is induced by Gis1p (Zhang and Oliver, 2010; Zhang et al., 2009). As expected, expression of both target mRNAs was increased in strains lacking SCH9 (Figures S6A and S6B), and deletion of RIM15 did not decrease Gis1p target gene expression, consistent with parallel pathways of Gis1p regulation (Zhang and Oliver, 2010; Zhang et al., 2009). However, deletion of both RIM15 and SCH9 substantially increased expression, suggesting that Gis1p might

Figure 5. Media Acidification Limits Chronological Life Span in Synthetic Dextrose Medium, but Extended CLS in $tor1 \Delta$ and $sch9 \Delta$ Strains is Due to Cell-Intrinsic Effects

(A) CLS curves of wild-type (wt) and $tor1 \Delta$ in unneutralized (mock) and NaOH-neutralized (neutralized) SD media. Media was neutralized at the beginning of stationary phase.

- (B) Oxygen consumption of neutralized (wt neutralized) or not (wt mock treated) wild-type cells 4 and 24 hr after neutralization.
- (C) Stationary phase DHE fluorescence of wild-type (wt) and *tor1* △ cells neutralized or untreated (mock).
- (D) Mitochondrial membrane potential of cells treated as described in (C).
- (E) CLS of wild-type and $tor1\Delta$ in original media (open symbols) or subjected to media swap (swap) in stationary phase.
- (F) Same as (E), except wild-type and $sch9 \ \Delta$ strains were analyzed. Error bars represent the mean \pm SD with p values indicated as described in the legend to Figure 1. See also Figures S5 and S6.


be hyperactive when both Rim15p and Sch9p regulation are removed. Additionally, nuclear localization of Msn4p, which is induced by stress and as cells enter stationary phase (Beck and Hall, 1999), is decreased in $sch9\Delta/rim15\Delta$ relative to $sch9\Delta$ in early, but not late stationary phase (Figure S6C), suggesting that deleting SCH9 can induce Msn4-GFP nuclear localization independently of Rim15p. Altogether, these results suggest that, in addition

to altering mitochondrial respiration and ROS production, deleting *SCH9* can also enhance stress responses in a Rim15p-independent manner, both of which likely contribute significantly to the rescue of the curtailed CLS of a *rim15* strain.

DISCUSSION

While the involvement of mitochondria in aging and longevity is well accepted, the precise mechanisms involved remain unresolved. Cellular oxidative damage and stress mediated by enhanced mitochondrial ROS production are commonly invoked as mediators of the mitochondrial effects on aging; however, the emergence of mitochondria and ROS as signaling entities has invited speculation on more intricate mitochondrial theories of aging (Fleury et al., 2002; Hamanaka and Chandel, 2009; Schieke et al., 2006; Starkov, 2008). In this study, we examined how TOR signaling influences mitochondrial function, ROS, and yeast CLS. From our results, we conclude that reduced TORC1 signaling reconfigures mitochondrial respiration toward a more coupled state that increases mitochondrial membrane potential and ROS production during active growth phases, providing an adaptive ROS signal that enhances survival in stationary phase and extends CLS (Figures 1A-2A and 7). The main results that support this conclusion are (1) mitochondria in tor1 △ strains have higher membrane potential and produce more mitochondrial ROS during growth due to enhanced coupling of electron transport to ATP synthesis (Figures 1 and 3), (2) uncoupling

respiration during growth alone or overexpressing SOD2 prevents CLS extension in $tor1\,\Delta$ strains (Figures 2, 3, and S3), and (3) inhibiting TORC1 with rapamycin or generating an artificial mitochondrial ROS signal with MD in a wild-type strain just during growth is sufficient to extend CLS (Figure 4).

As we showed previously for mitochondrial oxygen consumption and translation of mtDNA-encoded OXPHOS subunits (Pan and Shadel, 2009), mitochondrial membrane potential in tor1 4 strains is higher than in wild-type strains during active growth, but gradually declines to levels below wild-type in stationary phase (Figure 1A). Since yeast have no known uncoupling proteins, which in mammals can be induced to uncouple respiration and reduce membrane potential (Azzu et al., 2010; Kadenbach, 2003), we propose that mitochondrial membrane potential is likely greater during growth in $tor1\Delta$ strains due to (1) more electron transport chain complexes available to pump protons out of the matrix and (2) protons being shuttled back into the matrix in a more controlled fashion through ATP synthase, versus leaking across the inner membrane. Thus, in yeast, we conclude TORC1 dynamically controls the degree of respiration coupling, which in turn regulates mitochondrial membrane potential.

Since membrane potential is a major determinant of mitochondrial ROS production capacity (Kadenbach, 2003), we hypothesized that increased mitochondrial ROS may be an adaptive signal during growth involved in CLS extension imparted by reduced TORC1 signaling. Consistent with this concept, we observe more DHE staining in mitochondria-like patterns during growth in tor1 △ strains (Figures 3A and 3B). Furthermore, DHE readily reacts with superoxide, while DHR is more specific for hydrogen peroxide (Vanden Hoek et al., 1997; Benov et al., 1998; Henderson and Chappell, 1993). Because tor1 △ yeast have lower DHR fluorescence (Figure S3), we conclude that increased mitochondrial superoxide production during growth is an adaptive longevity signal in yeast. Our result that treating wild-type yeast with a sublethal concentration (1 μM) of MD during growth (as opposed to higher concentrations, see Fabrizio et al., 2005) generates a mitochondrial superoxide signal

Figure 6. The Reduced Chronological Life Span of a rim15∆ Strain is Rescued by Deletion of SCH9 via Effects on Mitochondrial Respiration and ROS

(A–E) Chronological life span (A), mitochondrial oxygen consumption (B), mitochondrial membrane potential (C), MitoSOX fluorescence (D), and DHE fluorescence (E) of DBY2006 (wt) and isogenic $rim15\Delta$, $sch9\Delta$, and $rim15\Delta/sch9\Delta$ strains. Mitochondrial parameters were measured in early stationary phase as described in Experimental Procedures. Error bars represent the mean \pm SD with p values indicated as described in the legend to Figure 1. See also Figure S7.

(Castro et al., 2008) to extend CLS strongly supports this conclusion (Figures 4A, S4A, and S4B). Additionally, similar treatment of a *tor1* △ strain has no effect on CLS, and inhibition of TORC1 with rapamycin during the same growth window is sufficient to extend CLS of wild-type (Figures 4B and

4E). Finally, overexpression of SOD2 specifically curtails the CLS of tor1 \(\triangle \) yeast (Figure S3B), consistent with a requirement for elevated mitochondrial superoxide in full life span extension of tor1\(\Delta\) yeast. That SOD2 overexpression alone significantly affects the CLS of tor1 d is consistent with previous reports that combined SOD1 and SOD2 overexpression is required for CLS extension in wild-type yeast (Fabrizio et al., 2003) and that SOD overexpression has variable effects on CLS in strains with altered mitochondrial function and gene expression (Bonawitz et al., 2006). Our previous finding that hypoxia during growth extends CLS in wild-type, but not tor14, strains may also support an adaptive signaling role for ROS, as hypoxia induces mitochondrial ROS production (Bonawitz et al., 2007; Dirmeier et al., 2002). We therefore propose that increasing mitochondrial superoxide production during growth elicits an adaptive response that reduces mitochondrial membrane potential and ROS in stationary phase and, in conjunction with enhanced stress responses, result in the robust CLS extension observed when TORC1 signaling is inhibited (Figure 7). Fully understanding the mechanism of superoxide-mediated mitochondrial adaptive signaling will require future identification of factors that sense elevated mitochondrial superoxide, which could include conserved ROS-sensing kinases, phosphatases, and transcription factors (Veal et al., 2007).

Rim15p activates a stress-responsive transcription program that contributes significantly to the extension of CLS in strains with reduced TOR signaling (Wei et al., 2008). Based on our results, we propose two pathways by which reduced TORC1 signaling ultimately regulates CLS: Rim15p-dependent stress resistance mechanisms that eliminate ROS (Wei et al., 2008; Fabrizio et al., 2001; Wanke et al., 2008; Agarwal et al., 2005) and Rim15-independent mitochondrial alterations (Figures 6B–6E) to produce fewer ROS (Figure 7). We also recognize the possibility for crosstalk between these branches (Burtner et al., 2009; Wanke et al., 2008). Determining precisely how Rim15p-dependent and Rim15p-independent TORC1 signaling cooperate to regulate yeast CLS will be an important focus of future work.

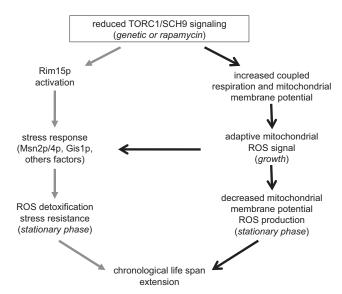


Figure 7. Adaptive Mitochondrial ROS Signaling and Activation of Rim15p-Dependent Stress Responses Collaborate to Mediate CLS Extension by Reduced TORC1 Signaling

A speculative model of how reduced TORC1 signaling extends CLS by activating both adaptive mitochondrial ROS signaling (right arm) and Rim15-dependent stress-resistance pathways (left arm). These responses would cooperate in CLS extension by enhancing ROS detoxification and stress resistance and by an adaptive response to elevated cellular superoxide and/or other ROS during growth that alters mitochondria function to decrease membrane potential and produce fewer ROS in stationary phase. This adaptive signal may activate some redox-sensitve factor that controls nuclear-encoded mitochondria and/or stress response genes (horizontal arrow), perhaps via epigenetic regulation, and results in altered respiration and enhanced stress responses in stationary phase. This model is meant to encapsulate those aspects of CLS extension by TOR inhibition involving ROS, mitochondria, and oxidative-stress resistance. We acknowledge that reduced TOR signaling has other effects on cell physiology that are also important for CLS, which are not pictured here.

Our results are consistent with a growing body of literature that mitochondrial ROS can act as mediators of adaptive/hormetic effects on yeast life span (Agarwal et al., 2005; Kharade et al., 2005; Piper et al., 2006), including a relevant recent study showing that caloric restriction elevates hydrogen peroxide in early stationary phase, which induces superoxide dismutase activity to help extend CLS (Mesquita et al., 2010; Weinberger et al., 2010). That we implicate superoxide as the adaptive/ hormetic signaling molecule suggests that various ROS may promote adaptive signaling during different stages of growth (e.g., superoxide during logarithmic growth and H₂O₂ during stationary phase) or that there are mechanistic differences in life span extension induced by reduced TOR signaling and calorie restriction (CR). The observation that CR further extends the life span of sch9∆ strains supports the latter possibility (Wei et al., 2008; Weinberger et al., 2010). Furthermore, numerous studies in C. elegans provide strong evidence for mitochondriaand ROS-mediated adaptive/hormetic regulation of life span (Dillin et al., 2002; Gems and Partridge, 2008; Yang and Hekimi, 2010; Ristow and Zarse, 2010; Schulz et al., 2007). Finally, lower mitochondrial membrane potential, which we propose is a downstream consequence of adaptive mitochondrial signaling, correlates extremely well with longer life span in worms with genetic alterations in various longevity pathways (Lemire et al., 2009). In the context of these studies, our findings strongly suggest that pathways that conditionally regulate mitochondrial membrane potential and/or ROS production during specific growth or developmental windows, like TORC1, could be key regulators of longevity.

Media metabolites have also been shown to regulate yeast CLS (Aerts et al., 2009; Fabrizio et al., 2005; Wei et al., 2009). While our results (Figure 6A) are consistent with media acidification as one determinant of CLS (Burtner et al., 2009), we conclude from our media-swap experiments (Figures 6E and 6F) that reduced production or release of extracellular molecules does not underlie the extension of CLS in tor1 △ and sch9 △ strains, and hence the effects we describe in this study are cell-intrinsic. The additional finding that media neutralization reduces mitochondria membrane potential and cellular ROS (Figure 6) highlights the involvement of mitochondria in acid stress response and suggests that media acidification in yeast CLS experiments ultimately regulates general cell-intrinsic stress responses that are relevant to conserved mechanisms of aging. Finally, we observe a slight reduction in stationary-phase media ethanol levels in tor1 △ and wild-type cultures treated with rapamycin during growth (Figure S6). While our media-swap experiments indicate that differences in ethanol concentration at the time of swap do not determine CLS, we cannot exclude the possibility that enhanced extracellular ethanol depletion, via utilization as an alternate carbon source, in TOR-inhibited strains later in stationary phase contributes to CLS extension as proposed by others (Fabrizio et al., 2005). In fact, such metabolic reconfigurations may be part of the adaptive response in stationary phase to mitochondrial ROS signaling events during growth.

Reduced TORC1 signaling increases life span in organisms ranging from yeast to mammals and has other beneficial effects that are of potential therapeutic value for human disease (Fontana et al., 2010). Our results shed significant light on the involvement of mitochondrial adaptive/hormetic signaling in the TORC1 longevity pathway and therefore likely represent an important avenue that might be exploited in these regards.

EXPERIMENTAL PROCEDURES

Yeast Strains

All experiments were performed in the DBY2006 strain background ($MAT\alpha$ $his3-\varDelta200$ leu2-3,-112 ura3-52 $trp1-\varDelta1$ ade2-1) or the BY4742 background ($MAT\alpha$ $his3-\varDelta200$ leu2-3,-112 ura3-52 $trp1-\varDelta1$ ade2-1) or the BY4742 background ($MAT\alpha$ $his3\,\varDelta1$ $leu2\,\varDelta0$ $lys2\,\varDelta0$ $ura3\,\varDelta0$) as indicated. The $tor1\,\varDelta$ and $sch9\,\varDelta$ strains have been described (Bonawitz et al., 2007; Pan and Shadel, 2009). The RIM15 ORF in DBY2006 and in DBY2006 $sch9\,\varDelta$ was deleted with a kanamycin cassette that was PCR amplified from the $rim15\,\varDelta$ strain in the yeast DBY4742 knockout collection (Open Biosystems) with primers AATTA TCCCGGGTCCATATTGCCCTAGGTCTTG and AATTATCCCGGGGCCTCGA AATTGAGAAATGAA. Gel-purified amplicons were used in transformation and G-481-resistant colonies were selected. Successful integration was verified by PCR. The $sch9\,\varDelta$ and $rim15\,\varDelta/sch9\,\varDelta$ strains were transformed with an MSN4-GFP plasmid (Bonawitz et al., 2006). DBY2006 was transformed with the plasmid pYX142-SU9-GFP (Westermann and Neupert, 2000). All strains were grown in standard SD medium with appropriate nutrients (Sherman, 1991).

Oxygen Consumption and CLS Assays

Oxidative phosphorylation and coupling assays using purified mitochondria were performed as described (Ocampo et al., 2010). Cellular oxygen consumption was assayed as described (Bonawitz et al., 2007). Mean oxygen consumption as

percent oxygen/minute/OD₆₀₀ ± standard deviation of three biological replicates normalized to wild-type is shown. Chronological life span was determined as in (Bonawitz et al., 2006, 2007). For strain comparisons and drug treatments in which all cultures demonstrated comparable growth rates, percent viability is plotted as a function of "days," with the day of inoculation indicated as day 0 (the cultures reach stationary phase at day 1). During rapamycin treatment or CLS assays of *sch9* and *sch9/rim15* strains, which show reduced logarithmic growth rate, culture inoculation was staggered such that all cultures reach stationary phase within several hours. Percent viability is plotted as a function of "days," with the day of wild-type inoculation indicated as day 0. Percent viability was determined by counting the number of cells stained with 0.4% trypan blue. Data points represent the mean of three replicates inoculated from single colonies of the same strain; error bars represent standard deviation.

Chemical Treatments

TET (Sigma) or DNP (MP Biomedicals) was added to SD medium to final concentrations of 100 μM and 10 μM , respectively. Cultures were then inoculated to OD₆₀₀ of 0.1 and grown for 24 hr before oxygen consumption was monitored. An equal volume of drug vehicle (DMSO for TET or water for DNP) was added as a control. MD (Sigma) was added to SD medium to a final concentration of 1 μ M from a 4 mg/ml stock; rapamycin (Sigma) was added to media to a final concentration of 200 nM. An equivalent volume of 100% ethanol was added to mock-treated cultures in MD and rapamycin experiments. For treatments during growth only, DNP or MD was added to 50 ml SD and cultures inoculated to an OD600 of 0.1 and grown for 24 hr. Cells were then pelleted, the medium containing drug or vehicle discarded, and cells were resuspended in filtered, equivalently conditioned medium from a parallel culture of the same strain. In the case of rapamycin (Figure 4E), drug treatment significantly slowed growth and was thus continued until the culture reached stationary phase, after which the media was swapped as described for MD and DNP. For drug treatments in stationary phase, drug or vehicle was added to cultures inoculated as above after 48 hr of growth. Due to light sensitivity, MD- and DNP-treated cultures were grown in the dark.

Fluorescence Microscopy

Fluorescence microscopy was conducted as described previously (Bonawitz et al., 2006). Briefly, 7 μ I of culture expressing GFP was mounted without fixation and visualized with an Olympus IX-71 inverted fluorescence microscope using the GFP filter. For analysis of DHE fluorescence, cells were stained with DHE as described for Flow Cytometry and visualized using the rhodamine filter. Images were captured at 100× magnification with Olympus Metamorph software. Merged images were generated with Adobe Photoshop.

Flow Cytometry

All measurements were performed on a Becton-Dickinson FACSCalibur. Analysis of yeast cellular superoxide using DHE (FL3 channel) was conducted as described previously (Bonawitz et al., 2006). For analysis of mitochondrial superoxide, 500 μ l of culture was pelleted, washed once with phosphate-buffered saline (PBS), and incubated with 5 μ M MitoSOX (Molecular Probes, Inc.) in PBS for 45 min at 30°C. Cells were then washed twice with PBS, and fluorescence intensity in the FL3 channel was measured. Analysis of mitochondrial potential was performed with DiOC6 (FL1 channel) as described (Pan and Shadel, 2009).

Media-Neutralization and Media-Swap Experiments

Cultures were inoculated to OD_{600} of 0.1 in 50 ml SD and grown for 20 hr. Cells were then pelleted, and the medium was vacuum filtered. The pH of the medium was neutralized to between 6.5 and 7.0 with NaOH, and cells were resuspended in neutralized medium. In the media-swap experiments, cultures were grown for 48 hr and harvested by centrifugation. Cell pellets were subsequently resuspended in the filtered original medium (nonswap) or equivalently conditioned medium of the indicated strain (swap).

SUPPLEMENTAL INFORMATION

Supplemental Information includes seven figures, Supplemental Experimental Procedures, and Supplemental References and can be found with this article online at doi:10.1016/j.cmet.2011.03.018.

ACKNOWLEDGMENTS

This work was supported by NIH grant P01 ES-011163 awarded to G.S.S. and a Research Challenge Grant from the Florida Department of Health/James and Esther King Biomedical Research Program awarded to A.B. E.A.S. was supported in part by the NIH predoctoral Genetics training grant (T32 GM007499). The authors wish to thank Megan Bestwick for advice on in vitro OXPHOS assays and Marc Chatenay-Lapointe for helpful discussions.

Received: August 16, 2010 Revised: January 7, 2011 Accepted: March 3, 2011 Published: June 7, 2011

REFERENCES

Aerts, A.M., Zabrocki, P., Govaert, G., Mathys, J., Carmona-Gutierrez, D., Madeo, F., Winderickx, J., Cammue, B.P., and Thevissen, K. (2009). Mitochondrial dysfunction leads to reduced chronological lifespan and increased apoptosis in yeast. FEBS Lett. *583*, 113–117.

Agarwal, S., Sharma, S., Agrawal, V., and Roy, N. (2005). Caloric restriction augments ROS defense in S. cerevisiae, by a Sir2p independent mechanism. Free Radic. Res. *39*, 55–62.

Azzu, V., Jastroch, M., Divakaruni, A.S., and Brand, M.D. (2010). The regulation and turnover of mitochondrial uncoupling proteins. Biochimica et Biophysica Acta 1797. 785–791.

Balaban, R.S., Nemoto, S., and Finkel, T. (2005). Mitochondria, oxidants, and aging. Cell 120, 483–495.

Barros, M.H., Bandy, B., Tahara, E.B., and Kowaltowski, A.J. (2004). Higher respiratory activity decreases mitochondrial reactive oxygen release and increases life span in Saccharomyces cerevisiae. J. Biol. Chem. 279, 49883–49888

Beck, T., and Hall, M.N. (1999). The TOR signalling pathway controls nuclear localization of nutrient-regulated transcription factors. Nature 402, 689–692.

Benov, L., Sztejnberg, L., and Fridovich, I. (1998). Critical evaluation of the use of hydroethidine as a measure of superoxide anion radical. Free Radic. Biol. Med. 25, 826–831.

Blagosklonny, M.V., and Hall, M.N. (2009). Growth and aging: a common molecular mechanism. Aging 1, 357–362.

Bonawitz, N.D., and Shadel, G.S. (2007). Rethinking the mitochondrial theory of aging: the role of mitochondrial gene expression in lifespan determination. Cell Cycle 6, 1574–1578.

Bonawitz, N.D., Rodeheffer, M.S., and Shadel, G.S. (2006). Defective mitochondrial gene expression results in reactive oxygen species-mediated inhibition of respiration and reduction of yeast life span. Mol. Cell. Biol. 26, 4818–4829.

Bonawitz, N.D., Chatenay-Lapointe, M., Pan, Y., and Shadel, G.S. (2007). Reduced TOR signaling extends chronological life span via increased respiration and upregulation of mitochondrial gene expression. Cell Metab. 5, 265–277.

Burtner, C.R., Murakami, C.J., Kennedy, B.K., and Kaeberlein, M. (2009). A molecular mechanism of chronological aging in yeast. Cell Cycle 8, 1256–1270.

Cameroni, E., Hulo, N., Roosen, J., Winderickx, J., and De Virgilio, C. (2004). The novel yeast PAS kinase Rim 15 orchestrates G0-associated antioxidant defense mechanisms. Cell Cycle 3, 462–468.

Castro, F.A., Mariani, D., Panek, A.D., Eleutherio, E.C., and Pereira, M.D. (2008). Cytotoxicity mechanism of two naphthoquinones (menadione and plumbagin) in Saccharomyces cerevisiae. PLoS ONE 3, e3999.

Cybulski, N., and Hall, M.N. (2009). TOR complex 2: a signaling pathway of its own. Trends Biochem. Sci. 34, 620–627.

Dillin, A., Hsu, A.L., Arantes-Oliveira, N., Lehrer-Graiwer, J., Hsin, H., Fraser, A.G., Kamath, R.S., Ahringer, J., and Kenyon, C. (2002). Rates of behavior and aging specified by mitochondrial function during development. Science 298, 2398–2401.

Dirmeier, R., O'Brien, K.M., Engle, M., Dodd, A., Spears, E., and Poyton, R.O. (2002). Exposure of yeast cells to anoxia induces transient oxidative stress. Implications for the induction of hypoxic genes. J. Biol. Chem. 277, 34773–34784.

Fabrizio, P., and Longo, V.D. (2007). The chronological life span of Saccharomyces cerevisiae. Methods Mol. Biol. 371, 89–95.

Fabrizio, P., Pozza, F., Pletcher, S.D., Gendron, C.M., and Longo, V.D. (2001). Regulation of longevity and stress resistance by Sch9 in yeast. Science *292*, 288–290.

Fabrizio, P., Liou, L.L., Moy, V.N., Diaspro, A., Valentine, J.S., Gralla, E.B., and Longo, V.D. (2003). SOD2 functions downstream of Sch9 to extend longevity in yeast. Genetics *163*, 35–46.

Fabrizio, P., Gattazzo, C., Battistella, L., Wei, M., Cheng, C., McGrew, K., and Longo, V.D. (2005). Sir2 blocks extreme life-span extension. Cell 123, 655–667.

Fleury, C., Mignotte, B., and Vayssière, J.L. (2002). Mitochondrial reactive oxygen species in cell death signaling. Biochimie 84, 131–141.

Fontana, L., Partridge, L., and Longo, V.D. (2010). Extending healthy life span—from yeast to humans. Science 328, 321–326.

Gems, D., and Partridge, L. (2008). Stress-response hormesis and aging: "that which does not kill us makes us stronger". Cell Metab. 7, 200–203.

Hamanaka, R.B., and Chandel, N.S. (2009). Mitochondrial reactive oxygen species regulate hypoxic signaling. Curr. Opin. Cell Biol. *21*, 894–899.

Harrison, D.E., Strong, R., Sharp, Z.D., Nelson, J.F., Astle, C.M., Flurkey, K., Nadon, N.L., Wilkinson, J.E., Frenkel, K., Carter, C.S., et al. (2009). Rapamycin fed late in life extends lifespan in genetically heterogeneous mice. Nature *460*, 392–395.

Henderson, L.M., and Chappell, J.B. (1993). Dihydrorhodamine 123: a fluorescent probe for superoxide generation? Eur. J. Biochem. 217, 973–980.

Kadenbach, B. (2003). Intrinsic and extrinsic uncoupling of oxidative phosphorylation. Biochimica et Biophysica Acta *1604*, 77–94.

Kaeberlein, M. (2010). Lessons on longevity from budding yeast. Nature 464, 513–519.

Kaeberlein, M., Powers, R.W., 3rd, Steffen, K.K., Westman, E.A., Hu, D., Dang, N., Kerr, E.O., Kirkland, K.T., Fields, S., and Kennedy, B.K. (2005). Regulation of yeast replicative life span by TOR and Sch9 in response to nutrients. Science *310*, 1193–1196.

Kapahi, P., Zid, B.M., Harper, T., Koslover, D., Sapin, V., and Benzer, S. (2004). Regulation of lifespan in Drosophila by modulation of genes in the TOR signaling pathway. Curr. Biol. *14*, 885–890.

Kharade, S.V., Mittal, N., Das, S.P., Sinha, P., and Roy, N. (2005). Mrg19 depletion increases S. cerevisiae lifespan by augmenting ROS defence. FEBS Lett. *579*, 6809–6813.

Lavoie, H., and Whiteway, M. (2008). Increased respiration in the sch9Delta mutant is required for increasing chronological life span but not replicative life span. Eukaryot. Cell 7, 1127–1135.

Lemire, B.D., Behrendt, M., DeCorby, A., and Gásková, D. (2009). C. elegans longevity pathways converge to decrease mitochondrial membrane potential. Mech. Ageing Dev. 130, 461–465.

Linnane, A.W., Kios, M., and Vitetta, L. (2007). The essential requirement for superoxide radical and nitric oxide formation for normal physiological function and healthy aging. Mitochondrion 7, 1–5.

Loewith, R., Jacinto, E., Wullschleger, S., Lorberg, A., Crespo, J.L., Bonenfant, D., Oppliger, W., Jenoe, P., and Hall, M.N. (2002). Two TOR complexes, only one of which is rapamycin sensitive, have distinct roles in cell growth control. Mol. Cell *10*, 457–468.

Longo, V.D., Liou, L.L., Valentine, J.S., and Gralla, E.B. (1999). Mitochondrial superoxide decreases yeast survival in stationary phase. Arch. Biochem. Biophys. 365, 131–142.

Mesquita, A., Weinberger, M., Silva, A., Sampaio-Marques, B., Almeida, B., Leão, C., Costa, V., Rodrigues, F., Burhans, W.C., and Ludovico, P. (2010). Caloric restriction or catalase inactivation extends yeast chronological lifespan by inducing H2O2 and superoxide dismutase activity. Proc. Natl. Acad. Sci. USA 107, 15123–15128.

Ocampo, A., Zambrano, A., and Barrientos, A. (2010). Suppression of polyglutamine-induced cytotoxicity in Saccharomyces cerevisiae by enhancement of mitochondrial biogenesis. FASEB J. 24, 1431–1441.

Pan, Y., and Shadel, G.S. (2009). Extension of chronological life span by reduced TOR signaling requires down-regulation of Sch9p and involves increased mitochondrial OXPHOS complex density. Aging 1, 131–145.

Parrella, E., and Longo, V.D. (2008). The chronological life span of Saccharomyces cerevisiae to study mitochondrial dysfunction and disease. Methods 46, 256–262.

Piper, P.W., Harris, N.L., and MacLean, M. (2006). Preadaptation to efficient respiratory maintenance is essential both for maximal longevity and the retention of replicative potential in chronologically ageing yeast. Mech. Ageing Dev. 127, 733–740.

Powers, R.W., 3rd, Kaeberlein, M., Caldwell, S.D., Kennedy, B.K., and Fields, S. (2006). Extension of chronological life span in yeast by decreased TOR pathway signaling. Genes Dev. 20, 174–184.

Reinke, A., Anderson, S., McCaffery, J.M., Yates, J., 3rd, Aronova, S., Chu, S., Fairclough, S., Iverson, C., Wedaman, K.P., and Powers, T. (2004). TOR complex 1 includes a novel component, Tco89p (YPL180w), and cooperates with Ssd1p to maintain cellular integrity in Saccharomyces cerevisiae. J. Biol. Chem. 279, 14752–14762.

Ristow, M., and Zarse, K. (2010). How increased oxidative stress promotes longevity and metabolic health: The concept of mitochondrial hormesis (mitohormesis). Exp. Gerontol. 45, 410–418.

Schieke, S.M., Phillips, D., McCoy, J.P., Jr., Aponte, A.M., Shen, R.F., Balaban, R.S., and Finkel, T. (2006). The mammalian target of rapamycin (mTOR) pathway regulates mitochondrial oxygen consumption and oxidative capacity. J. Biol. Chem. 281, 27643–27652.

Schulz, T.J., Zarse, K., Voigt, A., Urban, N., Birringer, M., and Ristow, M. (2007). Glucose restriction extends Caenorhabditis elegans life span by inducing mitochondrial respiration and increasing oxidative stress. Cell Metab. 6, 280–293.

Selman, C., Tullet, J.M., Wieser, D., Irvine, E., Lingard, S.J., Choudhury, A.I., Claret, M., Al-Qassab, H., Carmignac, D., Ramadani, F., et al. (2009). Ribosomal protein S6 kinase 1 signaling regulates mammalian life span. Science 326, 140–144.

Shadel, G.S. (2008). Expression and maintenance of mitochondrial DNA: new insights into human disease pathology. Am. J. Pathol. 172, 1445–1456.

Sherman, F. (1991). Getting started with yeast. Methods Enzymol. 194, 3–21. Starkov, A.A. (2008). The role of mitochondria in reactive oxygen species metabolism and signaling. Ann. N Y Acad. Sci. 1147, 37–52.

Urban, J., Soulard, A., Huber, A., Lippman, S., Mukhopadhyay, D., Deloche, O., Wanke, V., Anrather, D., Ammerer, G., Riezman, H., et al. (2007). Sch9 is a major target of TORC1 in Saccharomyces cerevisiae. Mol. Cell 26, 663–674.

Vanden Hoek, T.L., Shao, Z., Li, C., Schumacker, P.T., and Becker, L.B. (1997). Mitochondrial electron transport can become a significant source of oxidative injury in cardiomyocytes. J. Mol. Cell Cardiol. 29, 2441–2450.

Veal, E.A., Day, A.M., and Morgan, B.A. (2007). Hydrogen peroxide sensing and signaling. Mol. Cell 26, 1–14.

Vellai, T., Takacs-Vellai, K., Zhang, Y., Kovacs, A.L., Orosz, L., and Müller, F. (2003). Genetics: influence of TOR kinase on lifespan in C. elegans. Nature 426, 620

Wallace, D.C. (2005). A mitochondrial paradigm of metabolic and degenerative diseases, aging, and cancer: a dawn for evolutionary medicine. Annu. Rev. Genet. 39, 359–407.

Wanke, V., Cameroni, E., Uotila, A., Piccolis, M., Urban, J., Loewith, R., and De Virgilio, C. (2008). Caffeine extends yeast lifespan by targeting TORC1. Mol. Microbiol. 69. 277–285.

Wei, M., Fabrizio, P., Hu, J., Ge, H., Cheng, C., Li, L., and Longo, V.D. (2008). Life span extension by calorie restriction depends on Rim15 and transcription factors downstream of Ras/PKA, Tor, and Sch9. PLoS Genet. *4*, e13.

Wei, M., Fabrizio, P., Madia, F., Hu, J., Ge, H., Li, L.M., and Longo, V.D. (2009). Tor1/Sch9-regulated carbon source substitution is as effective as calorie restriction in life span extension. PLoS Genet. 5, e1000467.

Weinberger, M., Mesquita, A., Caroll, T., Marks, L., Yang, H., Zhang, Z., Ludovico, P., and Burhans, W.C. (2010). Growth signaling promotes chronological aging in budding yeast by inducing superoxide anions that inhibit quiescence. Aging 2, 709-726.

Westermann, B., and Neupert, W. (2000). Mitochondria-targeted green fluorescent proteins: convenient tools for the study of organelle biogenesis in Saccharomyces cerevisiae. Yeast 16, 1421-1427.

Wullschleger, S., Loewith, R., Oppliger, W., and Hall, M.N. (2005). Molecular organization of target of rapamycin complex 2. J. Biol. Chem. 280, 30697-30704.

Wullschleger, S., Loewith, R., and Hall, M.N. (2006). TOR signaling in growth and metabolism. Cell 124, 471-484.

Yang, W., and Hekimi, S. (2010). A mitochondrial superoxide signal triggers increased longevity in Caenorhabditis elegans. PLoS Biol. 8, e1000556.

Zhang, N., and Oliver, S.G. (2010). The transcription activity of Gis1 is negatively modulated by proteasome-mediated limited proteolysis. J. Biol. Chem. 285, 6465-6476.

Zhang, N., Wu, J., and Oliver, S.G. (2009). Gis1 is required for transcriptional reprogramming of carbon metabolism and the stress response during transition into stationary phase in yeast. Microbiology 155, 1690-1698.