

Cell Press is proud to announce the next meeting in our annual series of free, one-day symposia called LabLinks. Organized by local scientists in conjunction with Cell Press editors, LabLinks feature local and keynote speakers focusing on a unified topic.

Our upcoming meeting, **Systems Biology**, will foster interactions between colleagues working on related questions—colleagues across town, across the street, or even across the hall.

LabLinks are **FREE!** Seating is limited and registration is recommended.

REGISTER TO ATTEND!

Visit the Announcements section at www.cell.com and click on **NEW! LabLinks: Systems Biology**

*Note: 10 registrants will be randomly chosen to receive a complimentary, one-year personal subscription to the Cell Press journal of their choice. Winners will be notified by email.

LabLinks: Systems Biology

Friday October 3, 2008,
Boston University Photonics Center
Room 206
8 St. Mary's Street
Boston, MA

Organized by:

James Collins, Boston University

Lara Szewczak, Cell, Cell Press

Brian Plosky, Molecular Cell, Cell Press

Keynote Speaker

Uri Alon, Weizmann Institute of Science
Design principles of biological networks

Speakers

Albert-László Barabási, Northeastern University
Network medicine: From cellular networks to human diseases

Chris Burge, MIT
Global patterns in tissue-specific RNA processing

James Collins, HHMI and Boston University
A network biology approach to antibiotic action and bacterial defense mechanisms

Vamsi Mootha, Harvard Medical School
Mitochondrial parts, pathways, and pathogenesis

Aviv Regev, Broad Institute/MIT
Modular biology: The function and evolution of molecular networks

Pamela Silver, Harvard Medical School
Designing biological systems for interpreting cell behavior, disease and the environment

Marc Vidal, Harvard Medical School
Interactome networks and human disease

Marian Walhout, University of Massachusetts Medical School
*Specificity and promiscuity in a multi-tiered *C. elegans* helix-loop-helix network*