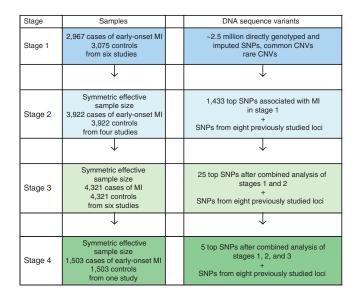


Genome-wide association of early-onset myocardial infarction with single nucleotide polymorphisms and copy number variants


Myocardial Infarction Genetics Consortium*

We conducted a genome-wide association study testing single nucleotide polymorphisms (SNPs) and copy number variants (CNVs) for association with early-onset myocardial infarction in 2,967 cases and 3,075 controls. We carried out replication in an independent sample with an effective sample size of up to 19,492. SNPs at nine loci reached genome-wide significance: three are newly identified (21q22 near MRPS6-SLC5A3-KCNE2, 6p24 in PHACTR1 and 2q33 in WDR12) and six replicated prior observations¹⁻⁴ (9p21, 1p13 near CELSR2-PSRC1-SORT1, 10q11 near CXCL12, 1q41 in MIA3, 19p13 near LDLR and 1p32 near PCSK9). We tested 554 common copy number polymorphisms (>1% allele frequency) and none met the pre-specified threshold for replication ($P < 10^{-3}$). We identified 8,065 rare CNVs but did not detect a greater CNV burden in cases compared to controls, in genes compared to the genome as a whole, or at any individual locus. SNPs at nine loci were reproducibly associated with myocardial infarction, but tests of common and rare CNVs failed to identify additional associations with myocardial infarction risk.

Myocardial infarction is a leading cause of death and disability worldwide⁵, with family history being an independent risk factor⁶. The inherited basis for myocardial infarction remains incompletely understood. Whereas the majority of myocardial infarctions occur in individuals >65 y old, 1–5% of younger individuals report a history of myocardial infarction^{5,7}. These latter events are associated with substantially greater heritability⁸. Thus, early-onset myocardial infarction is a promising phenotype for genetic mapping.

Genome-wide association studies (GWASs) of common SNPs have been reported for myocardial infarction and coronary artery disease (CAD), with each study finding common SNPs on chromosome 9p21.3 associated with myocardial infarction or CAD¹⁻³. In addition to 9p21.3, Samani *et al.* reported six other loci as harboring SNPs associated with CAD³. Some of these loci await definitive replication, but even if all were valid, they would explain a small fraction of the risk for myocardial infarction.

Structural variants, another class of human DNA sequence variation, may account for some of the unexplained heritability in myocardial infarction and other common diseases⁹. To our knowledge, no integrated assessment of SNPs and CNVs in the same samples has been reported for myocardial infarction or any other trait. Several technological developments make such systematic surveys now possible, including hybrid oligonucleotide microarrays¹⁰ and analytical methods¹¹ to simultaneously assess SNPs and CNVs genome-wide in each sample.

Figure 1 Study design. The GWAS consisted of four stages with an evaluation of common SNPs, common CNPs and rare CNVs in stage 1. The design called for all variants with a P < 0.001 to be taken forward to stage 2. As only SNPs met this criterion, 1,441 SNPs were taken forward to stage 2. Thirty-three SNPs were tested in stage 3. Thirteen SNPs were tested in stage 4. Statistical evidence for association was combined across stages 1-4 using meta-analysis.

^{*}The complete list of participants and affiliations is provided at the end of this article. Correspondence should be addressed to S.K. (skathiresan1@partners.org).

Received 13 November 2008; accepted 16 January 2009; published online 8 February 2009; corrected after print 27 May 2009; doi:10.1038/ng.327

Table 1 Participant characteristics of case and control subjects in stage 1 of the GWAS

				t Attack Risk		MGH Premature Coronary				Malmö Diet and		
Study			in Puget Sound		REGICOR		Artery Disease Study		FINRISK		Cancer Study	
	Cases	Controls	Cases	Controls	Cases	Controls	Cases	Controls	Cases	Controls	Cases	Controls
n	1,693	1,668	505	559	312	317	204	260	167	172	86	99
Ascertainment scheme	Hospital-	Hospital-	Community-	Community-	Hospital-	Drawn from	Hospital-	Hospital-	Drawn from	Nested case	- Drawn from	Nested case-
	based	based	based	based	based	community-	based	based	population-	cohort	population-	cohort
						based cohor	t		based cohort		based cohort	
Myocardial infarction	Men or	_	$Men \leq \! 50 \; or \;$	_	$Men \leq 50 \ or$	_	$Men \leq \! 50 \; or \;$	_	$Men \leq \! 50 \; or \;$	_	$Men \leq 50 \text{ or}$	_
age criterion	women ≤45		women ≤ 60		women ≤60		women ≤60)	women \leq 60		women ≤60	
Country of origin ^a	Italy	Italy	US	US	Spain	Spain	US	US	Finland	Finland	Sweden	Sweden
Mean age (y) ^b	39.4 ± 4.9	39.3 ± 5.0	46.0 ± 6.9	45.2 ± 7.3	45.9 ± 5.8	46.0 ± 5.6	47.0 ± 6.1	53.8 ± 11.1	47.1 ± 6.2	47.1 ± 6.0	48.5 ± 4.4	48.7 ± 4.6
>Female gender (%)	11.4	11.6	51.1	55.5	20.2	21.5	29.9	33.5	33.5	31.4	41.9	42.4
Ever cigarette	87.0	49.3	73.9	41.7	82.8	61.9	74.9	57.3	74.4	58.2	87.2	61.6
smoking (%)												
Hypertension (%) ^c	32.6	11.9	50.5	30.8	38.0	31.5	33.5	25.3	72.5	68.0	81.4	62.6
Diabetes mellitus (%) ^d	7.8	0.8	14.9	3.0	14.8	6.1	19.2	0.4	17.7	5.9	4.7	1.0
Hypercholestero- Iemia (%) ^e	60.4	44.4	43.7	26.0	48.9	33.1	79.0	31.3	75.2	48.2	37.2	1.0
Body mass index (kg/m ²)	26.7 ± 4.2	25.0 ± 3.3	29.2 ± 6.8	26.9 ± 5.7	27.5 ± 4.2	27.0 ± 3.9	30.0 ± 7.0	27.9 ± 6.5	29.6 ± 5.0	27.7 ± 4.0	26.9 ± 4.2	25.7 ± 4.3

Values with '±' are means ± s.d. The body-mass index is the weight in kilograms divided by the square of the height in meters.

*All cases and controls were of European ancestry. bMean age at myocardial infarction for cases and at age of recruitment for controls. Hypertension was defined as a previous diagnosis of hypertension, on antihypertensive therapy or with recorded systolic blood pressure ≥ 140 mmHg or diastolic blood pressure ≥ 90 mmHg. dDiabetes mellitus was defined as a previous diagnosis of diabetes or treatment with antidiabetic medications. *Hypercholesterolemia was defined as a previous diagnosis of hypercholesterolemia or treatment with lipid-lowering therapy.

We designed a four-stage GWAS of early-onset myocardial infarction with SNPs, common copy number polymorphisms (CNPs) and rare CNVs (**Fig. 1**). Stage 1 consisted of the Myocardial Infarction Genetics Consortium (MIGen), a collection of 2,967 cases of early-onset myocardial infarction (in men ≤ 50 y old or women ≤ 60 y old) and 3,075 age- and sex-matched controls free of myocardial infarction from six international sites: Boston and Seattle in the United States, as well as Sweden, Finland, Spain and Italy (**Table 1** and **Supplementary Methods** online). The mean age at the time of myocardial infarction was 41 y among males and 47 y among females. Variants with P < 0.001 were advanced through three stages of replication (**Fig. 1**; see Methods for power calculations). Descriptions of the replication studies are provided in **Supplementary Methods** and **Supplementary Tables 1** and **2** online.

After stages 1–4, we observed that SNPs at nine loci were associated with myocardial infarction at a pre-specified threshold for genomewide significance of $P < 5 \times 10^{-8}$ (corresponding to P < 0.05 after adjusting for ~ 1 million independent tests¹²) (**Tables 2** and **3**). Of these nine, four represent confirmation of associations previously reported by Samani *et al.*³ (**Table 2**). These four genetic association signals map to 9p21, 1p13 near *CELSR2-PSRC1-SORT1*, 10q11 near *CXCL12* and 1q41 in *MIA3*. In samples fully independent of the two original discovery studies (Wellcome Trust Case Control Consortium and German MI Family Study I), the statistical evidence for these four variants was robust, with the same allele associated in the same direction as the original report (replication P ranging from 3×10^{-5} to 1×10^{-30} ; **Table 2**).

Three of the loci previously suggested by Samani *et al.* did not replicate (**Table 2**). In samples independent of the two original discovery studies, the statistical evidence for these loci was the following: rs6922269 in MTHFD1L (OR = 1.04, 95% CI = 0.99–1.09, P=0.08); rs17228212 in SMAD3 (OR = 1.01, 95% CI = 0.96–1.05, P=0.69) and rs2943634 on 2q36 (OR = 0.94, 95% CI = 0.90–0.98, P=0.01).

Three previously unreported associations were observed with genome-wide significance (Table 3): (i) in an intergenic region between

MRPS6 (mitochondrial ribosomal protein S6), *SLC5A3* (solute carrier family 5 (inositol transporters) member 3) and *KCNE2* (potassium voltage-gated channel, Isk-related family, member 2) on chromosome 21q22 (rs9982601, OR = 1.19, $P = 6 \times 10^{-11}$); (ii) in an intron of *PHACTR1* (phophastase and actin regulator 1) on chromosome 6p24 (rs12526453, OR = 1.13, $P = 1 \times 10^{-9}$); and (iii) in an intron of *WDR12* (WD repeat domain 12) on chromosome 2q33 (rs6725887, OR = 1.17, $P = 1 \times 10^{-8}$).

MRPS6 encodes a subunit of the mitochondrial ribosomal protein 28S¹³. SLC5A3 is a gene embedded within MRPS6 and encodes a protein that transports sodium and myo-inositol in response to hypertonic stress¹⁴. KCNE2 encodes a subunit of a potassium channel, and mutations in this gene cause inherited arrhythmias¹⁵. PHACTR1 is an inhibitor of protein phosphatase 1, an enzyme that dephosphorylates serine and threonine residues on a range of proteins¹⁶. WDR12 has been shown to complex with several proteins to enable ribosome biogenesis and cell proliferation¹⁷. The mechanisms by which gene(s) at these three genomic regions confer increased risk of myocardial infarction remain to be defined.

Of note, the *PHACTR1* locus may lead to myocardial infarction by directly promoting the development of atherosclerosis in the coronary arteries. In an independent GWAS for coronary artery calcification in >10,000 participants from six prospective cohort studies, *PHACTR1* SNPs (along with chromosome 9p21 SNPs) are associated with coronary artery calcification at genome-wide significance (C.J. O'Donnell, National Heart, Lung and Blood Institute, personal communication).

Of the nine loci with convincing association evidence, the remaining two (19p13 near *LDLR* and 1p32 near *PCSK9*) relate to a causal risk factor for myocardial infarction: low-density lipoprotein (LDL) cholesterol. Common, low-frequency and/or rare mutations at *LDLR* and *PCSK9* have previously been shown to influence LDL cholesterol and consequently affect risk for myocardial infarction^{18–22}. We confirm that common variants near *LDLR* and *PCSK9* are associated with risk for myocardial infarction. The specific alleles (*LDLR* rs1122608 and *PCSK9* rs11206510) corresponding to higher risk for myocardial

Table 2 Replication evidence for seven previously reported common variants associated with myocardial infarction

Studies (maximum available effective sample size)	Previously reported SNPs with convincing replication evidence						Previously reported SNPs without convincing replication evidence			
	SNP Chr. Position NCBI35 (bp)	rs4977574 9p21 22,088,574	rs646776 1p13 109,530,572	rs17465637 1q41 220,890,152	rs1746048 10q11 44,095,830	rs6922269 6q25 151,294,678	rs17228212 15q22 65,245,693	rs2943634 2q36 226,776,324		
	Nonrisk allele	Α	С	Α	Т	G	С	Α		
	Risk allele	G	T	С	С	A ^a	T ^a	Ca		
	Risk allele	0.56	0.81	0.72	0.84	0.26 ^a	0.73 ^a	0.66^{a}		
	frequency Gene(s) of interest in asso- ciated interval	CDKN2A- CDKN2B	CELSR2-PSRC1- SORT1	MIA3	CXCL12	MTHFD1L	SMAD3	None		
Stage 1	OR ^b	1.25	1.11	1.17	1.22	1.08	0.98	0.95		
MIGen	(95% CI)	(1.16–1.34)	(1.02–1.22)	(1.08–1.27)	(1.10-1.34)	(1.00–1.17)	(0.91–1.06)	(0.88–1.02)		
(n = 6,046)	P ^c	6.7×10^{-9}	0.040	1.5×10^{-4}	1.6×10^{-4}	0.07	0.68	0.18		
Stage 2	OR	1.64	1.33	1.09	1.27	1.19	1.11	0.99		
PennCATH,	(95% CI)	(1.37-1.96)	(1.09-1.64)	(0.90-1.33)	(0.99–1.64)	(0.98-1.46)	(0.91-1.36)	(0.82-1.20)		
MedSTAR $(n = 1,750)$	Р	5.2×10^{-8}	0.006	0.38	0.06	0.09	0.29	0.92		
Stage 3	OR	1.24	1.18	1.11	1.10	1.02	0.97	0.93		
AMI Gene, Verona,	(95% CI)	(1.17-1.32)	(1.08-1.29)	(1.04-1.19)	(1.00-1.20)	(0.95-1.09)	(0.90-1.04)	(0.87-1.00)		
MAHI, IFS, GerMIFS II, INTERHEART (n = 8,642)	Р	4.2×10^{-12}	9.2 × 10 ⁻⁵	0.003	0.046	0.63	0.35	0.048		
Stage 4	OR	1.34	1.22	1.11	1.04	0.98	1.16	0.93		
deCODE	(95% CI)	(1.20–1.49)	(1.06-1.40)	(0.98 - 1.25)	(0.87-1.23)	(0.87–1.11)	(1.03-1.31)	(0.83–1.04)		
(n = 3,006)	Р	2.4×10^{-7}	0.004	0.10	0.70	0.77	0.02	0.20		
Stages 1, 2, 3 + 4 excluding original discovery studies	OR (95% CI) <i>P</i>	1.28 (1.23–1.33) 1.1 × 10 ⁻³⁰	1.17 (1.11–1.24) 1.5×10^{-8}	1.13 (1.08–1.18) 4.9 × 10 ⁻⁷	1.14 (1.08–1.21) 3.4×10^{-5}	1.04 (0.99–1.09) 0.08	1.01 (0.96–1.05) 0.69	0.94 (0.90–0.98) 0.01		
(n = 19,444)	1	1.1 × 10	1.5 × 10	4.9 × 10	3.4 × 10	0.08	0.09	0.01		
Stages 1, 2, 3 + 4	OR	1.29	1.19	1.14	1.17	1.09	1.05	0.95		
including original	(95% CI)	(1.25–1.34)	(1.13–1.26)	(1.10–1.19)	(1.11–1.24)	(1.05–1.14)	(1.01–1.09)	(0.91–0.98)		
discovery studies (WTCCC and GerMIFS I) ^d ($n = 25,538$)	P	2.7 × 10 ⁻⁴⁴	7.9×10^{-12}	1.4×10^{-9}	7.4×10^{-9}	2.3×10^{-5}	0.02	0.005		

aRisk allele in two original discovery studies (WTCCC and GerMIFS I) is displayed. For this risk allele, we present the statistical evidence for stages 1–4. bOdds ratio based on a fixed-effect-based meta-analysis of odds ratios. P value based on a weighted z-score meta-analysis. For the present study, the phenotype in WTCCC was restricted to myocardial infarction. In the original discovery report by Samani et al., WTCCC included a broader case definition of myocardial infarction or coronary revascularization.

infarction in the present study have recently been correlated with higher LDL cholesterol^{4,23,24}.

To evaluate the cumulative effect of these nine SNPs on risk for myocardial infarction, we constructed a myocardial infarction genotype score comprised of the nine SNPs, modeling the number of risk alleles carried by each individual in the MIGen GWAS (stage 1). In logistic regression models including age, sex and principal components of ancestry, individuals in the top quintile of myocardial infarction genotype score had greater than twofold increased risk for myocardial infarction compared with bottom quintile (OR = 2.23, 95% CI = 1.89–2.63; $P = 1 \times 10^{-21}$; **Table 4**).

Although this myocardial infarction genotype score confers risk of a magnitude comparable to other established risk factors such as plasma LDL cholesterol (hazard ratio = 1.62, 95% CI = 1.17–2.25 for top

versus bottom quintile of LDL cholesterol as previously reported²⁵), further studies are required. The specific SNP set will need to include other recent discoveries for myocardial infarction such as the *MRAS* locus²⁶ as well as additional SNPs related to LDL cholesterol²⁴. Nearly all SNPs related to LDL cholesterol affect risk for MI⁴. In addition, the score requires validation in independent studies, preferably those with a prospective cohort design²⁷. Finally, gene–gene and gene–environment interactions need to be modeled if such interactions can be reproducibly documented.

Although the GWAS approach has met with some success in myocardial infarction, the confirmed myocardial infarction risk variants, in sum, explain a small fraction of the variance. The current myocardial infarction genotype score explains 2.8% of the variance in risk for early-onset myocardial infarction. Thus, we tested the hypothesis that systematic assessment of CNPs,

Table 3 Newly identified loci and variants associated with myocardial infarction

Studies (maximum available effective sample size)		1	Newly identified loci	Newly-identified common variants at previously reported loci		
	SNP Chr. Position NCBI35 (bp) Nonrisk allele Risk allele Risk allele frequency Gene(s) of interest in associated interval	rs9982601 21q22 34,520,998 C T 0.13 SLC5A3-MRPS6- KCNE2	rs12526453 6p24 13,035,530 G C 0.65 PHACTR1	rs6725887 ^a 2q33 203,454,130 T C 0.14 WDR12	rs1122608 19p13 11,024,601 T G 0.75 LDLR	rs11206510 1p32 55,268,627 C T 0.81 PCSK9
Stage 1 MIGen (n = 6,046) Stage 2 WTCCC, GerMIFS I, PennCATH, MedSTAR (n = 7,844) Stage 3 AMI Gene, Verona, MAHI, IFS, GerMIFS II, INTERHEART (n = 8,642) Stage 4 deCODE	OR ^b (95% CI) P OR (95% CI) P OR (95% CI) P OR (95% CI)	1.20 (1.07-1.34) 7.8×10^{-4} 1.34 (1.22-1.47) 1.7×10^{-9} 1.09 (0.98-1.21) 0.12 1.11 (0.95-1.30)	1.15 (1.07-1.24) 4.6×10^{-4} 1.12 (1.05-1.21) 3.6×10^{-4} 1.11 (1.04-1.19) 0.001 1.10 (0.97-1.24)	1.24 (1.12-1.38) 8.6×10^{-5} 1.15 (1.04-1.26) 0.003 1.11 (1.02-1.22) 0.02 1.23 (1.03-1.46)	1.18 (1.09-1.28) 1.7×10^{-4} 1.19 (1.10-1.28) 2.6×10^{-5} 1.13 (1.04-1.22) 0.004 1.03 (0.90-1.18)	1.12 (1.02-1.23) 0.02 1.16 (1.07-1.26) 9.1 × 10 ⁻⁴ 1.18 (1.10-1.28) 2.2 × 10 ⁻⁵ 1.11 (0.89-1.39)
(n = 3,006) Stages 1, 2, 3 + 4 (n = 25,538)	P OR (95% CI) P	0.17 1.20 (1.14–1.27) 6.4 × 10 ⁻¹¹	0.13 1.12 (1.08–1.17) 1.3 × 10 ⁻⁹	0.02 1.17 (1.11–1.23) 1.3 × 10 ⁻⁸	0.69 1.15 (1.10–1.20) 1.9 × 10 ⁻⁹	0.37 1.15 (1.10–1.21) 9.6 × 10 ⁻⁹

^aFor all studies except INTERHEART, where rs4675310 was substituted as a close to perfect proxy to rs6725887 (Hapmap CEU $r^2 = 1.0$). ^bOdds ratio based on a fixed-effect-based meta-analysis of odds ratios. ^cP value based on a weighted z-score meta-analysis.

common and rare, might identify additional loci contributing to myocardial infarction.

We first used the CANARY algorithm¹¹ to test 554 commonly segregating CNPs (>1% frequency) for association with early-onset myocardial infarction in 2,783 cases and 2,865 controls that passed sample quality control for CNV analysis (see Methods). The estimated genomic control λ for the entire set of CNPs was ~1.23; for 316 CNPs with allele frequency greater than 5%, λ was ~1.05. We did not observe any CNP with evidence for association surpassing our prespecified threshold for replication of P < 0.001. In fact, the strongest association (P = 0.002; **Supplementary Table 3** online) did not pass the Bonferroni correction for 554 tests, let alone genome-wide significance for SNPs. A plot of the observed versus expected P value distribution did not show deviation from the null distribution (**Supplementary Fig. 1** online).

To detect rare CNVs, we used Birdseye¹¹ and restricted analysis to autosomal deletions and duplications that were both rare (<1% frequency in our samples) and large (greater than 100 kb). After stringent quality control filtering (**Supplementary Methods**), the analysis included 5,955 individuals and 8,065 CNVs (39% deletions). The mean number of rare CNVs per individual was 1.35, and the median was 1.

Using the same methods recently described in a successful study of schizophrenia²⁸, we evaluated case-control differences in rare CNVs across three parameters: the overall burden of rare CNVs genomewide, the number of genes overlapped by rare CNVs and the total kilobase extent of rare CNVs. Controlling for sample collection site,

there were no case-control differences in genome-wide rare CNV rate (P=0.39), the number of genes intersected by rare CNVs (P=0.74) or the total kilobase extent of rare CNVs (P=0.77). Searching for specific loci with increased rates of rare CNVs in cases versus controls, we found only four regions that showed uncorrected P values <0.01; however, the lowest P value after correction for multiple testing was 0.96.

In summary, we screened common SNPs and CNVs (both common and rare) for association with early-onset myocardial infarction in a large sample. Our study suggests four main conclusions. First, there are at least nine regions that harbor common SNPs associated with myocardial infarction at genome-wide significance; three of these are newly described in this study. Second, the magnitude of risk conferred by a common variant bears no relationship to the potential biological value of the specific finding. For example, similarly to the newly identified loci, we find that common variants at LDLR and PCSK9 confer weak effects, and yet study of these two genes has yielded critical insights into atherosclerosis and myocardial infarction. Third, whereas the effects of individual SNPs are modest, the overall effect (in a comparison of extreme quintiles) is higher for a nine-SNP score (~twofold increase in risk). This observation needs to be validated in additional studies. Finally, and in contrast to the positive results for genetic mapping of myocardial infarction via SNP analysis, we were unable to detect common or rare CNVs associated with risk for myocardial infarction.

The remaining inherited risk for myocardial infarction may be due to some combination of common SNPs for which we do not yet have

Table 4 Quintiles of allelic dosage score comprised of nine validated SNPs and risk for early-onset myocardial infarction

Quintile of myocardial infarction								
genotype score	Odds ratio	95% confidence interval						
Quintile 1	1.0 (reference group)							
Quintile 2	1.22	1.04-1.44						
Quintile 3	1.43	1.22-1.68						
Quintile 4	1.69	1.44-1.99						
Quintile 5	2.23	1.89-2.63						

P for association of myocardial infarction genotype score with early-onset myocardial infarction: 2×10^{-28}

The nine validated myocardial infarction polymorphisms are as shown in **Table 2** and **Table 3** and include *SLC5A3-MRPS6-KCNE2* rs9982601, *PHACTR1* rs12526453, *WDR12* rs6725887, 9p21.3 rs4977574, *CXCL12* rs1746048, *CELSR2-PSRC1-SORT1* rs646776, *MIA3* rs17465637, *LDLR* rs1122608, and *PCKS9* rs11206510. Risk of early-onset myocardial infarction was assessed in the 2,967 cases and 3,075 controls from stage 1.

sufficient power, CNVs not measured in our analysis, rare point mutations, nonadditive interactions and epigenetic factors, among other possibilities. Approaches to further clarify the genetic architecture of myocardial infarction include larger-scale screens to identify more common SNPs, improved CNV maps and detection methods to enhance statistical power, and sequencing of myocardial infarction loci (and eventually all exons genome-wide) to discover low-frequency and rare variants. In parallel, mechanistic studies in cells, model organisms and humans that are focused on the nine validated loci should improve our understanding of the root causes of myocardial infarction, and consequently, enable better therapies for this disease.

METHODS

Study design and samples. We conducted a genetic association study with four stages as displayed in Figure 1. Stage 1 consisted of MIGen, a collection of 2,967 cases of early-onset myocardial infarction (in men \leq 50 y old or women \leq 60 y old) and 3,075 age- and sex-matched controls free of myocardial infarction from six international sites: Boston and Seattle in the United States as well as Sweden, Finland, Spain and Italy (Table 1). At each site, myocardial infarction was diagnosed on the basis of autopsy evidence of fatal myocardial infarction or a combination of chest pain, electrocardiographic evidence of myocardial infarction, or elevation of one or more cardiac biomarkers (creatine kinase or cardiac troponin). The mean age at the time of myocardial infarction was 41 y among male cases and 47 y among female cases.

We took forward SNPs into three stages of replication (stages 2–4; **Fig. 1**). We chose 1,441 SNPs to test in stage 2 on the basis of two criteria: (i) strength of statistical evidence in stage 1 (1,433 SNPs from loci with $P < 10^{-3}$ in stage 1) or (ii) belonging to one of eight reported loci from recent genome-wide association studies for CAD (a common SNP at or near 9p21.3, *CXCL12*, *SMAD3*, *MTHFD1L*, *MIA3*, *CELSR2-PSRC1-SORT1*, 2q36 and *PCSK9*)^{3,4}.

Stage 2 consisted of comparisons with four recently completed GWAS for myocardial infarction consisting of a symmetric effective sample size of up to 3,922 myocardial infarction cases and 3,922 controls. These studies included the Wellcome Trust Case Control Consortium Coronary Heart Disease study, German MI Family Study I, PennCATH and MedStar (**Supplementary Methods** and **Supplementary Table 1**). In each stage 2 study, the analysis was restricted to the phenotype of myocardial infarction with an age of onset threshold of <66 y for men or women. Although this age cutoff is slightly less restrictive than that used in stage 1, this cutoff is at or below the mean age of first myocardial infarction in the United States (65 y for men and 70 y for women)⁵.

We took forward 33 SNPs to stage 3, which consisted of genotyping an additional six studies with a symmetric effective sample size of up to 4,321 myocardial infarction cases and 4,321 controls. These six studies included Acute MI Gene Study/Dortmund Health Study, Verona Heart Study, Mid-America Heart Institute Study, Irish Family Study, German MI Family Study II and

INTERHEART (European-ancestry samples) (**Supplementary Methods** and **Supplementary Table 2**). Stage 3 comprised 25 SNPs with the best combined statistical evidence for myocardial infarction from stages 1 and 2 ($P < 10^{-5}$) and the eight previously reported SNPs discussed above. In each stage 3 study, the analysis was restricted to the phenotype of myocardial infarction, and in four of the six studies, an age-of-onset threshold was established at < 66 y for men or women

Thirteen SNPs were taken forward to stage 4, which consisted of association results from deCODE with a symmetric effective sample size of 1,503 cases of early-onset myocardial infarction and 1,503 controls (**Supplementary Table 2**). Stage 4 comprised five SNPs with the best combined statistical evidence from stages 1–3 and the eight previously reported SNPs. In the deCODE study, the analysis was restricted to cases with early-onset myocardial infarction (men <50 y old or women <60 y old). All participants in the 17 studies across stages 1, 2, 3 and 4 gave written informed consent in accordance with the guidelines of local ethical committees.

Genotyping. In stage 1, we studied 727,496 directly genotyped SNPs (Affymetrix 6.0 GeneChip) that passed quality-control filters, as described in the **Supplementary Methods.** In addition, we used these genotyped SNPs and the phased chromosomes from the HapMap CEU sample to impute genotypes for an additional 1,830,248 SNPs with MACH 1.0 software. In previous work, we have shown that imputation is accurate (average concordance rate of 97.9% between imputed and genotyped data for the same SNP) when using MACH 1.0 in samples of European ancestry with the HapMap CEU phased chromosomes as reference²⁹.

Stage 2 studies were genotyped on either the Affymetrix GeneChip Human Mapping 500K Array Set or Affymetrix 6.0 GeneChip, and imputation of HapMap SNPs was done using either IMPUTE or MACH 1.0 software (Supplementary Table 1).

In Stage 3, genotyping was attempted for 33 SNPs in five studies using the iPLEX MassARRAY platform (Sequenom). In the sixth study, German MI Family Study II, SNPs were genotyped using the Affymetrix 6.0 array (Supplementary Table 2).

In Stage 4, the deCODE study samples were genotyped on Illumina Infinium HumanHap300 or HumanHap370 chips, and imputation of HapMap SNPs was done using IMPUTE software (Supplementary Table 2).

Association of individual SNP genotypes with myocardial infarction. In stage 1, we tested the association of early-onset myocardial infarction with a combined set of $\sim\!2.5$ million SNPs (directly genotyped and imputed with information content $>\!0.5$) using a logistic regression model that accounted for age, sex and study site. The estimated genomic control λ_{1000} was low at 1.01, suggesting little residual confounding due to population stratification. Regardless, association test statistics were corrected using the genomic control method; separate corrections were made for imputed SNPs (with information content $>\!0.5$) and genotyped SNPs. We tested imputed genotypes for association after accounting for uncertainty using the "PROPER" option in the SNPTest software package.

In addition, we evaluated an alternate method to account for potential confounding by population stratification within samples of European ancestry. We conducted principal-component analysis as implemented in PLINK software to define axes of ancestry within the six stage 1 studies³⁰. The first two principal components separated individuals into clusters that matched study-site labels and revealed the well-known north–south cline in allele frequencies across Europe (Supplementary Fig. 2 online). Logistic regression analysis with the first two principal components as covariates (instead of study site) led to nearly identical association results (correlation in association statistics was 0.99). In stages 2 and 3, within each study, we examined the association of SNPs with myocardial infarction using logistic regression after adjustment for age and sex. In stage 4, SNPs were tested for association with early-onset myocardial infarction after adjustment for age and sex, with correction of association test statistics using the genomic-control method as previously described².

We used two meta-analytic methods to summarize the statistical evidence for each SNP across stages 1–4. We combined odds ratios for a given reference allele on a logarithmic scale weighted by the inverse of their variances using a fixed-effects model. We also combined evidence for association solely on the

gdi

basis of P values. For each study, we converted the two-sided P value to a z-statistic and assigned a sign to reflect the direction of the association given the reference allele. Each z-score was then weighted with the squared weights summing to 1 and each sample-specific weight being proportional to the square root of the effective number of individuals in the sample. We summed the weighted z-statistics across studies and converted the summary z-score to a two-sided P value.

Statistical analyses were conducted using either PLINK software or in R.

Analyses of myocardial infarction genotype score, common CNVs and rare CNVs. Details for these analyses are provided in Supplementary Methods.

Statistical power. Given our inability to identify CNVs associated with myocardial infarction, we estimated our statistical power for such discovery. For common CNPs, we had 78% power to detect a CNP of 25% frequency and effect size of 1.20 at an alpha of 0.001 in 3,000 cases and 3,000 controls. For rare CNVs, we approximated by simulation the statistical power to detect a CNV with a population frequency for the deletion of 1/8,000 (that is, so it would be observed in 1/4,000 live births). We set the relative risk to 20.0 (the effect size seen for several rare variants associated with schizophrenia²⁸) and the population disease prevalence to 1/100. We simulated 10,000 datasets for 2,920 cases and 3,035 controls under this model. Using Fisher's exact test to account for small cell sizes, for a type 1 error rate of 0.01 (one-sided test) we had 97% power. The mean case frequency was \sim 0.5%, and the mean control frequency was \sim 0.02%. For a similarly rare variant but with a relative risk of 10.0, the average case frequency was \sim 0.25% (control frequency still 0.02%) and power was lower at 54%.

These simulations suggest that we had good power to detect loci with large effects, although this assumes perfect sensitivity and specificity for detection. For very large deletions, at least, we expect sensitivity to detect such CNVs would be high. However, we may have missed additional loci with CNVs that are less penetrant, rarer or smaller.

Note: Supplementary information is available on the Nature Genetics website.

ACKNOWLEDGMENTS

HARPS. The HARPS study was supported by the grants (R01HL056931, P30ES007033) and a contract (N01HD013107) from US National Institutes of Health

REGICOR. The REGICOR study was partially funded by the Ministerio de Sanidad y Consumo, Instituto de Salud Carlos III (Red HERACLES RD06/0009), the CIBER Epidemiología y Salud Pública, the FIS and AGAUR Generalitat de Catalunya.

Massachusetts General Hospital. The MIGen study was funded by the US National Institutes of Health (NIH) and National Heart, Lung, and Blood Institute's STAMPEED genomics research program through a grant to D.A. S.K. is supported by a Doris Duke Charitable Foundation Clinical Scientist Development Award, a charitable gift from the Fannie E. Rippel Foundation, the Donovan Family Foundation, a career development award from the NIH and the Department of Medicine and Cardiovascular Research Center at Massachusetts General Hospital. J.B.M. is supported by grant K24 DK080140 from the NIH.

Broad Institute. Genotyping was partially funded by The Broad Institute Center for Genotyping and Analysis, which is supported by grant U54 RR020278 from the National Center for Research Resources.

FINRISK. V.S. was supported by the Sigrid Juselius Foundation. L.P. was supported by the Center of Excellence in Complex Disease Genetics of the Academy of Finland, the Nordic Center of Excellence in Disease Genetics and the Finnish Foundation for Cardiovascular Research.

WTCCC Study. The study was funded by the Wellcome Trust. Recruitment of cases for the WTCCC Study was carried out by the British Heart Foundation (BHF) Family Heart Study Research Group and supported by the BHF and the UK Medical Research Council. N.J.S. and S.G.B. hold chairs funded by the BHF. PennCATH/MedStar. Recruitment of the PennCATH cohort was supported by the Cardiovascular Institute of the University of Pennsylvania. Recruitment of the MedStar cohort was supported by a research grant from GlaxoSmithKline and from the MedStar Research Institute. Genotyping was done at the Center for Applied Genomics at the Children's Hospital of Philadelphia and supported by GlaxoSmithKline through an Alternate Drug Discovery Initiative research alliance award (to M.P.R. and D.J.R.) with the University of Pennsylvania School of Medicine. D.J.R. was supported by a Doris Duke Charitable Foundation Distinguished Clinical Scientist Award.

Verona Heart Study. The study was supported by a grant from the Italian Ministry of University and Research and grants from the Veneto Region and the Cariverona Foundation, Verona, Italy.

Mid-America Heart Institute. T.M. is supported by a career development grant from the NIH.

Irish Family Study. We thank the clinical staff members for their valuable contribution to the collection of families for this study. The research was supported by the Northern Ireland Research and Development Office, a Royal Victoria Hospital Research Fellowship, the Northern Ireland Chest, Heart and Stroke Association, and the Heart Trust Fund (Royal Victoria Hospital).

GerMIFS I and II. The German Study was supported by the Deutsche Forschungsgemeinschaft and the German Federal Ministry of Education and Research in the context of the German National Genome Research Network. **Cardiogenics.** Cardiogenics is an EU-funded integrated project (LSHM-CT-2006-037593).

INTERHEART. S.A. holds the Michael G. DeGroote and Heart and Stroke Foundation of Ontario Chair in Population Health and the May Cohen Eli Lilly Endowed Chair in Women's Health Research, McMaster University. We acknowledge the contribution of S. Yusuf who initiated and, together with the Steering Committee, supervised the conduct of the INTERHEART study. We thank members of the Project Office, S. Rangarajan (study coordinator) and K. Hall (laboratory manager), for their assistance in coordinating the genetics component of the INTERHEART project. R.D. is a recipient of a Canada Graduate Scholarship Doctoral Award from the Canadian Institutes for Health Research.

Disclosures. The collection of clinical and sociodemographic data in the Dortmund Health Study was supported by the German Migraine & Headache Society (DMKG) and by unrestricted grants of equal share from Astra Zeneca, Berlin Chemie, Boots Healthcare, Glaxo-Smith-Kline, McNeil Pharma (former Woelm Pharma), MSD Sharp & Dohme and Pfizer to the University of Muenter

Published online at http://www.nature.com/naturegenetics/ Reprints and permissions information is available online at http://npg.nature.com/reprintsandpermissions/

- McPherson, R. et al. A common allele on chromosome 9 associated with coronary heart disease. Science 316, 1488–1491 (2007).
- Helgadottir, A. et al. A common variant on chromosome 9p21 affects the risk of myocardial infarction. Science 316, 1491–1493 (2007).
- Samani, N.J. et al. Genomewide association analysis of coronary artery disease. N. Engl. J. Med. 357, 443–453 (2007).
- Willer, C.J. et al. Newly identified loci that influence lipid concentrations and risk of coronary artery disease. Nat. Genet. 40, 161–169 (2008).
- Rosamond, W. et al. Heart disease and stroke statistics—2008 update: a report from the American Heart Association Statistics Committee and Stroke Statistics Subcommittee. Circulation 117, e25–e146 (2008).
- Lloyd-Jones, D.M. et al. Parental cardiovascular disease as a risk factor for cardiovascular disease in middle-aged adults: a prospective study of parents and offspring. J. Am. Med. Assoc. 291, 2204–2211 (2004).
- Centers for Disease Control and Prevention. Prevalence of heart disease—United States, 2005. MMWR Morb. Mortal. Wkly. Rep. 56, 113–118 (2007).
- Nora, J.J., Lortscher, R.H., Spangler, R.D., Nora, A.H. & Kimberling, W.J. Geneticepidemiologic study of early-onset ischemic heart disease. *Circulation* 61, 503–508 (1980).
- 9. Sebat, J. *et al.* Large-scale copy number polymorphism in the human genome. *Science* **305**, 525–528 (2004).
- McCarroll, S.A. et al. Integrated detection and population-genetic analysis of SNPs and copy number variation. Nat. Genet. 40, 1166–1174 (2008).
- Korn, J.M. et al. Integrated genotype calling and association analysis of SNPs, common copy number polymorphisms and rare CNVs. Nat. Genet. 40, 1253–1260 (2008).
- Pe'er, I., Yelensky, R., Altshuler, D. & Daly, M.J. Estimation of the multiple testing burden for genomewide association studies of nearly all common variants. *Genet. Epidemiol.* 32, 381–385 (2008).
- Cavdar Koc, E., Burkhart, W., Blackburn, K., Moseley, A. & Spremulli, L.L. The small subunit of the mammalian mitochondrial ribosome. Identification of the full complement of ribosomal proteins present. *J. Biol. Chem.* 276, 19363–19374 (2001).
- Kwon, H.M. et al. Cloning of the cDNa for a Na+/myo-inositol cotransporter, a hypertonicity stress protein. J. Biol. Chem. 267, 6297–6301 (1992).
- Abbott, G.W. et al. MiRP1 forms IKr potassium channels with HERG and is associated with cardiac arrhythmia. Cell 97, 175–187 (1999).
- Allen, P.B., Greenfield, A.T., Svenningsson, P., Haspeslagh, D.C. & Greengard, P. Phactrs 1–4: a family of protein phosphatase 1 and actin regulatory proteins. *Proc. Natl. Acad. Sci. USA* 101, 7187–7192 (2004).

- 17. Holzel, M. et al. Mammalian WDR12 is a novel member of the Pes1-Bop1 complex and is required for ribosome biogenesis and cell proliferation. J. Cell Biol. 170, 367-378
- 18. Hobbs, H.H., Brown, M.S. & Goldstein, J.L. Molecular genetics of the LDL receptor gene in familial hypercholesterolemia. Hum. Mutat. 1, 445-466 (1992).
- 19. Linsel-Nitschke, P. et al. Lifelong reduction of LDL-cholesterol related to a common variant in the LDL-receptor gene decreases the risk of coronary artery disease—a Mendelian Randomisation study. PLoS ONE 3, e2986 (2008).
- 20. Abifadel, M. et al. Mutations in PCSK9 cause autosomal dominant hypercholesterolemia. Nat. Genet. 34, 154-156 (2003).
- 21. Cohen, J.C., Boerwinkle, E., Mosley, T.H. Jr & Hobbs, H.H. Sequence variations in PCSK9, low LDL, and protection against coronary heart disease. N. Engl. J. Med. 354, 1264-1272 (2006).
- 22. Kathiresan, S. et al. A PCSK9 missense variant associated with a reduced risk of earlyonset myocardial infarction. N. Engl. J. Med. 358, 2299-2300 (2008).
- 23. Kathiresan, S. et al. Six new loci associated with blood low-density lipoprotein cholesterol, high-density lipoprotein cholesterol or triglycerides in humans. Nat. Genet. 40, 189-197 (2008).

- 24. Kathiresan, S. et al. Common variants at 30 loci contribute to polygenic dyslipidemia. Nat. Genet. 41, 56-65 (2009).
- 25. Ridker, P.M., Rifai, N., Cook, N.R., Bradwin, G. & Buring, J.E. Non-HDL cholesterol, apolipoproteins A-I and B100, standard lipid measures, lipid ratios, and CRP as risk factors for cardiovascular disease in women. J. Am. Med. Assoc. 294, 326-333 (2005).
- 26. Erdmann, J. et al. Novel susceptibility locus for coronary artery disease on chromosome 3q22.3. Nat. Genet. advance online publication, doi:10.1038/ng.307 (8 February 2009)
- 27. Kathiresan, S. et al. Polymorphisms associated with cholesterol and risk of cardiovascular events. N. Engl. J. Med. 358, 1240-1249 (2008).
- 28. International Schizophrenia. Consortium. Rare chromosomal deletions and duplications increase risk of schizophrenia. Nature 455, 237-241 (2008).
- 29. Zeggini, E. et al. Meta-analysis of genome-wide association data and large-scale replication identifies additional susceptibility loci for type 2 diabetes. Nat. Genet. 40, 638-645 (2008).
- 30. Purcell, S. et al. PLINK: a tool set for whole-genome association and population-based linkage analysis. Am. J. Hum. Genet. 81, 559-575 (2007).

The complete list of authors is as follows:

Stage 1 discovery GWA studies:

Manuscript preparation. Sekar Kathiresan¹⁻⁴ (leader), Benjamin F Voight^{2,3,5}, Shaun Purcell^{2,3,6}, Kiran Musunuru¹⁻⁴, Diego Ardissino⁷, Pier M Mannucci⁸, Sonia Anand⁹, James C Engert¹⁰, Nilesh J Samani¹¹, Heribert Schunkert¹², Jeanette Erdmann¹², Muredach P Reilly^{13,14}, Daniel J Rader^{13,14}, Thomas Morgan¹⁵, John A Spertus¹⁶, Monika Stoll¹⁷, Domenico Girelli¹⁸, Pascal P McKeown¹⁹, Chris C Patterson¹⁹, David S Siscovick²⁰, Christopher J O'Donnell^{1,4,21}, Roberto Elosua²², Leena Peltonen^{3,23,24}, Veikko Salomaa²⁵, Stephen M Schwartz^{20,26}, Olle Melander²⁷, David Altshuler^{2–5,28}

Italian Atherosclerosis, Thrombosis and Vascular Biology Study. Diego Ardissino⁷, Pier Angelica Merlini²⁹, Carlo Berzuini³⁰, Luisa Bernardinelli^{30,31}, Flora Peyvandi⁸, Marco Tubaro³², Patrizia Celli³³, Maurizio Ferrario³⁴, Raffaela Fetiveau³⁴, Nicola Marziliano³⁴, Giorgio Casari³⁵, Michele Galli³⁶, Flavio Ribichini³⁷, Marco Rossi³⁸, Francesco Bernardi³⁹, Pietro Zonzin⁴⁰, Alberto Piazza⁴¹, Pier M Mannucci⁸

Heart Attack Risk in Puget Sound. Stephen M Schwartz^{20,26}, David S Siscovick²⁰, Jean Yee^{20,26}, Yechiel Friedlander⁴²

Registre Gironi del COR. Roberto Elosua²², Jaume Marrugat²², Gavin Lucas²², Isaac Subirana²², Joan Sala⁴³, Rafael Ramos⁴⁴

Massachusetts General Hospital Premature Coronary Artery Disease Study. Sekar Kathiresan¹⁻⁴

James B Meigs^{4,45}, Gordon Williams^{4,46}, David M Nathan^{4,47}, Calum A MacRae^{1,4}, Christopher J O'Donnell^{1,4,21}

FINRISK. Veikko Salomaa²⁵, Aki S Havulinna²⁵, Leena Peltonen^{3,23,24} Malmo Diet and Cancer Study. Olle Melander²⁷, Goran Berglund⁴⁸

Stage 1 data analysis. Benjamin F Voight^{2,3,5} (leader), Sekar Kathiresan¹⁻⁴, Joel N Hirschhorn^{3,28}, Rosanna Asselta⁴⁹, Stefano Duga⁴⁹, Marta Spreafico⁸, Kiran Musunuru¹⁻⁴, Mark J Daly²⁻⁴, Shaun Purcell^{2,3,6}

Copy number variant analysis. Benjamin F Voight^{2,3,5}, Shaun Purcell^{2,3,6}, James Nemesh³, Joshua M Korn^{2,3,5}, Steven A McCarroll^{2,3,5}

Stage 1 phenotype data assembly. Stephen M Schwartz^{20,26} (leader), Jean Yee^{20,26}, Sekar Kathiresan¹⁻⁴, Gavin Lucas²², Isaac Subirana²², Roberto Elosua²²

Stage 1 genome-wide genotyping. Aarti Surti³, Candace Guiducci³, Lauren Gianniny³, Daniel Mirel³, Melissa Parkin³, Noel Burtt³, Stacey B Gabriel³ (leader)

Wellcome Trust Case Control Consortium. Nilesh J Samani¹¹, John R Thompson⁵⁰, Peter S Braund¹¹, Benjamin J Wright⁵⁰, Anthony J Balmforth⁵¹, Stephen G Ball⁵¹, Alistair S Hall⁵¹, Wellcome Trust Case Control Consortium⁶⁸

German MI Family Study I. Heribert Schunkert¹², Jeanette Erdmann¹², Patrick Linsel-Nitschke¹², Wolfgang Lieb¹², Andreas Ziegler⁵², Inke R König⁵², Christian Hengstenberg⁵³, Marcus Fischer⁵³, Klaus Stark⁵³, Anika Grosshennig^{12,52}, Michael Preuss^{12,52}, H-Erich Wichmann^{54,55}, Stefan Schreiber⁵⁶

Cardiogenics. Heribert Schunkert¹², Nilesh J Samani¹¹, Jeanette Erdmann¹², Willem Ouwehand⁵⁷, Christian Hengstenberg⁵³, Panos Deloukas²³, Michael Scholz⁵⁸, Francois Cambien⁵⁹, Cardiogenics⁶⁸

PennCATH/MedSTAR. Muredach P Reilly^{13,14}, Mingyao Li⁶⁰, Zhen Chen⁶⁰, Robert Wilensky^{13,14}, William Matthai¹⁴, Atif Qasim¹⁴, Hakon H Hakonarson⁶¹, Joe Devaney⁶², Mary-Susan Burnett⁶², Augusto D Pichard⁶², Kenneth M Kent⁶², Lowell Satler⁶², Joseph M Lindsay⁶², Ron Waksman⁶², Christopher W Knouff⁶⁹, Dawn M Waterworth⁶⁹, Max C Walker⁶⁹, Vincent Mooser⁶⁹, Stephen E Epstein⁶², Daniel J Rader^{13,14}

Acute Myocardial Infarction Gene Study/Dortmund Health Study. Thomas Scheffold⁶³, Klaus Berger⁶⁴, Monika Stoll¹⁷, Andreas Huge¹⁷

Verona Heart Study. Domenico Girelli¹⁸, Nicola Martinelli¹⁸, Oliviero Olivieri¹⁸, Roberto Corrocher¹⁸

Mid-America Heart Institute. Thomas Morgan¹⁵, John A Spertus¹⁶

Irish Family Study. Pascal P McKeown¹⁹, Chris C Patterson¹¹

German MI Family Study II. Heribert Schunkert¹², Jeanette Erdmann¹², Patrick Linsel-Nitschke¹², Wolfgang Lieb¹², Andreas Ziegler⁵², Inke R König⁵², Christian Hengstenberg⁵³, Marcus Fischer⁵³, Klaus Stark⁵³, Anika Grosshennig^{12,52}, Michael Preuss^{12,52}, H-Erich Wichmann^{54,55}, Štefan Schreiber⁵⁶

deCODE Study. Hilma Hólm⁶⁵, Gudmar Thorleifsson⁶⁵, Unnur Thorsteinsdottir^{65,66}, Kari Stefansson^{65,66}

INTERHEART. James C Engert¹⁰, Ron Do⁶⁷, Changchun Xie⁹, Sonia Anand⁹

MIGen steering committee. Sekar Kathiresan¹⁻⁴, Diego Ardissino⁷, Pier M Mannucci⁸, David Siscovick²⁰, Christopher J O'Donnell^{1,4,21}, Nilesh J Samani¹¹, Olle Melander²⁷, Roberto Elosua²², Leena Peltonen^{3,23,24}, Veikko Salomaa²⁵, Stephen M Schwartz^{20,26}, David Altshuler^{2–5,28} (leader)

¹Cardiovascular Research Center and Cardiology Division and ²Center for Human Genetic Research, Massachusetts General Hospital, Boston, Massachusetts 02114, USA. 3Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, Massachusetts 02142, USA. 4Department of Medicine, Harvard Medical School, Boston, Massachusetts 02115, USA. 5Department of Molecular Biology, Massachusetts General Hospital, Boston, Massachusetts, 02114, USA. 6Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, Massachusetts 02142, USA. 7Division of Cardiology, Azienda Ospedaliero-Universitaria di Parma, 43100 Parma, Italy. 8Department of Internal Medicine and Medical Specialities, Fondazione Istituto di Ricovero e Cura a Carattere Scientifico, Ospedale Maggiore, Mangiagalli e Regina Elena, University of Milan, 20122 Milan, Italy. 9Population Health Research Institute, Hamilton Health Sciences and Departments of Medicine and Clinical Epidemiology and Biostatistics, McMaster University, Hamilton, L8L 2X2 Ontario, Canada. 10 Departments of Medicine and Human Genetics, McGill University, Montréal, H3A 1A1 Québec, Canada. ¹¹Department of Cardiovascular Sciences, University of Leicester, Glenfield Hospital, LE3 9QP, UK. ¹²Medizinische Klinik II, Universität zu Lübeck, 23538 Lübeck, Germany. ¹³The Institute for Translational Medicine and Therapeutics, School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA. 14The Cardiovascular Institute, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA. ¹⁵Department of Pediatrics, Vanderbilt University School of Medicine, Nashville, Tennessee 37232, USA. ¹⁶Mid-America Heart Institute and University of Missouri-Kansas City, Kansas City, Missouri 64111, USA. 17 Leibniz-Institute for Arteriosclerosis Research, University Münster, 48149 Münster, Germany. 18 Department of Clinical and Experimental Medicine, University of Verona, 37134 Verona, Italy. ¹⁹Centre for Public Health, Queen's University Belfast, Institute of Clinical Science, Belfast, BT12 6BJ, Northern Ireland, UK. 20 Cardiovascular Health Research Unit, Departments of Medicine and Epidemiology, University of Washington, Seattle, Washington 98101, USA. ²¹Framingham Heart Study and National, Heart, Lung, and Blood Institute, Framingham, Massachusetts 01702, USA. ²²Cardiovascular Epidemiology and

© 2009 Nature America, Inc. All rights reserved

Genetics, Institut Municipal D'investigacio Medica, and CIBER Epidemiología y Salud Pública, 08003 Barcelona, Spain. ²³Wellcome Trust Sanger Institute, Cambridge CB10 1SA, UK. ²⁴Institute for Molecular Medicine, University of Helsinki, Helsinki 00029, Finland. ²⁵Chronic Disease Epidemiology Unit, Department of Health Promotion and Chronic Disease Prevention, National Public Health Institute, Helsinki 00300, Finland. ²⁶Department of Epidemiology, University of Washington, Seattle, Washington 98195, USA. ²⁷Department of Clinical Sciences, Hypertension and Cardiovascular Diseases, University Hospital Malmö, Lund University, Malmö 20502, Sweden. ²⁸Department of Genetics, Harvard Medical School, Boston, Massachusetts 02115, USA. ²⁹Division of Cardiology, Azienda Ospedaliera Niguarda Ca' Granda, 20162 Milan, Italy, 30 Biostatistics Unit, Medical Research Council, Cambridge, UK and Statistical Laboratory, Centre for Mathematical Sciences, Wilberforce Road, Cambridge CB3 0WA, UK. 31Department of Applied Health Sciences, University of Pavia, 27100 Pavia, Italy. 52Division of Cardiology, Ospedale San Filippo Neri, 00135 Rome, Italy. ³³Division of Cardiology, Ospedale San Camillo, 00151 Rome, Italy. ³⁴Fondazione Istituto di Ricovero e Cura a Carattere Scientifico, Policilinico San Matteo, 27100 Pavia, Italy. 35 Vita-Salute San Raffaele University and San Raffaele Scientific Institute, 20132 Milan, Italy. 36 Division of Cardiology, Ospedale di Livorno, 57100 Livorno, Italy. ³⁷Division of Cardiology, Ospedale Borgo Trento, University of Verona, 37126 Verona, Italy. ³⁸Division of Cardiology, Istituto di Ricovero e Cura a Carattere Scientifico, Istituto Clinico Humanitas, 20089 Milan, Italy. ³⁹Department of Biochemistry and Molecular Biology, University of Ferrara, 44100 Ferrara, Italy. ⁴⁰Division of Cardiology, Ospedale di Rovigo, 45100 Rovigo, Italy. ⁴¹Department of Genetics, Biology and Biochemistry, University of Turin, 10126 Turin, Italy. ⁴²Unit of Epidemiology, Hebrew University-Hadassah School of Public Health, Jerusalem 91120, Israel. ⁴³Servei de Cardiologia i Unitat Coronària, Hospital de Girona Josep Trueta and Institut de Investigació Biomedica de Girona, 17007 Girona, Spain. 44Unitat de Recerca i Unitat Docent de Medicina de Familia de Girona, IDIAP Jordi Gol, Institut Català de la Salut, 08007 Barcelona, Spain. 45General Medicine Division, Department of Medicine, Massachusetts General Hospital, Boston, Massachusetts, 02114, USA. ⁴⁶Cardiovascular Endocrinology Section, Division of Endocrinology, Diabetes, and Hypertension, Brigham and Women's Hospital, Boston, Massachusetts 02115, USA. ⁴⁷Diabetes Center, Massachusetts General Hospital, Boston, Massachusetts 02114, USA. ⁴⁸Department of Clinical Sciences, Internal Medicine, University Hospital Malmö, Lund University, Malmö 20502, Sweden. ⁴⁹Department of Biology and Genetics for Medical Sciences, University of Milan, 20133 Milan, Italy. ⁵⁰Department of Health Sciences, University of Leicester, Leicester, LEI 7RH, UK. ⁵¹LIGHT Research Institute, Faculty of Medicine and Health, University of Leeds, Leeds, LS1 3EX, UK, 52 Institut für Medizinische Biometrie und Statistik, Universität zu Lübeck, 23538 Lübeck, Germany, 53 Klinik und Poliklinik für Innere Medizin II, Universität Regensburg, 93042 Regensburg, Germany. ⁵⁴Institute of Epidemiology, Helmholtz Zentrum München – German Research Center for Environmental Health, 85764 Neuherberg, Germany. 55 Institute of Medical Information Science, Biometry and Epidemiology, Ludwig-Maximilians-Universität Munich, 81377 Munich, Germany. ⁵⁶Institut für Klinische Molekularbiologie, Christian-Albrechts Universität, 24105 Kiel, Germany. ⁵⁷Department of Haematology, University of Cambridge, Long Road, Cambridge, CB2 2PT, UK. 58 Trium Analysis Online GmbH, 81677 Munich, Germany. 59 INSERM UMR_S 525, Universite Pierre et Marie Curie - Paris 6, Paris 75634, France. 60Biostatistics and Epidemiology, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA. 61The Center for Applied Genomics, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania 19104, USA. 62 Cardiovascular Research Institute, MedStar Research Institute, Washington Hospital Center, Washington, DC 20010, USA. 63Institute for Heart and Circulation Research of the University of Witten/Herdecke, 44227 Dortmund, Germany. 64Institute of Epidemiology and Social Medicine, University of Muenster, 48129 Muenster, Germany. 65deCODE Genetics, 101 Reykjavik, Iceland. 66Faculty of Medicine, University of Iceland, 101 Reykjavík, Iceland. ⁶⁷Department of Human Genetics, McGill University, Montréal, Québec H3A 1B1, Canada. ⁶⁸A full list of members is provided in the Supplementary Note online. ⁶⁹Genetics Division and Drug Discovery, GlaxoSmithKline, King of Prussia, Pennsylvania 19406, USA.

Corrigendum: Ulcerative colitis-risk loci on chromosomes 1p36 and 12q15 found by genome-wide association study

Mark S Silverberg, Judy H Cho, John D Rioux, Dermot P B McGovern, Jing Wu, Vito Annese, Jean-Paul Achkar, Philippe Goyette, Regan Scott, Wei Xu, M Michael Barmada, Lambertus Klei, Mark J Daly, Clara Abraham, Theodore M Bayless, Fabrizio Bossa, Anne M Griffiths, Andrew F Ippoliti, Raymond G Lahaie, Anna Latiano, Pierre Paré, Deborah D Proctor, Miguel D Regueiro, A Hillary Steinhart, Stephan R Targan, L Philip Schumm, Emily O Kistner, Annette T Lee, Peter K Gregersen, Jerome I Rotter, Steven R Brant, Kent D Taylor, Kathryn Roeder & Richard H Duerr

Nat. Genet. 41, 216-220 (2009), published online 4 January 2009; corrected after print 28 April 2009

In the first paragraph of the second column on the third page, rs11209026 A allele was incorrectly listed as rs111209026 A allele. The error has been corrected in the HTML and PDF versions of the article.

Corrigendum: Loss-of-function mutations of an inhibitory upstream ORF in the human hairless transcript cause Marie Unna hereditary hypotrichosis

Yaran Wen, Yang Liu, Yiming Xu, Yiwei Zhao, Rui Hua, Kaibo Wang, Miao Sun, Yuanhong Li, Sen Yang, Xue-Jun Zhang, Roland Kruse, Sven Cichon, Regina C Betz, Markus M Nöthen, Maurice A M van Steensel, Michel van Geel, Peter M Steijlen, Daniel Hohl, Marcel Huber, Giles S Dunnill, Cameron Kennedy, Andrew Messenger, Colin S Munro, Alessandro Terrinoni, Alain Hovnanian, Christine Bodemer, Yves de Prost, Amy S Paller, Alan D Irvine, Rod Sinclair, Jack Green, Dandan Shang, Qing Liu, Yang Luo, Li Jiang, Hong-Duo Chen, Wilson H-Y Lo, W H Irwin McLean, Chun-Di He & Xue Zhang

Nat. Genet. 41, 228-233 (2009), published online 4 January 2009; corrected after print 28 April 2009

The affiliation of the 24th author, Alessandro Terrinoni, was listed incorrectly. It should read IDI-IRCCS Biochemistry Laboratory c/o Univ. Tor Vergata, 00133 Rome, Italy. The error has been corrected in the HTML and PDF versions of this article.

Addendum: Deep surveying of alternative splicing complexity in the human transcriptome by high-throughput sequencing

Qun Pan, Ofer Shai, Leo J Lee, Brendan J Frey & Benjamin J Blencowe Nat. Genet. 40, 1413–1415 (2008), published online 2 November 2008; addendum published after print 28 April 2009

The GEO accession number for the mRNA-Seq datasets is GSE13652.

Corrigendum: Genome-wide association of early-onset myocardial infarction with single nucleotide polymorphisms and copy number variants

Myocardial Infarction Genetics Consortium

Nat. Genet. 41, 334–341 (2009); published online 8 February 2009; corrected after print 27 May 2009

In the version of this article initially published, the names of four co-authors (Christopher W Knouff, Dawn M Waterworth, Max C Walker, Vincent Mooser) were omitted from the author list. The error has been corrected in the HTML and PDF versions of the article.