
Genome-wide association of early-onset myocardial
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copy number variants
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We conducted a genome-wide association study testing single
nucleotide polymorphisms (SNPs) and copy number variants
(CNVs) for association with early-onset myocardial infarction
in 2,967 cases and 3,075 controls. We carried out replication
in an independent sample with an effective sample size
of up to 19,492. SNPs at nine loci reached genome-wide
significance: three are newly identified (21q22 near
MRPS6-SLC5A3-KCNE2, 6p24 in PHACTR1 and 2q33 in
WDR12) and six replicated prior observations1–4 (9p21, 1p13
near CELSR2-PSRC1-SORT1, 10q11 near CXCL12, 1q41 in
MIA3, 19p13 near LDLR and 1p32 near PCSK9). We tested
554 common copy number polymorphisms (41% allele
frequency) and none met the pre-specified threshold for
replication (P o 10!3). We identified 8,065 rare CNVs but did
not detect a greater CNV burden in cases compared to
controls, in genes compared to the genome as a whole, or at
any individual locus. SNPs at nine loci were reproducibly
associated with myocardial infarction, but tests of common
and rare CNVs failed to identify additional associations with
myocardial infarction risk.

Myocardial infarction is a leading cause of death and disability
worldwide5, with family history being an independent risk factor6.
The inherited basis for myocardial infarction remains incompletely
understood. Whereas the majority of myocardial infarctions occur in
individuals 465 y old, 1–5% of younger individuals report a history
of myocardial infarction5,7. These latter events are associated with
substantially greater heritability8. Thus, early-onset myocardial infarc-
tion is a promising phenotype for genetic mapping.
Genome-wide association studies (GWASs) of common SNPs have

been reported for myocardial infarction and coronary artery disease
(CAD), with each study finding common SNPs on chromosome
9p21.3 associated with myocardial infarction or CAD1–3. In addition
to 9p21.3, Samani et al. reported six other loci as harboring SNPs
associated with CAD3. Some of these loci await definitive replication,
but even if all were valid, they would explain a small fraction of the
risk for myocardial infarction.

Structural variants, another class of human DNA sequence varia-
tion, may account for some of the unexplained heritability in
myocardial infarction and other common diseases9. To our knowledge,
no integrated assessment of SNPs and CNVs in the same samples has
been reported for myocardial infarction or any other trait. Several
technological developments make such systematic surveys now possi-
ble, including hybrid oligonucleotide microarrays10 and analytical
methods11 to simultaneously assess SNPs and CNVs genome-wide
in each sample.
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Stage Samples DNA sequence variants 

Stage 1 

Stage 2 

Stage 3 

Stage 4 

  

  

  

2,967 cases of early-onset MI
3,075 controls

from six studies   

~2.5 million directly genotyped and
imputed SNPs, common CNVs

rare CNVs   

Symmetric effective
sample size

3,922 cases of early-onset MI
3,922 controls

from four studies    

1,433 top SNPs associated with MI
in stage 1

+
SNPs from eight previously studied loci    

Symmetric effective 
sample size 

4,321 cases of MI 
4,321 controls 

from six studies 

25 top SNPs after combined analysis of 
stages 1 and 2

+
SNPs from eight previously studied loci   

Symmetric effective
sample size 

1,503 cases of early-onset MI 
1,503 controls 
from one study 

5 top SNPs after combined analysis of
stages 1, 2, and 3 

+ 
SNPs from eight previously studied loci 

Figure 1 Study design. The GWAS consisted of four stages with an
evaluation of common SNPs, common CNPs and rare CNVs in stage 1.
The design called for all variants with a P o 0.001 to be taken forward to
stage 2. As only SNPs met this criterion, 1,441 SNPs were taken forward
to stage 2. Thirty-three SNPs were tested in stage 3. Thirteen SNPs were
tested in stage 4. Statistical evidence for association was combined across
stages 1–4 using meta-analysis.
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We designed a four-stage GWAS of early-onset myocardial infarc-
tion with SNPs, common copy number polymorphisms (CNPs) and
rare CNVs (Fig. 1). Stage 1 consisted of the Myocardial Infarction
Genetics Consortium (MIGen), a collection of 2,967 cases of early-
onset myocardial infarction (in menr50 y old or womenr60 y old)
and 3,075 age- and sex-matched controls free of myocardial infarction
from six international sites: Boston and Seattle in the United States, as
well as Sweden, Finland, Spain and Italy (Table 1 and Supplementary
Methods online). The mean age at the time of myocardial infarction
was 41 y among males and 47 y among females. Variants with P o
0.001 were advanced through three stages of replication (Fig. 1; see
Methods for power calculations). Descriptions of the replication
studies are provided in Supplementary Methods and Supplementary
Tables 1 and 2 online.
After stages 1–4, we observed that SNPs at nine loci were associated

with myocardial infarction at a pre-specified threshold for genome-
wide significance of P o 5 " 10!8 (corresponding to P o 0.05 after
adjusting for B1 million independent tests12) (Tables 2 and 3).
Of these nine, four represent confirmation of associations previously
reported by Samani et al.3 (Table 2). These four genetic association
signals map to 9p21, 1p13 near CELSR2-PSRC1-SORT1, 10q11 near
CXCL12 and 1q41 in MIA3. In samples fully independent of the two
original discovery studies (Wellcome Trust Case Control Consortium
and German MI Family Study I), the statistical evidence for these four
variants was robust, with the same allele associated in the same
direction as the original report (replication P ranging from 3 " 10!5

to 1 " 10!30; Table 2).
Three of the loci previously suggested by Samani et al. did not

replicate (Table 2). In samples independent of the two original
discovery studies, the statistical evidence for these loci was the
following: rs6922269 in MTHFD1L (OR ¼ 1.04, 95% CI ¼ 0.99–
1.09, P ¼ 0.08); rs17228212 in SMAD3 (OR ¼ 1.01, 95% CI ¼
0.96–1.05, P ¼ 0.69) and rs2943634 on 2q36 (OR ¼ 0.94, 95%
CI ¼ 0.90–0.98, P ¼ 0.01).
Three previously unreported associations were observed with gen-

ome-wide significance (Table 3): (i) in an intergenic region between

MRPS6 (mitochondrial ribosomal protein S6), SLC5A3 (solute carrier
family 5 (inositol transporters) member 3) and KCNE2 (potassium
voltage-gated channel, Isk-related family, member 2) on chromosome
21q22 (rs9982601, OR ¼ 1.19, P ¼ 6 " 10!11); (ii) in an intron of
PHACTR1 (phophastase and actin regulator 1) on chromosome 6p24
(rs12526453, OR ¼ 1.13, P ¼ 1 " 10!9); and (iii) in an intron of
WDR12 (WD repeat domain 12) on chromosome 2q33 (rs6725887,
OR ¼ 1.17, P ¼ 1 " 10!8).
MRPS6 encodes a subunit of the mitochondrial ribosomal protein

28S13. SLC5A3 is a gene embedded within MRPS6 and encodes a
protein that transports sodium and myo-inositol in response to
hypertonic stress14. KCNE2 encodes a subunit of a potassium channel,
and mutations in this gene cause inherited arrhythmias15. PHACTR1
is an inhibitor of protein phosphatase 1, an enzyme that depho-
sphorylates serine and threonine residues on a range of proteins16.
WDR12 has been shown to complex with several proteins to enable
ribosome biogenesis and cell proliferation17. The mechanisms by
which gene(s) at these three genomic regions confer increased risk
of myocardial infarction remain to be defined.
Of note, the PHACTR1 locus may lead to myocardial infarction

by directly promoting the development of atherosclerosis in the
coronary arteries. In an independent GWAS for coronary artery
calcification in 410,000 participants from six prospective cohort
studies, PHACTR1 SNPs (along with chromosome 9p21 SNPs) are
associated with coronary artery calcification at genome-wide signifi-
cance (C.J. O’Donnell, National Heart, Lung and Blood Institute,
personal communication).
Of the nine loci with convincing association evidence, the remain-

ing two (19p13 near LDLR and 1p32 near PCSK9) relate to a causal
risk factor for myocardial infarction: low-density lipoprotein (LDL)
cholesterol. Common, low-frequency and/or rare mutations at LDLR
and PCSK9 have previously been shown to influence LDL cholesterol
and consequently affect risk for myocardial infarction18–22. We con-
firm that common variants near LDLR and PCSK9 are associated with
risk for myocardial infarction. The specific alleles (LDLR rs1122608
and PCSK9 rs11206510) corresponding to higher risk for myocardial
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Table 1 Participant characteristics of case and control subjects in stage 1 of the GWAS

Study
Italian ATVB Study

Heart Attack Risk

in Puget Sound REGICOR

MGH Premature Coronary

Artery Disease Study FINRISK

Malmö Diet and

Cancer Study

Cases Controls Cases Controls Cases Controls Cases Controls Cases Controls Cases Controls

n 1,693 1,668 505 559 312 317 204 260 167 172 86 99

Ascertainment scheme Hospital-

based

Hospital-

based

Community-

based

Community-

based

Hospital-

based

Drawn from

community-

based cohort

Hospital-

based

Hospital-

based

Drawn from

population-

based cohort

Nested case-

cohort

Drawn from

population-

based cohort

Nested case-

cohort

Myocardial infarction

age criterion

Men or

women r45

— Men r50 or

women r60

— Men r50 or

women r60

— Men r50 or

women r60

— Men r50 or

women r60

— Men r50 or

women r60

—

Country of origina Italy Italy US US Spain Spain US US Finland Finland Sweden Sweden

Mean age (y)b 39.4 ± 4.9 39.3 ± 5.0 46.0 ± 6.9 45.2 ± 7.3 45.9 ± 5.8 46.0 ± 5.6 47.0 ± 6.1 53.8 ± 11.1 47.1 ± 6.2 47.1 ± 6.0 48.5 ± 4.4 48.7 ± 4.6

>Female gender (%) 11.4 11.6 51.1 55.5 20.2 21.5 29.9 33.5 33.5 31.4 41.9 42.4

Ever cigarette

smoking (%)

87.0 49.3 73.9 41.7 82.8 61.9 74.9 57.3 74.4 58.2 87.2 61.6

Hypertension (%)c 32.6 11.9 50.5 30.8 38.0 31.5 33.5 25.3 72.5 68.0 81.4 62.6

Diabetes mellitus (%)d 7.8 0.8 14.9 3.0 14.8 6.1 19.2 0.4 17.7 5.9 4.7 1.0

Hypercholestero-

lemia (%)e
60.4 44.4 43.7 26.0 48.9 33.1 79.0 31.3 75.2 48.2 37.2 1.0

Body mass index (kg/m2) 26.7 ± 4.2 25.0 ± 3.3 29.2 ± 6.8 26.9 ± 5.7 27.5 ± 4.2 27.0 ± 3.9 30.0 ± 7.0 27.9 ± 6.5 29.6 ± 5.0 27.7 ± 4.0 26.9 ± 4.2 25.7 ± 4.3

Values with ‘±’ are means ± s.d. The body-mass index is the weight in kilograms divided by the square of the height in meters.
aAll cases and controls were of European ancestry. bMean age at myocardial infarction for cases and at age of recruitment for controls. cHypertension was defined as a previous diagnosis of
hypertension, on antihypertensive therapy or with recorded systolic blood pressure Z 140 mmHg or diastolic blood pressure Z 90 mmHg. dDiabetes mellitus was defined as a previous diagnosis
of diabetes or treatment with antidiabetic medications. eHypercholesterolemia was defined as a previous diagnosis of hypercholesterolemia or treatment with lipid-lowering therapy.
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infarction in the present study have recently been correlated with
higher LDL cholesterol4,23,24.
To evaluate the cumulative effect of these nine SNPs on

risk for myocardial infarction, we constructed a myocardial
infarction genotype score comprised of the nine SNPs, modeling
the number of risk alleles carried by each individual in the MIGen
GWAS (stage 1). In logistic regression models including age, sex
and principal components of ancestry, individuals in the top
quintile of myocardial infarction genotype score had greater than
twofold increased risk for myocardial infarction compared
with bottom quintile (OR ¼ 2.23, 95% CI ¼ 1.89–2.63; P ¼ 1 "
10!21; Table 4).
Although this myocardial infarction genotype score confers risk of a

magnitude comparable to other established risk factors such as plasma
LDL cholesterol (hazard ratio ¼ 1.62, 95% CI ¼ 1.17–2.25 for top

versus bottom quintile of LDL cholesterol as previously reported25),
further studies are required. The specific SNP set will need to include
other recent discoveries for myocardial infarction such as the MRAS
locus26 as well as additional SNPs related to LDL cholesterol24. Nearly
all SNPs related to LDL cholesterol affect risk for MI4. In addition, the
score requires validation in independent studies, preferably those with
a prospective cohort design27. Finally, gene–gene and gene–environ-
ment interactions need to be modeled if such interactions can be
reproducibly documented.
Although the GWAS approach has met with some success in

myocardial infarction, the confirmed myocardial infarction risk
variants, in sum, explain a small fraction of the variance. The
current myocardial infarction genotype score explains 2.8% of the
variance in risk for early-onset myocardial infarction. Thus, we
tested the hypothesis that systematic assessment of CNPs,
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Table 2 Replication evidence for seven previously reported common variants associated with myocardial infarction

Studies (maximum

available effective

sample size)

Previously reported SNPs with

convincing replication evidence

Previously reported SNPs without

convincing replication evidence

SNP rs4977574 rs646776 rs17465637 rs1746048 rs6922269 rs17228212 rs2943634

Chr. 9p21 1p13 1q41 10q11 6q25 15q22 2q36

Position

NCBI35 (bp)

22,088,574 109,530,572 220,890,152 44,095,830 151,294,678 65,245,693 226,776,324

Nonrisk allele A C A T G C A

Risk allele G T C C Aa Ta Ca

Risk allele

frequency

0.56 0.81 0.72 0.84 0.26a 0.73a 0.66a

Gene(s) of

interest in asso-

ciated interval

CDKN2A-

CDKN2B

CELSR2-PSRC1-

SORT1

MIA3 CXCL12 MTHFD1L SMAD3 None

Stage 1

MIGen

(n ¼ 6,046)

ORb

(95% CI)

Pc

1.25

(1.16–1.34)

6.7 " 10!9

1.11

(1.02–1.22)

0.040

1.17

(1.08–1.27)

1.5 " 10!4

1.22

(1.10–1.34)

1.6 " 10!4

1.08

(1.00–1.17)

0.07

0.98

(0.91–1.06)

0.68

0.95

(0.88–1.02)

0.18

Stage 2

PennCATH,

MedSTAR

(n ¼ 1,750)

OR

(95% CI)

P

1.64

(1.37–1.96)

5.2 " 10!8

1.33

(1.09–1.64)

0.006

1.09

(0.90–1.33)

0.38

1.27

(0.99–1. 64)

0.06

1.19

(0.98–1.46)

0.09

1.11

(0.91–1.36)

0.29

0.99

(0.82–1.20)

0.92

Stage 3

AMI Gene, Verona,

MAHI, IFS,

GerMIFS II,

INTERHEART

(n ¼ 8,642)

OR

(95% CI)

P

1.24

(1.17–1.32)

4.2 " 10!12

1.18

(1.08–1.29)

9.2 " 10!5

1.11

(1.04–1.19)

0.003

1.10

(1.00–1.20)

0.046

1.02

(0.95–1.09)

0.63

0.97

(0.90–1.04)

0.35

0.93

(0.87–1.00)

0.048

Stage 4

deCODE

(n ¼ 3,006)

OR

(95% CI)

P

1.34

(1.20–1.49)

2.4 " 10!7

1.22

(1.06–1.40)

0.004

1.11

(0.98 – 1.25)

0.10

1.04

(0.87–1.23)

0.70

0.98

(0.87–1.11)

0.77

1.16

(1.03–1.31)

0.02

0.93

(0.83–1.04)

0.20

Stages 1, 2, 3 + 4

excluding original

discovery studies

(n ¼ 19,444)

OR

(95% CI)

P

1.28

(1.23–1.33)

1.1 " 10!30

1.17

(1.11–1.24)

1.5 " 10!8

1.13

(1.08–1.18)

4.9 " 10!7

1.14

(1.08–1.21)

3.4 " 10!5

1.04

(0.99–1.09)

0.08

1.01

(0.96–1.05)

0.69

0.94

(0.90–0.98)

0.01

Stages 1, 2, 3 + 4

including original

discovery studies

(WTCCC and

GerMIFS I)d

(n ¼ 25,538)

OR

(95% CI)

P

1.29

(1.25–1.34)

2.7 " 10!44

1.19

(1.13–1.26)

7.9 " 10!12

1.14

(1.10–1.19)

1.4 " 10!9

1.17

(1.11–1.24)

7.4 " 10!9

1.09

(1.05–1.14)

2.3 " 10!5

1.05

(1.01–1.09)

0.02

0.95

(0.91–0.98)

0.005

aRisk allele in two original discovery studies (WTCCC and GerMIFS I) is displayed. For this risk allele, we present the statistical evidence for stages 1–4. bOdds ratio based on a fixed-effect–based
meta-analysis of odds ratios. cP value based on a weighted z-score meta-analysis. dFor the present study, the phenotype in WTCCC was restricted to myocardial infarction. In the original discovery
report by Samani et al., WTCCC included a broader case definition of myocardial infarction or coronary revascularization.
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common and rare, might identify additional loci contributing to
myocardial infarction.
We first used the CANARY algorithm11 to test 554 commonly

segregating CNPs (41% frequency) for association with early-onset
myocardial infarction in 2,783 cases and 2,865 controls that passed
sample quality control for CNVanalysis (see Methods). The estimated
genomic control l for the entire set of CNPs wasB1.23; for 316 CNPs
with allele frequency greater than 5%, l was B1.05. We did not
observe any CNP with evidence for association surpassing our pre-
specified threshold for replication of P o 0.001. In fact, the strongest
association (P ¼ 0.002; Supplementary Table 3 online) did not pass
the Bonferroni correction for 554 tests, let alone genome-wide
significance for SNPs. A plot of the observed versus expected
P value distribution did not show deviation from the null distribution
(Supplementary Fig. 1 online).
To detect rare CNVs, we used Birdseye11 and restricted analysis to

autosomal deletions and duplications that were both rare (o1%
frequency in our samples) and large (greater than 100 kb). After
stringent quality control filtering (Supplementary Methods), the
analysis included 5,955 individuals and 8,065 CNVs (39% deletions).
The mean number of rare CNVs per individual was 1.35, and the
median was 1.
Using the same methods recently described in a successful study

of schizophrenia28, we evaluated case-control differences in rare CNVs
across three parameters: the overall burden of rare CNVs genome-
wide, the number of genes overlapped by rare CNVs and the total
kilobase extent of rare CNVs. Controlling for sample collection site,

there were no case-control differences in genome-wide rare CNV
rate (P ¼ 0.39), the number of genes intersected by rare CNVs (P ¼
0.74) or the total kilobase extent of rare CNVs (P ¼ 0.77).
Searching for specific loci with increased rates of rare CNVs in
cases versus controls, we found only four regions that showed
uncorrected P values o0.01; however, the lowest P value after
correction for multiple testing was 0.96.
In summary, we screened common SNPs and CNVs (both common

and rare) for association with early-onset myocardial infarction in a
large sample. Our study suggests four main conclusions. First, there
are at least nine regions that harbor common SNPs associated with
myocardial infarction at genome-wide significance; three of these are
newly described in this study. Second, the magnitude of risk conferred
by a common variant bears no relationship to the potential biological
value of the specific finding. For example, similarly to the newly
identified loci, we find that common variants at LDLR and PCSK9
confer weak effects, and yet study of these two genes has yielded
critical insights into atherosclerosis and myocardial infarction. Third,
whereas the effects of individual SNPs are modest, the overall effect (in
a comparison of extreme quintiles) is higher for a nine-SNP score
(Btwofold increase in risk). This observation needs to be validated in
additional studies. Finally, and in contrast to the positive results for
genetic mapping of myocardial infarction via SNP analysis, we were
unable to detect common or rare CNVs associated with risk for
myocardial infarction.
The remaining inherited risk for myocardial infarction may be due

to some combination of common SNPs for which we do not yet have
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Table 3 Newly identified loci and variants associated with myocardial infarction

Studies (maximum

available effective

sample size) Newly identified loci

Newly-identified common

variants at previously reported loci

SNP rs9982601 rs12526453 rs6725887a rs1122608 rs11206510

Chr. 21q22 6p24 2q33 19p13 1p32

Position NCBI35 (bp) 34,520,998 13,035,530 203,454,130 11,024,601 55,268,627

Nonrisk allele C G T T C

Risk allele T C C G T

Risk allele frequency 0.13 0.65 0.14 0.75 0.81

Gene(s) of interest in

associated interval

SLC5A3-MRPS6-

KCNE2

PHACTR1 WDR12 LDLR PCSK9

Stage 1 ORb 1.20 1.15 1.24 1.18 1.12

MIGen (95% CI) (1.07–1.34) (1.07–1.24) (1.12–1.38) (1.09–1.28) (1.02–1.23)

(n ¼ 6,046) Pc 7.8 " 10!4 4.6 " 10!4 8.6 " 10!5 1.7 " 10!4 0.02

Stage 2 OR 1.34 1.12 1.15 1.19 1.16

WTCCC, GerMIFS I, (95% CI)

P

(1.22–1.47) (1.05–1.21) (1.04–1.26) (1.10–1.28) (1.07–1.26)

PennCATH, MedSTAR 1.7 " 10!9 3.6 " 10!4 0.003 2.6 " 10!5 9.1 " 10!4

(n ¼ 7,844)

Stage 3 OR 1.09 1.11 1.11 1.13 1.18

AMI Gene, Verona,

MAHI, IFS, GerMIFS II,

INTERHEART (n ¼ 8,642)

(95% CI)

P

(0.98–1.21)

0.12

(1.04–1.19)

0.001

(1.02–1.22)

0.02

(1.04–1.22)

0.004

(1.10–1.28)

2.2 " 10!5

Stage 4 OR 1.11 1.10 1.23 1.03 1.11

deCODE (95% CI) (0.95–1.30) (0.97–1.24) (1.03–1.46) (0.90–1.18) (0.89–1.39)

(n ¼ 3,006) P 0.17 0.13 0.02 0.69 0.37

Stages 1, 2, 3 + 4 OR 1.20 1.12 1.17 1.15 1.15

(n ¼ 25,538) (95% CI) (1.14–1.27) (1.08–1.17) (1.11–1.23) (1.10–1.20) (1.10–1.21)

P 6.4 " 10!11 1.3 " 10!9 1.3 " 10!8 1.9 " 10!9 9.6 " 10!9

aFor all studies except INTERHEART, where rs4675310 was substituted as a close to perfect proxy to rs6725887 (Hapmap CEU r2 ¼ 1.0). bOdds ratio based on a fixed-effect–based meta-
analysis of odds ratios. cP value based on a weighted z-score meta-analysis.
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sufficient power, CNVs not measured in our analysis, rare point
mutations, nonadditive interactions and epigenetic factors, among
other possibilities. Approaches to further clarify the genetic architec-
ture of myocardial infarction include larger-scale screens to identify
more common SNPs, improved CNV maps and detection methods to
enhance statistical power, and sequencing of myocardial infarction loci
(and eventually all exons genome-wide) to discover low-frequency and
rare variants. In parallel, mechanistic studies in cells, model organisms
and humans that are focused on the nine validated loci should
improve our understanding of the root causes of myocardial infarc-
tion, and consequently, enable better therapies for this disease.

METHODS
Study design and samples.We conducted a genetic association study with four
stages as displayed in Figure 1. Stage 1 consisted of MIGen, a collection of
2,967 cases of early-onset myocardial infarction (in men r50 y old or women
r60 y old) and 3,075 age- and sex-matched controls free of myocardial
infarction from six international sites: Boston and Seattle in the United States
as well as Sweden, Finland, Spain and Italy (Table 1). At each site, myocardial
infarction was diagnosed on the basis of autopsy evidence of fatal myocardial
infarction or a combination of chest pain, electrocardiographic evidence of
myocardial infarction, or elevation of one or more cardiac biomarkers (creatine
kinase or cardiac troponin). The mean age at the time of myocardial infarction
was 41 y among male cases and 47 y among female cases.

We took forward SNPs into three stages of replication (stages 2–4; Fig. 1).
We chose 1,441 SNPs to test in stage 2 on the basis of two criteria: (i) strength
of statistical evidence in stage 1 (1,433 SNPs from loci with P o 10!3 in stage
1) or (ii) belonging to one of eight reported loci from recent genome-wide
association studies for CAD (a common SNP at or near 9p21.3, CXCL12,
SMAD3, MTHFD1L, MIA3, CELSR2-PSRC1-SORT1, 2q36 and PCSK9)3,4.

Stage 2 consisted of comparisons with four recently completed GWAS
for myocardial infarction consisting of a symmetric effective sample size of
up to 3,922 myocardial infarction cases and 3,922 controls. These studies
included the Wellcome Trust Case Control Consortium Coronary Heart
Disease study, German MI Family Study I, PennCATH and MedStar (Supple-
mentary Methods and Supplementary Table 1). In each stage 2 study, the
analysis was restricted to the phenotype of myocardial infarction with an age of
onset threshold of o66 y for men or women. Although this age cutoff is
slightly less restrictive than that used in stage 1, this cutoff is at or below the
mean age of first myocardial infarction in the United States (65 y for men and
70 y for women)5.

We took forward 33 SNPs to stage 3, which consisted of genotyping an
additional six studies with a symmetric effective sample size of up to 4,321
myocardial infarction cases and 4,321 controls. These six studies included Acute
MI Gene Study/Dortmund Health Study, Verona Heart Study, Mid-America
Heart Institute Study, Irish Family Study, German MI Family Study II and

INTERHEART (European-ancestry samples) (Supplementary Methods and
Supplementary Table 2). Stage 3 comprised 25 SNPs with the best combined
statistical evidence for myocardial infarction from stages 1 and 2 (P o 10!5)
and the eight previously reported SNPs discussed above. In each stage 3 study,
the analysis was restricted to the phenotype of myocardial infarction, and in
four of the six studies, an age-of-onset threshold was established at o66 y for
men or women.

Thirteen SNPs were taken forward to stage 4, which consisted of association
results from deCODE with a symmetric effective sample size of 1,503 cases
of early-onset myocardial infarction and 1,503 controls (Supplementary
Table 2). Stage 4 comprised five SNPs with the best combined statistical
evidence from stages 1–3 and the eight previously reported SNPs. In the
deCODE study, the analysis was restricted to cases with early-onset myocardial
infarction (men o50 y old or women o60 y old). All participants in the 17
studies across stages 1, 2, 3 and 4 gave written informed consent in accordance
with the guidelines of local ethical committees.

Genotyping. In stage 1, we studied 727,496 directly genotyped SNPs (Affyme-
trix 6.0 GeneChip) that passed quality-control filters, as described in the
Supplementary Methods. In addition, we used these genotyped SNPs and
the phased chromosomes from the HapMap CEU sample to impute genotypes
for an additional 1,830,248 SNPs with MACH 1.0 software. In previous work,
we have shown that imputation is accurate (average concordance rate of 97.9%
between imputed and genotyped data for the same SNP) when using MACH
1.0 in samples of European ancestry with the HapMap CEU phased chromo-
somes as reference29.

Stage 2 studies were genotyped on either the Affymetrix GeneChip Human
Mapping 500K Array Set or Affymetrix 6.0 GeneChip, and imputation of
HapMap SNPs was done using either IMPUTE or MACH 1.0 software
(Supplementary Table 1).

In Stage 3, genotyping was attempted for 33 SNPs in five studies using the
iPLEX MassARRAY platform (Sequenom). In the sixth study, German MI
Family Study II, SNPs were genotyped using the Affymetrix 6.0 array
(Supplementary Table 2).

In Stage 4, the deCODE study samples were genotyped on Illumina Infinium
HumanHap300 or HumanHap370 chips, and imputation of HapMap SNPs
was done using IMPUTE software (Supplementary Table 2).

Association of individual SNP genotypes with myocardial infarction. In
stage 1, we tested the association of early-onset myocardial infarction with a
combined set of B2.5 million SNPs (directly genotyped and imputed with
information content40.5) using a logistic regression model that accounted for
age, sex and study site. The estimated genomic control l1000 was low at 1.01,
suggesting little residual confounding due to population stratification. Regard-
less, association test statistics were corrected using the genomic control method;
separate corrections were made for imputed SNPs (with information content
40.5) and genotyped SNPs. We tested imputed genotypes for association after
accounting for uncertainty using the ‘‘PROPER’’ option in the SNPTest soft-
ware package.

In addition, we evaluated an alternate method to account for potential
confounding by population stratification within samples of European ancestry.
We conducted principal-component analysis as implemented in PLINK soft-
ware to define axes of ancestry within the six stage 1 studies30. The first two
principal components separated individuals into clusters that matched study-
site labels and revealed the well-known north–south cline in allele frequencies
across Europe (Supplementary Fig. 2 online). Logistic regression analysis with
the first two principal components as covariates (instead of study site) led to
nearly identical association results (correlation in association statistics was
0.99). In stages 2 and 3, within each study, we examined the association of SNPs
with myocardial infarction using logistic regression after adjustment for age and
sex. In stage 4, SNPs were tested for association with early-onset myocardial
infarction after adjustment for age and sex, with correction of association test
statistics using the genomic-control method as previously described2.

We used two meta-analytic methods to summarize the statistical evidence
for each SNP across stages 1–4. We combined odds ratios for a given reference
allele on a logarithmic scale weighted by the inverse of their variances using a
fixed-effects model. We also combined evidence for association solely on the
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Table 4 Quintiles of allelic dosage score comprised of nine validated
SNPs and risk for early-onset myocardial infarction

Quintile of myocardial infarction

genotype score Odds ratio 95% confidence interval

Quintile 1 1.0 (reference group)

Quintile 2 1.22 1.04–1.44

Quintile 3 1.43 1.22–1.68

Quintile 4 1.69 1.44–1.99

Quintile 5 2.23 1.89–2.63

P for association of myocardial infarction genotype score with early-onset myocardial

infarction: 2 " 10!28

The nine validated myocardial infarction polymorphisms are as shown in Table 2 and
Table 3 and include SLC5A3-MRPS6-KCNE2 rs9982601, PHACTR1 rs12526453,
WDR12 rs6725887, 9p21.3 rs4977574, CXCL12 rs1746048, CELSR2-PSRC1-SORT1
rs646776, MIA3 rs17465637, LDLR rs1122608, and PCKS9 rs11206510. Risk of
early-onset myocardial infarction was assessed in the 2,967 cases and 3,075 controls
from stage 1.
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basis of P values. For each study, we converted the two-sided P value to a
z-statistic and assigned a sign to reflect the direction of the association given the
reference allele. Each z-score was then weighted with the squared weights
summing to 1 and each sample-specific weight being proportional to the
square root of the effective number of individuals in the sample. We summed
the weighted z-statistics across studies and converted the summary z-score to a
two-sided P value.

Statistical analyses were conducted using either PLINK software or in R.

Analyses of myocardial infarction genotype score, common CNVs and rare
CNVs. Details for these analyses are provided in Supplementary Methods.

Statistical power. Given our inability to identify CNVs associated with myo-
cardial infarction, we estimated our statistical power for such discovery. For
common CNPs, we had 78% power to detect a CNPof 25% frequency and effect
size of 1.20 at an alpha of 0.001 in 3,000 cases and 3,000 controls. For rare CNVs,
we approximated by simulation the statistical power to detect a CNV with a
population frequency for the deletion of 1/8,000 (that is, so it would be observed
in 1/4,000 live births). We set the relative risk to 20.0 (the effect size seen for
several rare variants associated with schizophrenia28) and the population disease
prevalence to 1/100. We simulated 10,000 datasets for 2,920 cases and 3,035
controls under this model. Using Fisher’s exact test to account for small cell sizes,
for a type 1 error rate of 0.01 (one-sided test) we had 97% power. The mean case
frequency was B0.5%, and the mean control frequency was B0.02%. For a
similarly rare variant but with a relative risk of 10.0, the average case frequency
was B0.25% (control frequency still 0.02%) and power was lower at 54%.

These simulations suggest that we had good power to detect loci with large
effects, although this assumes perfect sensitivity and specificity for detection.
For very large deletions, at least, we expect sensitivity to detect such CNVs
would be high. However, we may have missed additional loci with CNVs that
are less penetrant, rarer or smaller.

Note: Supplementary information is available on the Nature Genetics website.
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Corrigendum: Ulcerative colitis-risk loci on chromosomes 1p36 and 12q15 
found by genome-wide association study
Mark S Silverberg, Judy H Cho, John D Rioux, Dermot P B McGovern, Jing Wu, Vito Annese, Jean-Paul Achkar, Philippe Goyette,  
Regan Scott, Wei Xu, M Michael Barmada, Lambertus Klei, Mark J Daly, Clara Abraham, Theodore M Bayless, Fabrizio Bossa,  
Anne M Griffiths, Andrew F Ippoliti, Raymond G Lahaie, Anna Latiano, Pierre Paré, Deborah D Proctor, Miguel D Regueiro,  
A Hillary Steinhart, Stephan R Targan, L Philip Schumm, Emily O Kistner, Annette T Lee, Peter K Gregersen, Jerome I Rotter,  
Steven R Brant, Kent D Taylor, Kathryn Roeder & Richard H Duerr
Nat. Genet. 41, 216–220 (2009), published online 4 January 2009; corrected after print 28 April 2009

In the first paragraph of the second column on the third page, rs11209026 A allele was incorrectly listed as rs111209026 A allele. The error has been 
corrected in the HTML and PDF versions of the article.

Corrigendum: Loss-of-function mutations of an inhibitory upstream ORF in 
the human hairless transcript cause Marie Unna hereditary hypotrichosis
Yaran Wen, Yang Liu, Yiming Xu, Yiwei Zhao, Rui Hua, Kaibo Wang, Miao Sun, Yuanhong Li, Sen Yang, Xue-Jun Zhang, Roland Kruse,  
Sven Cichon, Regina C Betz, Markus M Nöthen, Maurice A M van Steensel, Michel van Geel, Peter M Steijlen, Daniel Hohl, Marcel Huber, 
Giles S Dunnill, Cameron Kennedy, Andrew Messenger, Colin S Munro, Alessandro Terrinoni, Alain Hovnanian, Christine Bodemer,  
Yves de Prost, Amy S Paller, Alan D Irvine, Rod Sinclair, Jack Green, Dandan Shang, Qing Liu, Yang Luo, Li Jiang, Hong-Duo Chen,  
Wilson H-Y Lo, W H Irwin McLean, Chun-Di He & Xue Zhang
Nat. Genet. 41, 228–233 (2009), published online 4 January 2009; corrected after print 28 April 2009

The affiliation of the 24th author, Alessandro Terrinoni, was listed incorrectly. It should read IDI-IRCCS Biochemistry Laboratory c/o Univ. Tor 
Vergata, 00133 Rome, Italy. The error has been corrected in the HTML and PDF versions of this article.

Addendum: Deep surveying of alternative splicing complexity in the human 
transcriptome by high-throughput sequencing
Qun Pan, Ofer Shai, Leo J Lee, Brendan J Frey & Benjamin J Blencowe
Nat. Genet. 40, 1413–1415 (2008), published online 2 November 2008; addendum published after print 28 April 2009

The GEO accession number for the mRNA-Seq datasets is GSE13652.

Corrigendum: Genome-wide association of early-onset myocardial infarction 
with single nucleotide polymorphisms and copy number variants
Myocardial Infarction Genetics Consortium
Nat. Genet. 41, 334–341 (2009); published online 8 February 2009; corrected after print 27 May 2009

In the version of this article initially published, the names of four co-authors (Christopher W Knouff, Dawn M Waterworth, Max C Walker, Vincent 
Mooser) were omitted from the author list. The error has been corrected in the HTML and PDF versions of the article.
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