Project:	RADseqReady Plate #	Library #
Name:	Date:	-

BestRAD Library Preparation

Based on protocol of Ali *et al.* 2015 (10.1534/genetics.115.183665) Adapted by Linda Rutledge many times but this version was done on August 16, 2016

Section 1: DNA Standardization

1. Standardize your high quality genomic DNA with 75 ng in 15 uL (ie. 5 ng/uL) in a 96 well plate.

Section 2: Restriction Enzyme Digestion

Materials Required

10x Cutsmart Buffer
Molecular Grade Water
Sbfl-HF Restriction Enzyme (NEB R3642L)
8-well PCR strips
1.5 mL tubes

1. Prepare restriction enzyme (RE) digestion master mix (MM) as follows:

Item	C1	V1 (μL)	C2	V2 (μL)	Total Volume (µL) 96 samples (x110)	Total Volume (µL) 192 samples (x 220)	Total Volume (µL) 384 samples (x 440)
Cutsmart Buffer (or NEBBuffer 4)	10x	1.7	1x	2.0	187	374	748
Molecular Grade Water		0.18		2.0	19.8	39.6	79.2
Sbfl-HF enzyme (add last & keep cold)	20,000 U/mL	0.12 (2.4 Units)		2.0	13.2	26.4	52.8
Total		2.0 μL			220 μL	440 μL	880 μL

^{*}Note that here we use *SbfI* but other enzymes are possible, especially *PstI*, which gives you more loci but less coverage. But check long protocol for any changes required if you change the enzyme. You may need different BestRAD adapters if you change the enzyme.

- 2. Add 2 uL of RE digestion MM to each well. Seal well and quick spin plate.
- 3. Incubate plate at:
 - a. 37°C for 60 minutes, then
 - b. 80°C for 20 minutes to heat kill RE.
 - c. Note: "sbfl digest" program on Sirius/Orion in vonHoldt lab.
 - d. Note that original UIdaho short protocol killed at 65°C for 20 min.

Proje	ct:
Nam	e: Date:
	
Secti	on 3: BestRAD Adapter Ligation
Mate	rials Required
\Box A	nnealed, indexed <i>Sbf</i> I bestRAD adapters at 75nM
\square N	lolecular grade water
\square N	EBuffer 4 (NEB B7004S)
\Box r	ATP (100mM) (Fermentas R0441)
\Box T	4 DNA Ligase (NEB M0202M)
\Box T	4 DNA Ligase Buffer with 10mM rATP (comes with T4 DNA Ligase)
\Box 1	.5 mL tubes
□ 8	-well PCR strips

- 1. Add 2 uL of **annealed** indexed *Sbfl* BestRAD adapters at **75 nM** (Note that the original short protocol said 1 μ M, which is what I assumed we used at UIdaho, but there is a note in the long version and in the published version saying to use 50 nM with *Sbfl* because it cuts less frequently). There are 96 different adapters stored in plate format. Set aside while you make the adapter ligation mastermix (AL-MM). Refer to the document "20140917 adapter annealing.docx" on how to anneal adapters.
- 2. Prepare adapter ligation (AL) mastermix (MM) as follows: New Protocol utilizing the T4 DNA Ligase Buffer with 10 mM rATP

Item	C1	V1 (μL)	C2	V2 (μL)	Total Volume (µL) 96 samples (x110)	Total Volume (µL) 192 samples (x 220)	Total Volume (μL) 288 samples (x 330)
Molecular Grade Water		1.28		2.0	140.8	281.6	422.4
10x T4 DNA Ligase Buffer*	10x	0.56	1x	2.0	61.6	123.2	184.8
T4 DNA Ligase	2,000,000 U/mL	0.16		2.0	17.6	35.2	52.8
Total		2.0			220	440	660

^{*} with 10mM rATP

- 3. Keep adapter ligation (AL-MM) on ice. Divide total volume by 8 and aliquot into PCR strips to facilitate multi-channel addition to plate.
- 4. Add 2 uL of AL-MM to each well and pipette up and down 2x to mix.
- 5. Seal and quick spin.
- 6. Incubate with heated lid off at:
 - a. 20°C for 60 minutes, then
 - b. 65°C for 15 minutes to inactivate ligase
 - c. Note: "rad ligation" program on Sirius/Orion in vonHoldt lab

Proje	RADseqReady Plate # Library #
Name	Date:
Section	4: Pool, Magnetic Bead Clean Up
Mater	ls Required
□ Fr	hly make 80% ethanol (from 96% Molecular Grade ethanol e.g.
Tł	rmoFisher Scientific BP82021)
□ 8	ell PCR strip tubes
□ 1	nL microcentrifuge tubes
□ Ag	ncourt AMPure XP Beads (Beckman Coulter, A63881) mixed and at room
-	perature & Magnetic Rack
	TE (TE _{0.1} : 10mM Tris-HCl pH 7.5, 0.1 mM EDTA).
	Remove AMPure beads from fridge, protect from light, place on mixer and mix at least until they are at room temperature.
_	in a cleast until they are at room temperature.

- 2. **Prepare a small volume (5-10 mL) of 80% ethanol** (e.g. mix 4.167 mL of 96% ethanol with 0.833 mL molecular grade water to get 5mL 80% ethanol)
- 3. **Pool** 4 uL from each uniquely indexed sample (in our case half the plate columns 1 6 and then columns 7 12 because we don't want to have too much liquid in the tube for mag-bead clean up) into 8 well PCR strips. (Note that the amount depends on the desired ng per sample). This will give you 192 uL of sample in each 1.5 mL tube.
- 4. **Pool** all the samples from each 8 well PCR strip into a separate 1.5 mL tube. (Note that if you are doing 1 plate you will have 2 tubes, each filled with 48 uniquely barcoded samples).
- 5. **Clean the DNA with 1:1.5 X Agencourt AMPure XP beads** (Beckman Coulter, A63881). (288 uL of beads because 192 x 1.5 = 288). (Note that published protocol recommends 1X).
 - a. Add 288 uL Agencourt AMPure Beads to each tube. Gently mix by pipetting and quick spin.
 - b. Incubate the sample at room temperature for 10 minutes to bind DNA to the beads.
 - c. Place the tube on a magnetic rack (**LIDS CLOSED**) and wait until the liquid is clear to capture the beads (10 minutes).
 - d. With tube on rack, carefully open lids, remove and discard the supernatant (in hazardous waste because beads are stored in sodium azide).
 - e. Keep the tube on the rack and add 400-500 uL (cover beads) freshly made 80% ethanol to wash the beads.
 - f. Incubate at room temperature for 30 60 seconds.
 - g. Leave tube on rack; carefully remove ethanol & discard.
 - h. Repeat steps e g again. Remove the residual ethanol with a small pipette tip. Do not disturb beads.
 - i. Dry the beads at room temperature for about 5 minutes. Do not overdry the beads.
 - j. Close lids and remove the tubes from the magnetic rack.
 - k. Add 130 uL Low TE. Mix by pipetting and quick spin.
 - l. Place on magnet for 10 minutes.
 - m. Remove supernatant and place in 1.5 mL tube. **KEEP SUPERNATANT!**

Project:	RADseqReady Plate #	Library #
Name:	Date:	-

Section 5: Covaris Sonication to Selected Size Fragment

Materials Required

- ☐ Glass Covaris tubes (available by Covaris LE220 in Princeton Core for use with PN500282 rack)
 - 1. Sonicate samples for 400bp on Covaris LE 220 in Princeton Core Facility. NOTE: Testing showed that the settings for 400 bp actually sheared for 600 bp and that settings for 300 bp sheared for 400 bp (see figure at right). So we want to target 400 bp but that required the Covaris LE220 settings to be at the 300 bp suggestion (See settings below)
 - 2. Transfer 130uL back to 1.5 mL tube.

Note: Aug5, 2016: Covaris did testing and realized the published protocol below for this model was inaccurate. They recommend settings closer to 300bp except with shorter duration of 50s. I found that the 60s shearing was better than that so the setting should be:

PIP(W)	DF(%)	CPB	Time(s)
450	30	200	60

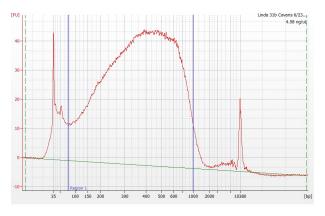
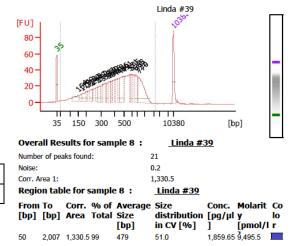



Figure 1. Bioanalyzer results from shearing of pooled DNA after settings changed to "300 bp" settings on LE220.

Covaris

Quick Guide:

DNA Shearing with LE220 Focused-ultrasonicator

This Quick Guide provides DNA Shearing protocols when using microTUBE, microTUBE-50, microTUBE-15 or miniTUBE and a Covaris LE220 Focused-ultrasonicator.

130 µl sample volume - from 150 to 1,500 bp microTUBE AFA Fiber Crimp-Cap

8 microTUBE Strip 96 microTUBE Plate

Target BP (Peak)	150	200	300	400	500	900	1500	
Duty Factor	30%	30%	30%	15%	15%	5%	5%	
Peak Incident Power PIP (W)	450	450	450	450	450	450	450	
Cycles per Burst	200	200	200	200	200	200	200	
Treatment Time (s)								
Racks (PN 500282 and 500191)	420	175	60	63	46	77	17	
96 microTUBE plate (PN 520078)	490	190	80	100	75	118	20	The same of the sa
Temperature (°C)	7	7	7	7	7	7	7	
Water Level	6	6	6	6	6	6	6	SERVICE .
Sample volume (µI)	130	130	130	130	130	130	130	-99999999

Figure 2. Bioanalyzer results from shearing of pooled DNA after settings changed to "300 bp" settings on LE220 with only 50s

Additional Optional Step: You can check shearing efficiency on one of your samples at this point to ensure the correct sample size. Shearing at 400 bp is important for downstream workflow.

Project:	RADseqReady	Library #
Name:	Date:	
Note from biotin-strand have to us	b: Streptavidin Bead Binding Assay In Michael Miller: We resuspend the beads each eptavidin interaction is the strongest known nor se hot phenol to dissociate it. There's no way resuse the fragments to fall off.	n-covalent interaction. You
resusj 37°C v 56°C l 2X Bir EDTA 1X bir EDTA	peads M-280 Streptavidin (Invitrogen 11205D); repended by mixing well. water bath or incubator neat block/ incubator (to warm 1X BW buffer for nding and Wash Buffer (2X BW Buffer: 10 mM Tr pH 8.0, 2M NaCl) nding and wash buffer (1X BW Buffer: 5 mM Tris- pH 8.0, 1 M NaCl) – you can dilute 2x BW Buffer	second round of washes) is-HCl (pH 7.5), 1 mM
☐ Agence	B Buffer 4 (It comes as 10X – dilute 1:9 with Mol court AMPure XP Beads E (10 mM tris-HCl pH 7.5, 0.1 mM EDTA) F restriction enzyme	ecular Grade Water)
a. b. c. d. e. 2. Resus a. b.	minutes) Remove SN and discard. Repeat wash with 1x BW buffer .	ds. ggregate to side (1 minute ffer. time by pipetting) abeads in 130 uL 2X BW com Step 5). Mix well by te up and 5 - 10 times to with gentle vortexing for 3 inutes, remove SN, by gentle pipetting 10x. ggregate to side (2

			Library #							
3. Libera	ite DNA	te DNA from Dynabeads								
		ve from rac	k and resuspend beads+DN	VA in 100 uL of 1X NEB4						
b.	b. Place tube on magnetic rack and remove SN once beads have a									
			e and liquid becomes clear.							
	-	t a-b once.	J J. D.NIA 40 . I. 4	V NICD 66 4						
			and bound DNA in 40 uL 1							
e.		_	enzyme to resuspended bears	cut site so it liberates DNA of						
		_	_	bation step. Mix with gentle						
	vortex		beaus during the next med	bation step. Mix with gentie						
f.			for 60 minutes in water ba	th with gentle vortex after 30						
	minut									
g.	Quick	spin, place	tube on magnetic rack 5 m	inutes.						
h.	KEEP	supernata	nt – put in new 1.5 mL tube	e.						
i.			ıre bead clean up;							
	i.			d and at room temperature)						
		to each sai	•							
				n temperature for 10 minutes.						
			gnet for 5 minutes.							
			nd discard supernatant.	I frachly made 200/ other al						
			or 30 seconds.	L freshly made 80% ethanol.						
			nd discard supernatant.							
		Repeat ste	_							
		•	for 5 minutes.							
			ibes from rack and add 57	uL Low TE.						
	xi.	Mix/spin.	Let sit for a couple minutes	S.						
	xii.	Put on rac	k for 5 minutes.							
	xiii.	KEEP SUP	ERNATANT and put in new	w 1.5 mL tubes.						
j.	•	•	he elute with HS Qubit. Qua	antification is usually low						
	(betw	een 0.1 – 0.	2 ng/uL).							
Sample ID			Volume Quantified (uL)	Concentration (ng/uL)						

	RADseqReady Plate # Date:					
Section 7: NEBNext Ultra II Library Prep Follow the instructions for NEBnext Ultra II DNA Library Kit for Illumina with the following notes & details						
	www.neb.com/~/media/Catalog F5A4D3AB3970664E099CC73/I odf					
Materials Required						
☐ PCR tubes		i				
Notes:						
STEP 1: NEBNext End Prep						
Step 1.1 1. We have 55 u.L. b	out use only 50 uL of this in the PCI	R.				

Step 1.2

1. It is important to mix well according to directions and give a quick spin prior to PCR.

Step 1.3

- 1. PCR program: NEB_NEXT_END_PREP be sure to check settings and the heated lid is set to 75°C
- 2. Do not store overnight in freezer or fridge proceed to ligation to avoid DNA loss.

STEP 2: Adapter Ligation

Step 2.1

1. Based on your last Qubit you should be able to estimate adapter concentration, however, sometimes the Qubit is not super accurate and so for these libraries a standard 1uM of adapter is good because we expect to typically have just under 5ng of input DNA. Adapter can be diluted in 10 mM Tris HCl by combining 10 uL of 1M TrisHCl (ph 7.5) with 990 uL molecular grade water. Adapter is at 15 uM concentration so you may need to dilute to 1 uM by mixing 2 uL of 15 uM adapter with 28 uL of 10mM TrisHCl.

Step 2.2

1. Make sure you mix well and quick spin as per instructions

Step 2.3

1. Make sure turn the heated lid off for ligation.

Project:	RADseqReady Plate #	Library #
Name:	Date:	

STEP 3: Size Selection & Bead Cleanup

A general rule to follow is that after a bead clean up you can store in fridge overnight. But you should not store end prep and ligations in fridge overnight. If you have to store before a bead cleanup then store at -20°C. However, if the bead cleaned product is going to be stored more than 12 hours then put it in the freezer.

Step 3.1

- 1. Even though size selection for low volumes of DNA are not recommended by NEB, we still do it. Select for 300 400 bp insert. Note that the Ultra II ligation Mastermix has more PEG in it so the bead ratios are different. AmpureXP beads can be used and they are the same as the SPRIselect beads, it is just that SPRIselect beads are more expensive because they are guanteed to be verified for size selection.
- 2. Note that when I did this I only had 85 uL of product so I added 11.5 uL of molecular grade water to get the 96.5 uL for size selection.
- 3. Use 25 uL for 1st bead selection and 10 uL for 2nd bead selection

Step 3.1

1. Ignore this section

STEP 4: Follow section 4.1 (NEBNext multiplex oligos for Illumina Set 1, E7335 OR NEBNext singleplex Oligos for Illumina (NEB 7350).

If you need to combin 2 indices be sure to check for compatibility – for example, use index 6 with index 12. Consult Illumina sequencing for combinatorial indexing strategy.

Step 4.1

Follow section 4.1 (NEBNext multiplex oligos for Illumina Set 1, E7335 OR NEBNext singleplex Oligos for Illumina (NEB 7350). I used index primer 7 and the universal primer for both 39 and 40 because there are 96 barcodes already attached. If you need to combine 2 indices be sure to check for compatibility – for example, use index 6 with index 12. Consult Illumina sequencing for combinatorial indexing strategy.

Step 4.1.2

1. Mix well.

Step 4.1.3

1. I used 12 cycles based on Table 4.2. Although this kit is supposed to be super efficient and require fewer cycles, I thought the input DNA was closer to 0.5 ng (based on qubit) and wanted to ensure enough product. 12 cycles seemed to work well.

Step 4.2

1. Ignore this section (except for Table 4.2 which may be useful to consult for estimating cycles).

Project:	RADseqReady Plate #	Library #
Name:	Date:	

STEP 5: Cleanup of PCR Amplification

Follow this section exactly, except in section 5.8 elute in 35 uL 0.1x TE so you can Qubit 2 uL.

1. Quantify 2 uL of product with Qubit HS Assay. Expect 5 – 10 ng/uL, but anything over 3 ng/uL is OK. Keep remaining for sequencing. This is your final, complete sequencing library to use for preparation of sample submission to sequencing facility.

Sample ID	Volume Quantified (uL)	Concentration (ng/uL)

This shows a Bioanalyzer result prior to standardizing and combining with LIB40.

Projec	:t:	RADseqReady Plate	#	Library #
Name	:	Date:		
Section	on 8: Standardizing L	ibraries and Sendin	g for Sequencin	g at Princeton
See ht	tps://htseq.princeton	<u>.edu</u> for details about	sequencing.	
Mater	ials Required			
□ Lib	oraries from Section 7			
□ 0.1	l% Tween EB buffer (1	EB Buffer is Qiagen El	3 Buffer)	
☐ Sci	rew cap low volume tu	ıbes.		
1.	We send our RADseq	libraries to Lewis-Sig	gler Institute (LS	I) at Princeton
	University. Request 5	5% PhiX spike in the I	RAD libraries to e	ensure maximal
	reads. On the Illumin	a Hi-Seq, request 2 la	nes of sequencin	g for each library

- to get the expected 200 Million reads. As of April 12, 2016 the cost is \$2690.
 We typically submitted 10nM in 20 uL of 0.1% Tween EB (Use Qiagen EB buffer) but it now state in iLab that they want 5ng/uL in 20 uL. For the Canis project we are continuing with the standard 2.6 ng/ul but for new projects people should consider revamping to 5 ng/uL and also doing the nM conversion based on a bioanalyzer output of mean fragment size.
- 3. Convert PCR product concentrations to nM (see nM Conversion Calculator.xlsx).

Sample	(C1)	V1	C2	V2	Fragment	DNA	Volume of	Volume
ID	(ng/uL)	(uL)	(ng/uL)	(uL)	Size (bp)	(nM)	Standardized	of 0.1%
							Sample (uL)	Tween
								EB (uL)
39	7.83	3.32	2.6	10	400			6.68
40	8.31	3.13	2.6	10	400			6.87
								Total
								13.55
								uL

- 4. For 400 bp we will prepare samples at 10 nM total in 20 uL 0.1% Tween EB.
 - a. There are several ways to accomplish this, but here is one way
 - b. To a new sequencing submission screw cap tube, add enough volume of each sample to make 2.6 ng/uL in 10 uL. Then add volume of 0.1% Tween EB to top up to 20 uL (an example is shown in the above table).
- 5. Label tube appropriately, and follow sample submission guidelines at on iLab Sequencing Core Service Request. Be sure to charge the correct chartstring.
- 6. Print the sample submission form and place in Ziploc bag with library and deliver to the sequencing core freezer in the "Libraries for Sequencing" box in the mini freezer.
- 7. Data can be downloaded by logging in and following instructions at: https://htseq.princeton.edu.

Project:	RADseqReady	Library #
Name:	Date:	

Reagents List

Low TE (TE_{0.1}: 10mM Tris-HCl pH 7.5, 0.1 mM EDTA) *Materials:*

- o Molecular Grade Water
- o 1M Tris-HCl (pH 7.5)
- o 0.5M EDTA (pH 8.0)

To make 100 mL of Low TE, remove 1.02 mL (1 mL plus 20 uL) from a 100 mL bottle of Molecular Grade Water. Then add 1 mL of 1M Tris-HCl (pH 7.5) and 20 uL 0.5M EDTA. Mix by inversion. It is also *probably* fine to just dilute regular 1X TE in a 1:9 ratio with molecular grade water. But then you end up with 1mM Tris-HCl and 0.1 mM EDTA. It is the EDTA concentration that is the most important here.

80% Ethanol

Materials:

- o 96% Molecular Grade Ethanol (Fisher BP82021)
- o Molecular Grade Water (Fisher BP2484100)
- o 5mL tubes or 15 mL conical tubes

Make this fresh each day you are doing a bead clean up or size selection. Mix 4.167 mL of 96% ethanol with 0.833 mL of molecular grade water.

2X Binding and Wash Buffer

Reagent	C1	V1 (uL)	C2 (mM)	V2 (uL
Tris HCl pH 7.5	1000	1000	10	100000
EDTA pH 7.5	500	200	1	100000
NaCl	5000	40	2	100000
Molecular		98760		
Grad Water				

Instructions: Remove 1240 uL of water from a 100 mL bottle of molecular grade water, then add the other reagents to that bottle. Label and aliquot appropriately.

0.1% Tween EB

Materials:

- o Tween 20 (Fisher BP337-100)
- o EB Buffer (Qiagen 19086)

Tween is really viscous so it is difficult to pipette 1 uL accurately. So, first make a 10% solution with the 100-1000 uL pipette: Eg. mix 1 mL of Tween 20 with 9 mL Buffer EB. Then make a 0.1% Tween EB solution by combining 100 uL of 10% Tween EB with 9900 uL of EB Buffer. This gives you 0.1% Tween EB.