
Package ‘polysat’
June 12, 2015

Version 1.4-0

Date 2015-06-12

Title Tools for Polyploid Microsatellite Analysis

Imports methods

Suggests combinat, ade4, adegenet, ape

Description A collection of tools to handle microsatellite data of
any ploidy (and samples of mixed ploidy) where allele copy number is not
known in partially heterozygous genotypes. It can import and export data in
ABI GeneMapper, Structure, ATetra, Tetrasat/Tetra, GenoDive, SPAGeDi,
POPDIST, STRand, and binary presence/absence formats. It can calculate
pairwise distances between individuals using a stepwise mutation model or
infinite alleles model, with or without taking ploidies and allele frequencies
into account. These distances can be used for the calculation of clonal
diversity statistics or used for further analysis in R. Allelic diversity
statistics are also available. polysat can assist the user in estimating the
ploidy of samples, and it can estimate allele frequencies in
populations, calculate pairwise Fst values based on those frequencies, and
export allele frequencies to SPAGeDi and adegenet. Functions are also
included for assigning alleles to isoloci in cases where one pair of
microsatellite primers amplifies alleles from two or more independently
segregating isoloci.

License GPL-2

URL http://openwetware.org/wiki/Polysat

NeedsCompilation no

Author Lindsay V. Clark [aut, cre]

Maintainer Lindsay V. Clark <lvclark@illinois.edu>

R topics documented:
Accessors . 3
alleleCorrelations . 6
alleleDiversity . 10
AllopolyTutorialData . 12
assignClones . 12
Bruvo.distance . 14
Bruvo2.distance . 15

1

http://openwetware.org/wiki/Polysat

2 R topics documented:

calcFst . 17
catalanAlleles . 19
deleteSamples . 21
deSilvaFreq . 22
editGenotypes . 25
estimatePloidy . 26
FCRinfo . 28
find.missing.gen . 28
freq.to.genpop . 29
genambig-class . 31
genambig.to.genbinary . 33
genbinary-class . 35
gendata-class . 38
gendata.to.genind . 41
genotypeDiversity . 42
genotypeProbs . 44
Internal Functions . 46
isMissing . 48
Lynch.distance . 50
meandist.from.array . 51
meandistance.matrix . 52
merge-methods . 55
mergeAlleleAssignments . 56
pld . 57
ploidysuper-class . 59
read.ATetra . 60
read.GeneMapper . 61
read.GenoDive . 63
read.POPDIST . 65
read.SPAGeDi . 66
read.STRand . 68
read.Structure . 70
read.Tetrasat . 73
recodeAllopoly . 74
reformatPloidies . 76
simAllopoly . 78
simgen . 80
simpleFreq . 80
testgenotypes . 82
viewGenotypes . 83
write.ATetra . 84
write.freq.SPAGeDi . 85
write.GeneMapper . 87
write.GenoDive . 89
write.POPDIST . 91
write.SPAGeDi . 92
write.Structure . 94
write.Tetrasat . 97

Index 99

Accessors 3

Accessors Accessor and Replacement Functions for "gendata" Objects

Description

The accessor functions return information that is contained, either directly or indirectly, in the
slots of a gendata object. The replacement functions alter information in one or more slots as
appropriate.

Usage

Samples(object, populations, ploidies)
Samples(object) <- value
Loci(object, usatnts, ploidies)
Loci(object) <- value
PopInfo(object)
PopInfo(object) <- value
PopNames(object)
PopNames(object) <- value
PopNum(object, popname)
PopNum(object, popname) <- value
Ploidies(object, samples, loci)
Ploidies(object) <- value
Usatnts(object)
Usatnts(object) <- value
Description(object)
Description(object) <- value
Missing(object)
Missing(object) <- value
Present(object)
Present(object) <- value
Absent(object)
Absent(object) <- value
Genotype(object, sample, locus)
Genotype(object, sample, locus) <- value
Genotypes(object, samples = Samples(object), loci = Loci(object))
Genotypes(object, samples = Samples(object), loci = Loci(object)) <- value

Arguments

object An object of the class gendata or one of its subclasses.

populations A character or numeric vector indicating from which populations to return sam-
ples. (optional)

ploidies A numeric vector indicating ploidies, if only samples or loci with a certain
ploidy should be returned. (optional)

sample A character string or number indicating the name or number of the sample whose
genotype should be returned.

locus A character string or number indicating the name or number of the locus whose
genotype should be returned.

4 Accessors

samples A character or numeric vector indicating samples for which to return genotypes
or ploidies. (optional)

loci A character or numeric vector indicating loci for which to return genotypes or
ploidies. (optional)

usatnts A numeric vector indicating microsatellite repeat lengths, where only loci of
those repeat lengths should be returned. (optional)

popname Chacter string or vector. The name(s) of the population(s) for which to retrieve
or replace the corresponding PopInfo number(s). The replacement function
should only be used for one population at a time.

value • For Samples: a character vector of sample names.
• For Loci: a character vector of locus names.
• For PopInfo: A numeric vector (integer or can be coerced to integer) indi-

cating the population identities of samples.
• For PopNames: A character vector indicating the names of populations.
• For PopNum: A number (integer or can be coerced to integer) that should be

the new population number associated with popname.
• For Ploidies: A numeric vector or matrix (integer or can be coerced to

integer) indicating the ploidy of each sample, locus, and/or the dataset. See
reformatPloidies and "ploidysuper".

• For Usatnts: A numeric vector (integer or can be coerced to integer) in-
dicating the repeat type of each microsatellite locus. Dinucleotide repeats
should be represented with 2, trinucleotide repeat with 3, and so on. If the
alleles for a given locus are already stored in terms of repeat number rather
than fragment length in nucleotides, the Usatnts value for that locus should
be 1.

• For Description: A character string or character vector describing the
dataset.

• For Missing: A symbol (usually an integer) to be used to indicate missing
data.

• For Present: A symbol (usually an integer) to be used to indicate the pres-
ence of an allele.

• For Absent: A symbol (usually an integer) to be used to indicate the ab-
sence of an allele.

• For Genotype: a vector of alleles, if the object is of class genambig.
• For Genotypes: A list of vectors (genotypes), of the same dimensionality as
c(length(samples), length(loci)), if the object is of class genambig.
If the object is of class genbinary, value should be a matrix, with column
names of the form "locus.allele". See Genotypes<-,genbinary-method
for more information.

Details

Samples<- and Loci<- can only be used to change sample and locus names, not to add or remove
samples and loci from the dataset.

For slots that require integer values, numerical values used in replacement functions will be coerced
to integers. The replacement functions also ensure that all slots remain properly indexed.

The Missing<- function finds any genotypes with the old missing data symbol and changes them
to the new missing data symbol, then assigns the new symbol to the slot that indicates what the
missing data symbol is. Present<- and Absent<- work similarly for the genbinary class.

Accessors 5

The Genotype access and replacement functions deal with individual genotypes, which are vec-
tors in the genambig class. The Genotypes access and replacement functions deal with lists of
genotypes.

The PopInfo<- replacement function also adds elements to PopNames(object) if necessary in
order to have names for all of the populations. These will be of the form "Pop" followed by the
population number, and can be later edited using PopNames<-.

The PopNum<- replacement function first finds all samples in the population popname, and replaces
the number in PopInfo(object) for those samples with value. It then inserts NA into the original
PopNames slot that contained popname, and inserts popname into PopNames(object)[value]. If
this results in two populations being merged into one, a message is printed to the console.

Value

PopInfo, PopNames, Missing, Description, Usatnts, Ploidies and Genotypes simply return
the contents of the slots of the same names (or in the case of Ploidies, object@Ploidies@pld is
returned). Samples and Loci return character vectors taken from the names of other slots (PopInfo
and Usatnts, respectively; the initialization and replacement methods ensure that these slots are
always named according to samples and loci). PopNum returns an integer vector indicating the
population number(s) of the population(s) named in popname. Genotype returns a single genotype
for a given sample and locus, which is a vector whose exact form will depend on the class of object.

Author(s)

Lindsay V. Clark

See Also

deleteSamples, deleteLoci, viewGenotypes, editGenotypes, isMissing, estimatePloidy,
merge,gendata,gendata-method, gendata

Examples

create a new genambig (subclass of gendata) object to manipulate
mygen <- new("genambig", samples=c("a", "b", "c"), loci=c("locG",
"locH"))

retrieve the sample and locus names
Samples(mygen)
Loci(mygen)

change some of the sample and locus names
Loci(mygen) <- c("lG", "lH")
Samples(mygen)[2] <- "b1"

describe the dataset
Description(mygen) <- "Example dataset for documentation."

name some populations and assign samples to them
PopNames(mygen) <- c("PopL", "PopK")
PopInfo(mygen) <- c(1,1,2)
now we can retrieve samples by population
Samples(mygen, populations="PopL")
we can also adjust the numbers if we want to make them
match another dataset
PopNum(mygen, "PopK") <- 3

6 alleleCorrelations

PopNames(mygen)
PopInfo(mygen)
change the population identity of just one sample
PopInfo(mygen)["b1"] <- 3

indicate that both loci are dinucleotide repeats
Usatnts(mygen) <- c(2,2)

indicate that all samples are tetraploid
Ploidies(mygen) <- 4
or
Ploidies(mygen) <- rep(4, times = length(Samples(mygen)) * length(Loci(mygen)))
actually, one sample is triploid
Ploidies(mygen)["c",] <- 3
view ploidies
Ploidies(mygen)

view the genotype array as it currently is: filled with missing
values
Genotypes(mygen)
fill in the genotypes
Genotypes(mygen, loci="lG") <- list(c(120, 124, 130, 136), c(122, 120),

c(128, 130, 134))
Genotypes(mygen, loci="lH") <- list(c(200, 202, 210), c(206, 208, 210,

214),
c(208))

genotypes can also be edited or retrieved by sample
Genotypes(mygen, samples="a")
fix a single genotype
Genotype(mygen, "a", "lH") <- c(200, 204, 210)
retrieve a single genotype
Genotype(mygen, "c", "lG")

change a genotype to being missing
Genotype(mygen, "c", "lH") <- Missing(mygen)
show the current missing data symbol
Missing(mygen)
an example of genotypes where one contains the missing data symbol
Genotypes(mygen, samples="c")
change the missing data symbol
Missing(mygen) <- as.integer(-1)
now look at the genotypes
Genotypes(mygen, samples="c")

alleleCorrelations Assign Alleles to Isoloci Based on Distribution of Genotypes

Description

Where a single locus represents two or more independent isoloci (as in an allopolyploid, or a
diploidized autopolyploid), these two functions can be used in sequence to assign alleles to isoloci.
alleleCorrelations uses K-means and UPGMA clustering of pairwise p-values from Fisher’s
exact test to make initial groupings of alleles into putative isoloci. testAlGroups is then used to
check those groupings against individual genotypes, and adjust the assignments if necessary.

alleleCorrelations 7

Usage

alleleCorrelations(object, samples = Samples(object), locus = 1,
alpha = 0.05, n.subgen = 2, n.start = 50)

testAlGroups(object, fisherResults, SGploidy=2, samples=Samples(object),
null.weight=0.5, tolerance=0.05, rare.al.check=0.2)

Arguments

object A "genambig" or "genbinary" object containing the data to analyze.

samples An optional character or numeric vector indicating which samples to analyze.

locus A single character string or integer indicating which locus to analyze.

alpha The significance threshold, before multiple correction, for determining whether
two alleles are significantly correlated.

n.subgen The number of subgenomes (number of isoloci) for this locus. This would be
two for an allotetraploid or three for an allohexaploid.

n.start Integer, passed directly to the nstart argument of the R base function kmeans.
Lowering this number will speed up computation time, whereas increasing it
will improve the probability of finding the correct allele assignments. The de-
fault value of 50 should work well in most cases.

fisherResults A list output from alleleCorrelations.

SGploidy The ploidy of each subgenome (each isolocus). This is 2 for an allotetraploid or
allohexaploid, or 4 for an allo-octaploid with two tetraploid genomes.

null.weight Numeric, indicating how genotypes with potential null alleles should be counted
when looking for signs of homoplasy. null.weight should be 0 if null alleles
are expected to be common, and 1 if there are no null alleles in the dataset. The
default of 0.5 was chosen to reflect the fact that the presence of null alleles is
generally unknown.

tolerance The proportion of genotypes that are allowed to be in disagreement with the
allele assignments. This is the proportion of genotypes that are expected to have
meiotic error or scoring error.

rare.al.check Numeric ranging from 0 to 1. The maximum proportion of genotypes in which
an allele can occur for that allele to be considered “rare”. All such alleles
will be temporarily swapped to the other isolocus/isoloci to see if the agree-
ment between allele assignments and genotypes is improved, in which case
the swap becomes permanent. The default of 0.2 worked well on simulated
tetraploid populations of 100 individuals with no population structure or meiotic
error. When the population size was reduced to 30, it was beneficial to increase
rare.al.check up to 0.6. In general, when alleleCorrelations is expected
to perform poorly, it is beneficial to raise the value of rare.al.check (although
raising the value does not guarantee that the correct answer will be found, and in
very unusual cases can introduce errors into the allele assignments). The main
advantage to having a low value for rare.al.check is reduced computation
time.

Details

These functions implement a novel methodology, introduced in polysat version 1.4, for cases where
one pair of microsatellite primers amplifies alleles at two or more independently-segregating loci

8 alleleCorrelations

(referred to here as isoloci). This is not typically the case with new autopolyploids, in which all
copies of a locus have equal chances of pairing with each other at meiosis. It is, however, frequently
the case with allopolyploids, in which there are two homeologous subgenomes that do not pair (or
infrequently pair) at meiosis, or ancient autopolyploids, in which duplicated chromosomes have
diverged to the point of no longer pairing at meiosis.

Within the two functions there are four major steps:

1. alleleCorrelations checks to see if there are any alleles that are present in every genotype
in the dataset. Such invariable alleles are assumed to be fixed at one isolocus (which is not
necessarily true, but may be corrected by testAlGroups in steps 4 and 5). If present, each
invariable allele is assigned to its own isolocus. If there are more invariable alleles than isoloci,
the function throws an error. If only one isolocus remains, all remaining (variable) alleles are
assigned to that isolocus. If there are as many invariable alleles as isoloci, all remaining
(variable) alleles are assigned to all isoloci (i.e. they are considered homoplasious because
they cannot be assigned).

2. If, after step 1, two or more isoloci remain without alleles assigned to them, correlations
between alleles are tested by alleleCorrelations. The dataset is converted to "genbinary"
if not already in that format, and a Fisher’s exact test, with negative correlation (odds ratio
being less than one) as the alternative hypothesis, is performed between each pair of columns
(alleles) in the genotype matrix. The p-value of this test between each pair of alleles is stored
in a square matrix, and zeros are inserted into the diagonal of the matrix. K-means clustering
and UPGMA are then performed on the square matrix of p-values, and the clusters that are
produced represent initial assignments of alleles to isoloci.

3. The output of alleleCorrelations is then passed to testAlGroups. If the results of K-
means clustering and UPGMA were not identical, testAlGroups checks both sets of assign-
ments against all genotypes in the dataset. For a genotype to be consistent with a set of
assignments, it should have at least one allele and no more than SGploidy alleles belonging to
each isolocus. The set of assignments that is consistent with the greatest number of genotypes
is chosen, or in the case of a tie, the set of assignments produced by K-means clustering.

4. Since rare alleles are the most likely alleles to have been incorrectly assigned in step 1 or
2, every rare allele (occurring in a proportion of genotypes at or below the threshold set by
rare.al.check) is tested to see if it is more likely to belong to a different isolocus. This
is done by individually checking genotypes that contain that allele, and seeing whether they
can be split into multiple isoloci according the the current allele assignments (not allowing
for aneuploidy), and/or a different set(s) of allele assignments with that allele swapped into a
different isolocus (or isoloci for hexaploids and higher). The set of assignments that agrees
with the greatest number of genotypes is retained, or the original set of assignments is kept in
the case of a tie, then the algorithm moves on to the next rare allele. Whenever an allele swap
is retained, all rare alleles that have not yet been swapped are checked again, until no more
swaps are made.

5. testAlGroups then checks through all genotypes to look for signs of homoplasy, meaning
single alleles that should be assigned to more than one isolocus. For each genotype, there
should be no more than SGploidy alleles assigned to each isolocus. Additionally, if there are
no null alleles, each genotype should have at least one allele belonging to each isolocus. Each
time a genotype is encountered that does not meet these criteria, the a score is increased for all
alleles that might be homoplasious. (The second criterion is not checked if null.weight = 0.)
This score starts at zero and is increased by 1 if there are too many alleles per isolocus or by
null.weight if an isolocus has no alleles. Once all genotypes have been checked, the allele
with the highest score is considered to be homoplasious and is added to the other isolocus.
(In a hexaploid or higher, which isolocus the allele is added to depends on the genotypes that
were found to be inconsistent with the allele assignments, and which isolocus or isoloci the

alleleCorrelations 9

allele could have belonged to in order to fix the assignment.) Allele scores are reset to zero
and all alleles are then checked again with the new set of allele assignments. The process is
repeated until the proportion of genotypes that are inconsistent with the allele assignments is
at or below tolerance.

Value

Both functions return lists. For alleleCorrelations:

locus The name of the locus that was analyzed.
clustering.method

The method that was ultimately used to produce value$Kmeans.groups and
value$UPGMA.groups. Either "K-means and UPGMA" or "fixed alleles".

significant.neg

Square matrix of logical values indicating whether there was significant nega-
tive correlation between each pair of alleles, after multiple testing correction by
Holm-Bonferroni.

significant.pos

Square matrix of logical values indicating whether there was significant posi-
tive correlation between each pair of alleles, after multiple testing correction by
Holm-Bonferroni.

p.values.neg Square matrix of p-values from Fisher’s exact test for negative correlation be-
tween each pair of alleles.

p.values.pos Square matrix of p-values from Fisher’s exact test for positive correlation be-
tween each pair of alleles.

odds.ratio Square matrix of the odds ratio estimate from Fisher’s exact test for each pair of
alleles.

Kmeans.groups Matrix with n.subgen rows, and as many columns as there are alleles in the
dataset. 1 indicates that a given allele belongs to a given isolocus, and 0 indicates
that it does not. These are the groupings determined by K-means clustering.

UPGMA.groups Matrix in the same format as value$Kmeans.groups, showing groupings deter-
mined by UPGMA.

heatmap.dist Square matrix like value$p.values.neg but with zeros inserted on the diago-
nal. This is the matrix that was used for K-means clustering and UPGMA. This
matrix can be passed to the heatmap function in R to visualize the clusters.

totss Total sums of squares output from K-means clustering.

betweenss Sums of squares between clusters output from K-means clustering. value$betweenss/value$totss
can be used as an indication of clustering quality.

gentable The table indicating presence/absence of each allele in each genotype.

For testAlGroups:

locus Name of the locus that was tested.

SGploidy The ploidy of each subgenome, taken from the SGploidy argument that was
passed to testAlGroups.

assignments Matrix with as many rows as there are isoloci, and as many columns as there are
alleles in the dataset. 1 indicates that a given allele belongs to a given isolocus,
and 0 indicates that it does not.

10 alleleDiversity

Note

alleleCorrelations will print a warning to the console or to the standard output stream if a
significant positive correlation is found between any pair of alleles. (This is not a “warning” in
the technical sense usually used in R, because it can occur by random chance and I did not want
it to cause polysat to fail package checks.) You can see which allele pair(s) caused this warning
by looking at value$significant.pos. If you receive this warning for many loci, consider that
there may be population structure in your dataset, and that you might split the dataset into multiple
populations to test seperately. If it happens at just a few loci, check to make sure there are not
scoring problems such as stutter peaks being miscalled as alleles. If it only happens at one locus
and you can’t find any evidence of scoring problems, two alleles may have been positively correlated
simply from random chance, and the warning can be ignored.

Author(s)

Lindsay V. Clark

References

Clark, L. V. and Drauch Schreier, A. (2015) Resolving microsatellite genotype ambiguity in popula-
tions of allopolyploid and diploidized autopolyploid organisms using negative correlations between
alleles. bioRxiv, DOI: 10.1101/020610.

See Also

recodeAllopoly, mergeAlleleAssignments, catalanAlleles

Examples

randomly generate example data for an allotetraploid
mydata <- simAllopoly(n.alleles=c(5,5), n.homoplasy=1)
viewGenotypes(mydata)

test allele correlations
n.start is lowered in this example to speed up computation time
myCorr <- alleleCorrelations(mydata, n.subgen=2, n.start=10)
myCorr$Kmeans.groups
myCorr$clustering.method
if(!is.null(myCorr$heatmap.dist)) heatmap(myCorr$heatmap.dist)

check individual genotypes
myRes <- testAlGroups(mydata, myCorr, SGploidy=2)
myRes$assignments

alleleDiversity Retrieve and Count Unique Alleles

Description

alleleDiversity returns the number of unique alleles and/or a list of vectors of all unique alleles,
indexed by locus and population.

alleleDiversity 11

Usage

alleleDiversity(genobject, samples = Samples(genobject),
loci = Loci(genobject), alleles = TRUE, counts = TRUE)

Arguments

genobject An object of the class "genambig".

samples Optional. A character or numeric vector indicating samples to include in the
analysis.

loci Optional. A character or numeric vector indicating loci to include in the analy-
sis.

alleles Boolean, indicating whether or not to return the alleles themselves.

counts Boolean, indicating whether or not to return the number of unique alleles.

Value

Under default settings, a list is returned:

alleles A two dimensional list. The first dimension is indexed by population, with the
additional element “overall” representing the entire dataset. The second dimen-
sion is indexed by locus. Each element of the list is a vector, containing all
unique alleles found for that population and locus. Missing(genobject) is not
counted as an allele.

counts A matrix, indexed in the same way as alleles. Each element of the matrix is
an integer indicating how many alleles were found at that population and locus.

If the argument alleles or counts is set to FALSE, then only one of the above list elements is
returned.

Author(s)

Lindsay V. Clark

See Also

genotypeDiversity

Examples

generate a dataset for this example
mygen <- new("genambig", samples=c("a","b","c","d"), loci=c("E","F"))
PopInfo(mygen) <- c(1,1,2,2)
Genotypes(mygen, loci="E") <- list(c(122,132),c(122,124,140),

c(124,130,132),c(132,136))
Genotypes(mygen, loci="F") <- list(c(97,99,111),c(113,115),

c(99,113),c(111,115))

look at unique alleles
myal <- alleleDiversity(mygen)
myal$counts
myal$alleles
myal$alleles[["Pop1","E"]]
myal$alleles[["overall","F"]]

12 assignClones

AllopolyTutorialData Simulated Allotetraploid Data

Description

This is a simulated microsatellite dataset for seven loci and 303 individuals. It is intended to be
used with the tutorial “Assigning alleles to isoloci in polysat”.

Usage

data("AllopolyTutorialData")

Format

A "genambig" object.

Examples

data(AllopolyTutorialData)
summary(AllopolyTutorialData)
viewGenotypes(AllopolyTutorialData, samples=1:10, loci=1)

assignClones Group Individuals Based on a Distance Threshold

Description

assignClones uses a distance matrix such as that produced by meandistance.matrix or meandistance.matrix2
to place individuals into groups representing asexually-related ramets, or any other grouping based
on a distance threshold.

Usage

assignClones(d, samples = dimnames(d)[[1]], threshold = 0)

Arguments

d A symmetrical, square matrix containing genetic distances between individuals.
Both dimensions should be named according to the names of the individuals
(samples). A matrix produced by meandistance.matrix or meandistance.matrix2
when all.distances = FALSE, or the matrix that is the second item in the list
produced if all.distances = TRUE, will be in the right format. meandist.from.array
will also produce a matrix in the correct format.

samples A character vector containing the names of samples to analyze. This should be
all or a subset of the names of d.

threshold A number indicating the maximum distance between two individuals that will
be placed into the same group.

assignClones 13

Details

This function groups individuals very similarly to the software GenoType (Meirmans and van Tien-
deren, 2004). If a distance matrix from polysat is exported to GenoType, the results will be the same
as those from assignClones assuming the same threshold is used. Note that GenoType requires
that distances be integers rather than decimals, so you will have to multiply the distances produced
by polysat by a large number and round them to the nearest integer if you wish to export them to
GenoType. When comparing the results of assignClones and GenoType using my own data, the
only differences I have seen have been the result of rounding; a decimal that was slightly above the
threshold in when analyzed in R was rounded down to the threshold when analyzed in GenoType.

Note that when using a distance threshold of zero (the default), it is advisable to exclude all samples
with missing data, in order to prevent the merging of non-identical clones. At higher thresholds,
some missing data are allowable, but samples that have missing data at many loci should be ex-
cluded.

The write.table function can be used for exporting the results to GenoDive. See the R documen-
tation for information on how to make a tab-delimited file with no header.

Value

A numeric vector, named by samples. Each clone or group is given a number, and the number for
each sample indicates the clone or group to which it belongs.

Author(s)

Lindsay V. Clark

References

Meirmans, P. G. and Van Tienderen, P. H. (2004) GENOTYPE and GENODIVE: two programs for
the analysis of genetic diversity of asexual organisms. Molecular Ecology Notes 4, 792–794.

See Also

genotypeDiversity

Examples

set up a simple matrix with three samples
test <- matrix(c(0,0,.5,0,0,.5,.5,.5,0), ncol=3, nrow=3)
abc <- c("a", "b", "c")
dimnames(test) <- list(abc,abc)

assign clones with a threshold of zero or 0.5
assignClones(test)
assignClones(test, threshold=0.5)

14 Bruvo.distance

Bruvo.distance Genetic Distance Metric of Bruvo et al.

Description

This function calculates the distance between two individuals at one microsatellite locus using a
method based on that of Bruvo et al. (2004).

Usage

Bruvo.distance(genotype1, genotype2, maxl=9, usatnt=2, missing=-9)

Arguments

genotype1 A vector of alleles for one individual at one locus. Allele length is in nucleotides
or repeat count. Each unique allele corresponds to one element in the vector, and
the vector is no longer than it needs to be to contain all unique alleles for this
individual at this locus.

genotype2 A vector of alleles for another individual at the same locus.

maxl If both individuals have more than this number of alleles at this locus, NA is
returned instead of a numerical distance.

usatnt Length of the repeat at this locus. For example usatnt=2 for dinucleotide re-
peats, and usatnt=3 for trinucleotide repeats. If the alleles in genotype1 and
genotype2 are expressed in repeat count instead of nucleotides, set usatnt=1.

missing A numerical value that, when in the first allele position, indicates missing data.
NA is returned if this value is found in either genotype.

Details

Since allele copy number is frequently unknown in polyploid microsatellite data, Bruvo et al. de-
veloped a measure of genetic distance similar to band-sharing indices used with dominant data, but
taking into account mutational distances between alleles. A matrix is created containing all differ-
ences in repeat count between the alleles of two individuals at one locus. These differences are then
geometrically transformed to reflect the probabilities of mutation from one allele to another. The
matrix is then searched to find the minimum sum if each allele from one individual is paired to one
allele from the other individual. This sum is divided by the number of alleles per individual.

If one genotype has more alleles than the other, ‘virtual alleles’ must be created so that both
genotypes are the same length. There are three options for the value of these virtual alleles, but
Bruvo.distance only implements the simplest one, assuming that it is not known whether differ-
ences in ploidy arose from genome addition or genome loss. Virtual alleles are set to infinity, such
that the geometric distance between any allele and a virtual allele is 1.

In the original publication by Bruvo et al. (2004), ambiguous genotypes were dealt with by calcu-
lating the distance for all possible unambiguous genotype combinations and averaging across all of
them equally. When Bruvo.distance is called from meandistance.matrix, ploidy is unknown
and all genotypes are simply treated as if they had one copy of each allele. When Bruvo.distance
is called from meandistance.matrix2, the analysis is truer to the original, in that ploidy is known
and all possible unambiguous genotype combinations are considered. However, instead of all possi-
ble unambiguous genotypes being weighted equally, in meandistance.matrix2 they are weighted
based on allele frequencies and selfing rate, since some unambiguous genotypes are more likely
than others.

Bruvo2.distance 15

Value

A number ranging from 0 to 1, with 0 indicating identical genotypes, and 1 being a theoretical
maximum distance if all alleles from genotype1 differed by an infinite number of repeats from
all alleles in genotype2. NA is returned if both genotypes have more than maxl alleles or if either
genotype has the symbol for missing data as its first allele.

Note

The processing time is a function of the factorial of the number of alleles, since each possible
combination of allele pairs must be evaluated. For genotypes with a sufficiently large number of
alleles, it may be more efficient to estimate distances manually by creating the matrix in Excel
and visually picking out the shortest distances between alleles. This is the purpose of the maxl
argument. On my personal computer, if both genotypes had more than nine alleles, the calculation
could take an hour or more, and so this is the default limit. In this case, Bruvo.distance returns
NA.

Author(s)

Lindsay V. Clark

References

Bruvo, R., Michiels, N. K., D’Sousa, T. G., and Schulenberg, H. (2004) A simple method for
calculation of microsatellite genotypes irrespective of ploidy level. Molecular Ecology 13, 2101-
2106.

See Also

meandistance.matrix, Lynch.distance, Bruvo2.distance

Examples

Bruvo.distance(c(202,206,210,220),c(204,206,216,222))
Bruvo.distance(c(202,206,210,220),c(204,206,216,222),usatnt=4)
Bruvo.distance(c(202,206,210,220),c(204,206,222))
Bruvo.distance(c(202,206,210,220),c(204,206,216,222),maxl=3)
Bruvo.distance(c(202,206,210,220),c(-9))

Bruvo2.distance Distance Measure of Bruvo et al. under Genome Loss and Addition

Description

This is an inter-individual distance measure similar to Bruvo.distance, except that where geno-
types have different numbers of alleles, virtual alleles are equal to those from the longer and/or
shorter genotype, rather than being equal to infinity.

Usage

Bruvo2.distance(genotype1, genotype2, maxl = 7, usatnt = 2,
missing = -9, add = TRUE, loss = TRUE)

16 Bruvo2.distance

Arguments

genotype1 A numeric vector representing the genotype of one individual at one locus. This
type of vector is produced by the Genotype method for "genambig" objects.

genotype2 The second genotype for the distance calculation, in the same format as genotype1.
maxl The maximum number of alleles that either genotype can have. If it is exceeded,

NA is returned. This argument exists to prevent computations that would take in
excess of an hour; see Bruvo.distance.

usatnt The microsatellite repeat type for the locus. 2 for dinucleotide repeats, 3 for
dinucleotide repeats, 1 if the alleles are already coded as repeat numbers, etc.
See Usatnts.

missing The symbol that indicates missing data for a given sample and locus. See
Missing.

add TRUE if the model of genome addition is being used, and FALSE if it is not. If
this model is used, the shorter genotype will have virtual alleles added from the
same genotype.

loss TRUE if the model of genome loss is being used, and FALSE if it is not. If this
model is used, the shorter genotype will have virtual alleles added from the
longer genotype.

Details

Bruvo et al. (2004) describe multiple methods for calculating genetic distances between indi-
viduals of different ploidy. (See “Special cases” starting on page 2102 of the paper.) The orig-
inal Bruvo.distance function in polysat uses the method described for systems with complex
changes in ploidy, adding virtual alleles equal to infinity to the shorter genotype to make it the
same length as the longer genotype. This method, however, can exaggerate distances between in-
dividuals of different ploidy, particularly when used with meandistance.matrix2 as opposed to
meandistance.matrix.

Bruvo2.distance calculates distances between individuals under the models of genome addition
and genome loss. If add = TRUE and loss = TRUE, the distance produced is equal to that of
equation 6 in the paper.

If add = TRUE and loss = FALSE, the distance calculated is that under genome addition only.
Likewise if add = FALSE and loss = TRUE the distance is calculated under genome loss only. The
latter distance should be greater than the former. If both were averaged together, they would give
the identical result to that produced when add = TRUE and loss = TRUE. All three distances will
be less than that produced by Bruvo.distance.

If both genotypes have the same number of alleles, they are passed to Bruvo.distance for the
calculation. This also happens if add = FALSE and loss = FALSE. Otherwise, if the genotypes
have different numbers of alleles, all possible genotypes with virtual alleles are enumerated and
passed to Bruvo.distance one by one, and the results averaged.

The number of different genotypes simulated under genome loss or genome addition is ld, where l
is the length of the genotype from which virtual alleles are being taken, and d is the difference in
length between the longer and shorter genotype. For example, under genome addition for a diploid
individual with alleles 1 and 2 being compared to a tetraploid individual, the genotypes 1211, 1212,
1221, and 1222 will each be used once to represent the diploid individual.

Value

A decimal between 0 and 1, with 0 indicating complete identity of two genotypes, and 1 indicating
maximum dissimilarity. NA is returned if one or both genotypes are missing or if maxl is exceeded.

calcFst 17

Note

Figure 1B and 1C of Bruvo et al. (2004) illustrate an example of this distance measure. To perform
the identical calculation to that listed directly under equation 6, you would type:

Bruvo2.distance(c(20,23,24), c(20,24,26,43), usatnt=1)

However, you will notice that the result, 0.401, is slightly different from that given in the paper.
This is due to an error in the paper. For the distance under genome loss when the virtual allele is
26, the result should be 1 instead of 1.75.

Author(s)

Lindsay V. Clark

References

Bruvo, R., Michiels, N. K., D’Sousa, T. G., and Schulenberg, H. (2004) A simple method for
calculation of microsatellite genotypes irrespective of ploidy level. Molecular Ecology 13, 2101–
2106.

See Also

Lynch.distance, Bruvo.distance, meandistance.matrix2

Examples

Bruvo2.distance(c(102,104), c(104,104,106,110))
Bruvo2.distance(c(102,104), c(104,104,106,110), add = FALSE)
Bruvo2.distance(c(102,104), c(104,104,106,110), loss = FALSE)

calcFst Calculate Wright’s Pairwise FST

Description

Given a data frame of allele frequencies and population sizes, calcFst calculates a matrix of pair-
wise Fst values.

Usage

calcFst(freqs, pops = row.names(freqs), loci = unique(as.matrix(
as.data.frame(strsplit(names(freqs), split = ".", fixed = TRUE),
stringsAsFactors = FALSE))[1,]))

Arguments

freqs A data frame of allele frequencies and population sizes such as that produced
by simpleFreq or deSilvaFreq. Each population is in one row, and a column
called Genomes (or multiple columns containing the locus names and “Genomes”
seperated by a period) contains the relative size of each population. All other
columns contain allele frequencies. The names of these columns are the locus
name and allele name, separated by a period.

pops A character vector. Populations to analyze, which should be a subset of row.names(freqs).

18 calcFst

loci A character vector indicating which loci to analyze. These should be a subset of
the locus names as used in the column names of freqs.

Details

calcFst works by calculating HS and HT for each locus for each pair of populations, then averaging
HS and HT across loci. FST is then calculated for each pair of populations as (HT-HS)/HT.

H values (expected heterozygosities for populations and combined populations) are calculated as
one minus the sum of all squared allele frequencies at a locus. To calculte HT, allele frequencies
between two populations are averaged before the calculation. To calculate HS, H values are aver-
aged after the calculation. In both cases, the averages are weighted by the relative sizes of the two
populations (as indicated by freqs$Genomes).

Value

A square matrix containing FST values. The rows and columns of the matrix are both named by
population.

Author(s)

Lindsay V. Clark

References

Nei, M. (1973) Analysis of gene diversity in subdivided populations. Proceedings of the National
Academy of Sciences of the United States of America 70, 3321–3323.

See Also

simpleFreq, deSilvaFreq

Examples

create a data set (typically done by reading files)
mygenotypes <- new("genambig", samples = paste("ind", 1:6, sep=""),

loci = c("loc1", "loc2"))
Genotypes(mygenotypes, loci = "loc1") <- list(c(206), c(208,210),

c(204,206,210),
c(196,198,202,208), c(196,200), c(198,200,202,204))

Genotypes(mygenotypes, loci = "loc2") <- list(c(130,134), c(138,140),
c(130,136,140),

c(138), c(136,140), c(130,132,136))
PopInfo(mygenotypes) <- c(1,1,1,2,2,2)
mygenotypes <- reformatPloidies(mygenotypes, output="sample")
Ploidies(mygenotypes) <- c(2,2,4,4,2,4)

calculate allele frequencies
myfreq <- simpleFreq(mygenotypes)

calculate pairwise FST
myfst <- calcFst(myfreq)

examine the results
myfst

catalanAlleles 19

catalanAlleles Sort Alleles into Isoloci

Description

catalanAlleles uses genotypes present in a "genambig" object to sort alleles from one locus into
two or more isoloci in an allopolyploid or diploidized autopolyploid species. Alleles are determined
to belong to different isoloci if they are both present in a fully homozygous genotype. If necessary,
heterozygous genotypes are also examined to resolve remaining alleles.

Usage

catalanAlleles(object, samples = Samples(object), locus = 1,
n.subgen = 2, SGploidy = 2, verbose = FALSE)

Arguments

object A "genambig" object containing the dataset to analyze. All individuals should
be the same ploidy, although the function does not access the Ploidies slot.
Missing data are allowed. For the locus to be examined, no genotype should
have fewer than n.subgen alleles or more than n.subgen*SGploidy alleles.

samples Optional argument indicating samples to be analyzed. Can be integer or charac-
ter, as with other polysat functions.

locus An integer or character string indicating which locus to analyze. Cannot be a
vector greater than length 1. (The function will only analyze one locus at a
time.)

n.subgen The number of isoloci (number of subgenomes). For example, 2 for an allote-
traploid, and 3 for an allohexaploid (three diploid genomes).

SGploidy The ploidy of each genome. Only one value is allowed; all genomes must be the
same ploidy. 2 indicates that each subgenome is diploid (as in an allotetraploid,
or an allohexaploid with three diploid genomes).

verbose Boolean. Indicates whether results, and if applicable, problematic genotypes,
should be printed to the console.

Details

catalanAlleles implements and extends an approach used by Catalan et al. (2006) that sorts al-
leles from a duplicated microsatellite locus into two or more isoloci (homeologous loci on different
subgenomes). First, fully homozygous genotypes are identified and used in analysis. If a genotype
has as many alleles as there are subgenomes (for example, a genotype with two alleles in an allote-
traploid species), it is assumed to be fully homozygous and the alleles are assumed to belong to
different subgenomes. If some alleles remain unassigned after examination of all fully homozygous
genotypes, heterozygous genotypes are also examined to attempt to assign those remaining alleles.

For example, in an allotetraploid, if a genotype contains one unassigned allele, and all other alleles
in the genotype are known to belong to one isolocus, the unassigned allele can be assigned to the
other isolocus. Or, if two alleles in a genotype belong to one isolocus, one allele belongs to the other
isolocus, and one allele is unassigned, the unassigned allele can be assigned to the latter isolocus.
The function follows such logic (which can be extended to higher ploidies) until all alleles can be
assigned, or returns a text string saying that the allele assignments were unresolvable.

20 catalanAlleles

It is important to note that this method assumes no null alleles and no homoplasy across isoloci.
If the function encounters evidence of either it will not return allele assignments. Null alleles and
homoplasy are real possibilities in any dataset, which means that this method simply will not work
for some microsatellite loci.

(Null alleles are those that do not produce a PCR amplicon, usually because of a mutation in the
primer binding site. Alleles that exhibit homoplasy are those that produce amplicons of the same
size, despite not being identical by descent. Specifically, homoplasy between alleles from different
isoloci will interfere with the Catalan method of allele assignment.)

Value

A list containing the following items:

locus A character string giving the name of the locus.

SGploidy A number giving the ploidy of each subgenome. Identical to the SGploidy
argument.

assignments If assignments cannot be made, a character string describing the problem. Oth-
erwise, a matrix with n.subgen rows and a labeled column for each allele, with
a 1 if the allele belongs to that subgenome and a 0 if it does not.

Note

Aside from homoplasy and null alleles, stochastic effects may prevent the minimum combination of
genotypes needed to resolve all alleles from being present in the dataset. For a typical allotetraploid
dataset, 50 to 100 samples will be needed, whereas an allohexaploid dataset may require over 100
samples. In simulations, allo-octoploid datasets with two tetraploid genomes were unresolvable
even with 10,000 samples due to the low probability of finding full homozygotes. Additionally, loci
are less likely to be resolvable if they have many alleles or if one isolocus is monomorphic.

Although determination of allele copy number by is not needed (or expected) for catalanAlleles
as it was in the originally published Catalan method, it is still very important that the genotypes
be high quality. Even a single scoring error can cause the method to fail, including allelic dropout,
contamination between samples, stutter peaks miscalled as alleles, and PCR artifacts miscalled as
alleles. Poor quality loci (those that require some “artistic” interpretation of gels or electrophero-
grams) are unlikely to work with this method. Individual genotypes that are of questionable quality
should be discarded before running the function.

Author(s)

Lindsay V. Clark

References

Catalan, P., Segarra-Moragues, J. G., Palop-Esteban, M., Moreno, C. and Gonzalez-Candelas, F.
(2006) A Bayesian approach for discriminating among alternative inheritance hypotheses in plant
polyploids: the allotetraploid origin of genus Borderea (Dioscoreaceae). Genetics 172, 1939–1953.

See Also

alleleCorrelations, mergeAlleleAssignments, recodeAllopoly, simAllopoly

deleteSamples 21

Examples

make the default simulated allotetraploid dataset
mydata <- simAllopoly()

resolve the alleles
myassign <- catalanAlleles(mydata)

deleteSamples Remove Samples or Loci from an Object

Description

These functions remove samples or loci from all relevant slots of an object.

Usage

deleteSamples(object, samples)
deleteLoci(object, loci)

Arguments

object An object containing the dataset of interest. Generally an object of some sub-
class of gendata.

samples A numerical or character vector of samples to be removed.

loci A numerical or character vector of loci to be removed.

Details

These are generic functions with methods for genambig, genbinary, and gendata objects. The
methods for the subclasses remove samples or loci from the @Genotypes slot, then pass the object
to the method for gendata, which removes samples or loci from the @PopInfo, @Ploidies, and/or
@Usatnts slots, as appropriate. The @PopNames slot is left untouched even if an entire population
is deleted, in order to preserve the connection between the numbers in @PopInfo and the names in
@PopNames.

If your intent is to experiment with excluding samples or loci, it may be a better idea to create
character vectors of samples and loci that you want to use and then use these vectors as the samples
and loci arguments for analysis or export functions.

Value

An object identical to object, but with the specified samples or loci removed.

Note

These functions are somewhat redundant with the subscripting function "[", which also works for
all gendata objects. However, they may be more convenient depending on whether the user prefers
to specify the samples and loci to use or to exclude.

Author(s)

Lindsay V. Clark

22 deSilvaFreq

See Also

Samples, Loci, merge,gendata,gendata-method

Examples

set up genambig object
mygen <- new("genambig", samples = c("ind1", "ind2", "ind3", "ind4"),

loci = c("locA", "locB", "locC", "locD"))

delete a sample
Samples(mygen)
mygen <- deleteSamples(mygen, "ind1")
Samples(mygen)

delete some loci
Loci(mygen)
mygen <- deleteLoci(mygen, c("locB", "locC"))
Loci(mygen)

deSilvaFreq Estimate Allele Frequencies with EM Algorithm

Description

This function uses the method of De Silva et al. (2005) to estimate allele frequencies under
polysomic inheritance with a known selfing rate.

Usage

deSilvaFreq(object, self, samples = Samples(object),
loci = Loci(object), initNull = 0.15,
initFreq = simpleFreq(object[samples, loci]),
tol = 1e-08)

Arguments

object A "genambig" or "genbinary" object containing the dataset of interest. All
ploidies for samples and loci should be the same, and this should be an even
number. PopInfo must also be filled in for samples.

self A number between 1 and 0, indicating the rate of selfing.

samples An optional character vector indicating a subset of samples to use in the calcu-
lation.

loci An optional character vector indicating a subset of loci for which to calculate
allele frequencies.

initNull A single value or numeric vector indicating initial frequencies to use for the null
allele at each locus.

initFreq A data frame containing allele frequencies (for non-null loci) to use for initial-
ization. This needs to be in the same format as the output of simpleFreq with a
single “Genomes” column (similarly to the format of the output of deSilvaFreq).
By default, the function will do a quick estimation of allele frequencies using
simpleFreq and then initialize the EM algorithm at these frequencies.

deSilvaFreq 23

tol The tolerance level for determining when the results have converged. Where p2
and p1 are the current and previous vectors of allele frequencies, respectively,
the EM algorithm stops if sum(abs(p2-p1)/(p2+p1)) <= tol.

Details

Most of the SAS code from the supplementary material of De Silva et al. (2005) is translated di-
rectly into the R code for this function. The SIMSAMPLE (or CreateRandomSample in the SAS
code) function is omitted so that the actual allelic phenotypes from the dataset can be used instead
of simulated phenotypes. deSilvaFreq loops through each locus and population, and in each loop
tallies the number of alleles and sets up matrices using GENLIST, PHENLIST, RANMUL, SELF-
MAT, and CONVMAT as described in the paper. Frequencies of each allelic phenotype are then
tallied across all samples in that population with non-missing data at the locus. Initial allele fre-
quencies for that population and locus are then extraced from initFreq and adjusted according to
initNull. The EM iteration then begins for that population and locus, as described in the paper
(EXPECTATION, GPROBS, and MAXIMISATION).

Each repetition of the EM algorithm includes an expectation and maximization step. The expec-
tation step uses allele frequencies and the selfing rate to calculate expected genotype frequencies,
then uses observed phenotype frequencies and expected genotype frequencies to estimate genotype
frequencies for the population. The maximization step uses the estimated genotype frequencies to
calculate a new set of allele frequencies. The process is repeated until allele frequencies converge.

In addition to returning a data frame of allele frequencies, deSilvaFreq also prints to the console
the number of EM repetitions used for each population and locus. When each locus and each
population is begun, a message is printed to the console so that the user can monitor the progress of
the computation.

Value

A data frame containing the estimated allele frequencies. The row names are population names
from PopNames(object). The first column shows how many genomes each population has. All
other columns represent alleles (including one null allele per locus). These column names are the
locus name and allele name separated by a period.

Note

It is possible to exceed memory limits for R if a locus has too many alleles in a population (e.g. 15
alleles in a tetraploid if the memory limit is 1535 Mb, see memory.limit).

De Silva et al. mention that their estimation method could be extended to the case of disomic inheri-
tence. A method for disomic inheritence is not implemented here, as it would require knowledge of
which alleles belong to which isoloci.

De Silva et al. also suggest a means of estimating the selfing rate with a least-squares method.
Using the notation in the source code, this would be:

lsq <- smatt %*% EP - rvec

self <- as.vector((t(EP - rvec) %*% lsq)/(t(lsq) %*% lsq))

However, in my experimentation with this calculation, it sometimes yields selfing rates greater than
one. For this reason, it is not implemented here.

Author(s)

Lindsay V. Clark

24 deSilvaFreq

References

De Silva, H. N., Hall, A. J., Rikkerink, E., and Fraser, L. G. (2005) Estimation of allele frequencies
in polyploids under certain patterns of inheritance. Heredity 95, 327–334

See Also

simpleFreq, write.freq.SPAGeDi, .genlist

Examples

Not run:
An example with a long run time due to the number of alleles

create a dataset for this example
mygen <- new("genambig", samples=c(paste("A", 1:100, sep=""),

paste("B", 1:100, sep="")),
loci=c("loc1", "loc2"))

PopNames(mygen) <- c("PopA", "PopB")
PopInfo(mygen) <- c(rep(1, 100), rep(2, 100))
mygen <- reformatPloidies(mygen, output="one")
Ploidies(mygen) <- 4
Usatnts(mygen) <- c(2, 2)
Description(mygen) <- "An example for allele frequency calculation."

create some genotypes at random for this example
for(s in Samples(mygen)){

Genotype(mygen, s, "loc1") <- sample(seq(120, 140, by=2),
sample(1:4, 1))

}
for(s in Samples(mygen)){

Genotype(mygen, s, "loc2") <- sample(seq(130, 156, by=2),
sample(1:4, 1))

}
make one genotype missing
Genotype(mygen, "B4", "loc2") <- Missing(mygen)

view the dataset
summary(mygen)
viewGenotypes(mygen)

calculate the allele frequencies if the rate of selfing is 0.2
myfrequencies <- deSilvaFreq(mygen, self=0.2)

view the results
myfrequencies

End(Not run)

An example with a shorter run time, for checking that the funciton
is working. Genotype simulation is also a bit more realistic here.

Create a dataset for the example.
mygen <- new("genambig", samples=paste("A", 1:100, sep=""), loci="loc1")
PopNames(mygen) <- "PopA"
PopInfo(mygen) <- rep(1, 100)
mygen <- reformatPloidies(mygen, output="one")

editGenotypes 25

Ploidies(mygen) <- 4
Usatnts(mygen) <- 2
for(s in Samples(mygen)){

alleles <- unique(sample(c(122,124,126,0), 4, replace=TRUE,
prob = c(0.3, 0.2, 0.4, 0.1)))

Genotype(mygen, s, "loc1") <- alleles[alleles != 0]
if(length(Genotype(mygen, s, "loc1"))==0)

Genotype(mygen, s, "loc1") <- Missing(mygen)
}

We have created a random mating populations with four alleles
including one null. The allele frequencies are given in the
'prob' argument.

Estimate allele frequencies
myfreq <- deSilvaFreq(mygen, self=0.01)
myfreq

editGenotypes Edit Genotypes Using the Data Editor

Description

The genotypes from an object of one of the subclasses of gendata are converted to a data frame (if
necessary), then displayed in the data editor. After the user makes the desired edits and closes the
data editor window, the new genotypes are written to the gendata object and the object is returned.

Usage

editGenotypes(object, maxalleles = max(Ploidies(object)),
samples = Samples(object), loci = Loci(object))

Arguments

object An object of the class genambig or genbinary. Contains the genotypes to be
edited.

maxalleles Numeric. The maximum number of alleles found in any given genotype. The
method for genambig requires this information in order to determine how many
columns to put in the data frame.

samples Character or numeric vector indicating which samples to edit.

loci Character or numeric vector indicating which loci to edit.

Details

The method for genambig lists sample and locus names in each row in order to identify the geno-
types. However, only the alleles themselves should be edited. NA values and duplicate alleles in the
data editor will be omitted from the genotype vectors that are written back to the genambig object.

Value

An object identical to object but with edited genotypes.

26 estimatePloidy

Author(s)

Lindsay V. Clark

See Also

viewGenotypes, Genotype<-, Genotypes<-

Examples

if(interactive()){ #this line included for automated checking on CRAN

set up "genambig" object to edit
mygen <- new("genambig", samples = c("a", "b", "c"),

loci = c("loc1", "loc2"))
Genotypes(mygen, loci="loc1") <- list(c(133, 139, 142),

c(130, 136, 139, 145),
c(136, 142))

Genotypes(mygen, loci="loc2") <- list(c(202, 204), Missing(mygen),
c(200, 206, 208))

mygen <- reformatPloidies(mygen, output="one")
Ploidies(mygen) <- 4

open up the data editor
mygen <- editGenotypes(mygen)

view the results of your edits
viewGenotypes(mygen)

}

estimatePloidy Estimate Ploidies Based on Allele Counts

Description

estimatePloidy calculates the maximum and mean number of unique alleles for each sample
across a given set of loci. These values are presented in a data editor, along with other pertinent
information, so that the user can then edit the ploidy values for the object.

Usage

estimatePloidy(object, extrainfo, samples = Samples(object),
loci = Loci(object))

Arguments

object The object containing genotype data, and to which ploidies will be written.

extrainfo A named or unnamed vector or data frame containing extra information (such
as morphological or flow cytometry data) to display in the data editor, to assist
with making decisions about ploidy. If unnamed, the vector (or the rows of the
data frame) is assumed to be in the same order as samples. An array can also
be given as an argument here, and will be coerced to a data frame.

estimatePloidy 27

samples A numeric or character vector indicating a subset of samples to evaluate.

loci A numeric or character vector indicating a subset of loci to use in the calculation
of mean and maximum allele number.

Details

estimatePloidy is a generic function with methods written for the genambig and genbinary
classes.

If the Ploidies slot of object is not already a "ploidysample" object, the function will first
convert the Ploidies slot to this format, deleting any data that is currently there. (Ploidies must be
indexed by sample and not by locus.) If ploidies were already in the "ploidysample" format, any
ploidy data already in the object is retained and put into the table (see below).

Population identities are displayed in the table only if more than one population identity is found in
the dataset. Likewise, the current ploidies of the dataset are only displayed if there is more than one
ploidy level already found in Ploidies(object).

Missing genotypes are ignored; maximum and mean allele counts are only calculted across geno-
types that are not missing. If all genotypes for a given sample are missing, NA is displayed in the
corresponding cells in the data editor.

The default values for new.ploidy are the maximum number of alleles per locus for each sample.

Value

object is returned, with Ploidies(object) now equal to the values set in the new.ploidy column
of the data editor.

Author(s)

Lindsay V. Clark

See Also

genambig, genbinary, Ploidies

Examples

if(interactive()){ #this line included for automated checking on CRAN

create a dataset for this example
mygen <- new("genambig", samples=c("a", "b", "c"),

loci=c("loc1", "loc2"))
Genotypes(mygen, loci="loc1") <- list(c(122, 126, 128), c(124, 130),

c(120, 122, 124))
Genotypes(mygen, loci="loc2") <- list(c(140, 148), c(144, 150), Missing(mygen))

estimate the ploidies
mygen <- estimatePloidy(mygen)

view the ploidies
Ploidies(mygen)

}

28 find.missing.gen

FCRinfo Additional Data on Rubus Samples

Description

For 20 Rubus samples, contains colors and symbols to use for plotting data.

Usage

data(FCRinfo)

Format

Data frame. FCRinfo$Plot.color contains character strings of the colors to be used to represent
species groups. FCR.info$Plot.symbol contains integers to be passed to pch to designate the
symbol used to represent each individual. These reflect chloroplast haplotypes.

Source

Clark, L. V. and Jasieniuk, M. (2012) Spontaneous hybrids between native and exotic Rubus in the
Western United States produce offspring both by apomixis and by sexual recombination. Heredity
109, 320–328. Data available at: http://dx.doi.org/10.5061/dryad.m466f

See Also

testgenotypes

find.missing.gen Find Missing Genotypes

Description

This function returns a data frame listing the locus and sample names of all genotypes with missing
data.

Usage

find.missing.gen(object, samples = Samples(object),
loci = Loci(object))

Arguments

object A genambig or genbinary object containing the genotypes of interest.
samples A character vector of all samples to be searched. Must be a subset of Samples(object).
loci A character vector of all loci to be searched. Must be a subset of Loci(object).

Value

A data frame with no row names. The first column is named “Locus” and the second column is
named “Sample”. Each row represents one missing genotype, and gives the locus and sample of
that genotype.

http://dx.doi.org/10.5061/dryad.m466f

freq.to.genpop 29

Author(s)

Lindsay V. Clark

See Also

isMissing

Examples

set up the genotype data
samples <- paste("ind", 1:4, sep="")
samples
loci <- paste("loc", 1:3, sep="")
loci
testgen <- new("genambig", samples = samples, loci = loci)
Genotypes(testgen, loci="loc1") <- list(c(-9), c(102,104),

c(100,106,108,110,114),
c(102,104,106,110,112))

Genotypes(testgen, loci="loc2") <- list(c(77,79,83), c(79,85), c(-9),
c(83,85,87,91))

Genotypes(testgen, loci="loc3") <- list(c(122,128), c(124,126,128,132),
c(120,126), c(124,128,130))

look up which samples*loci have missing genotypes
find.missing.gen(testgen)

freq.to.genpop Convert Allele Frequencies for Adegenet

Description

Given a data frame of allele frequencies such as that produced by simpleFreq or deSilvaFreq,
freq.to.genpop creates a data frame of allele counts that can be read by the as.genpop function
in the package adegenet.

Usage

freq.to.genpop(freqs, pops = row.names(freqs),
loci =
unique(as.matrix(as.data.frame(strsplit(names(freqs),
split = ".", fixed = TRUE), stringsAsFactors = FALSE))[1,]))

Arguments

freqs A data frame of allele frequencies. Row names are population names. The first
column is called "Genomes" and indicates the size of each population in terms
of number of haploid genomes. All other column names are the locus and allele
separated by a period. These columns contain the frequencies of each allele in
each population. For each locus and population, all frequencies should total to
1.

pops An optional character vector indicating the names of populations to use.
loci An optional character vector indicating the names of loci to use.

30 freq.to.genpop

Details

adegenet expects one ploidy for the entire dataset. Therefore, data frames of allele frequencies with
multiple “Genomes” columns, such as those produced when ploidy varies by locus, are not allowed
as the freqs argument.

Value

A data frame with row and column names identical to those in freqs, minus the "Genomes" column
and any columns for loci not included in loci. Allele frequencies are converted to counts by
multiplying by the values in the "Genomes" column and rounding to the nearest integer.

Author(s)

Lindsay V. Clark

References

Jombart, T. (2008) adegenet: a R package for the multivariate analysis of genetic markers. Bioin-
formatics 24, 1403-1405.

See Also

simpleFreq, deSilvaFreq, write.freq.SPAGeDi, gendata.to.genind

Examples

create a simple allele frequency table
(usually done with simpleFreq or deSilvaFreq)
myfreq <- data.frame(row.names=c("popA","popB"), Genomes=c(120,100),

locG.152=c(0.1,0.4), locG.156=c(0.5, 0.3),
locG.160=c(0.4, 0.3), locK.179=c(0.15, 0.25),
locK.181=c(0.35, 0.6), locK.183=c(0.5, 0.15))

myfreq

convert to adegenet format
gpfreq <- freq.to.genpop(myfreq)
gpfreq

Not run:
If you have adegenet installed, you can now make this into a
genpop object.
require(adegenet)
mygenpop <- genpop(gpfreq, ploidy=as.integer(4), type="codom")

examine the object that has been created
mygenpop
mygenpop@pop.names
mygenpop@tab
mygenpop@all.names

Perform a distance calculation with the object
dist.genpop(mygenpop)

End(Not run)

genambig-class 31

genambig-class Class "genambig"

Description

Objects of this class store microsatellite datasets in which allele copy number is ambiguous. Geno-
types are stored as a two-dimensional list of vectors, each vector containing all unique alleles for a
given sample at a given locus. genambig is a subclass of gendata.

Objects from the Class

Objects can be created by calls of the form new("genambig", samples, loci, ...). This auto-
matically sets up a two-dimensional list in the Genotypes slot, with dimnames=list(samples, loci).
This array-list is initially populated with the missing data symbol. All other slots are given initial
values according to the initialize method for gendata. Data can then be inserted into the slots
using the replacement functions (see Accessors).

Slots

Genotypes: Object of class "array". The first dimension of the array represents and is named by
samples, while the second dimension represents and is named by loci. Each element of the
array can contain a vector. Each vector should contain each unique allele for the genotype
once. If an array element contains a vector of length 1 containing only the symbol that is in
the Missing slot, this indicates missing data for that sample and locus.

Description: Object of class "character". This stores a description of the dataset for the user’s
convenience.

Missing: Object of class "ANY". A symbol to be used to indicate missing data in the Genotypes
slot. This is the integer -9 by default.

Usatnts: Object of class "integer". A vector, named by loci. Each element indicates the repeat
type of the locus. 2 indicates dinucleotide repeats, 3 indicates trinucleotide repeats, and so
on. If the alleles stored in the Genotypes slot for a given locus are already written in terms of
repeat number, the Usatnts value for that locus should be 1. In other words, all alleles for a
locus can be divided by the number in Usatnts to give alleles expressed in terms of relative
repeat number.

Ploidies: Object of class "integer". A vector, named by samples. This stores the ploidy of each
sample. NA indicates unknown ploidy. See Ploidies<- and estimatePloidy for ways to fill
this slot.

PopInfo: Object of class "integer". A vector, named by samples, containing the population
identity of each sample.

PopNames: Object of class "character". A vector containing names for all populations. The posi-
tion of a population name in the vector indicates the integer used to represent that population
in PopInfo.

Extends

Class "gendata", directly.

32 genambig-class

Methods

For more information on any of these methods, see the help files of their respective generic func-
tions.

deleteLoci signature(object = "genambig"): Removes columns in the array in the Genotypes
slot corresponding to the locus names supplied, then passes the arguments to the method for
gendata.

deleteSamples signature(object = "genambig"): Removes rows in the array in the Genotypes
slot corresponding to the sample names supplied, then passes the arguments to the method for
gendata.

editGenotypes signature(object = "genambig"): Each vector in the Genotypes slot is placed
into the row of a data frame, along with the sample and locus name for this vector. The data
frame is then opened in the Data Editor so that the user can make changes. When the Data
Editor window is closed, vectors are extracted back out of the data frame and written to the
Genotypes slot.

estimatePloidy signature(object = "genambig"): Calculates the length of each genotype vec-
tor (excluding those with the missing data symbol), and creates a data frame showing the
maximum and mean number of alleles per locus for each sample. This data frame is then
opened in the Data Editor, where the user may edit ploidy levels. Once the Data Editor is
closed, the genambig object is returned with the new values written to the Ploidies slot.

Genotype signature(object = "genambig"): Retrieves a single genotype vector, as specified
by sample and locus arguments.

Genotype<- signature(object = "genambig"): Replaces a single genotype vector.

Genotypes signature(object = "genambig"): Retrieves a two-dimensional list of genotype
vectors.

Genotypes<- signature(object = "genambig"): Replaces a one- or two-dimensional list of
genotype vectors.

initialize signature(.Object = "genambig"): When new is called to create a new genambig
object, the initialize method sets up a two dimensional list in the Genotypes slot indexed
by sample and locus, and fills this list with the missing data symbol. The initialize method
for gendata is then called.

isMissing signature(object = "genambig"): Given a set of samples and loci, each position in
the array in the Genotypes slot is checked to see if it matches the missing data value. A single
Boolean value or an array of Boolean values is returned.

Loci<- signature(object = "genambig"): For changing the names of loci. The names are
changed in the second dimension of the array in the Genotypes slot, and then the Loci<-
method for gendata is called.

Missing<- signature(object = "genambig"): For changing the missing data symbol. All ele-
ments of the Genotypes array that match the current missing data symbol are changed to the
new missing data symbol. The Missing<- method for gendata is then called.

Samples<- signature(object = "genambig"): For changing the names of samples. The names
are changed in the first dimension of the array in the Genotypes slot, and then the Samples<-
method for gendata is called.

summary signature(object = "genambig"): Prints the dataset description (Description slot)
to the console as well as the number of missing genotypes, then calls the summary method for
gendata.

viewGenotypes signature(object = "genambig"): Prints a tab-delimited table of samples,
loci, and genotype vectors to the console.

genambig.to.genbinary 33

"[" signature(x = "genambig", i = "ANY", j = "ANY"): For subscipting genambig ob-
jects. Should be of the form mygenambig[mysamples, myloci]. Returns a genambig object.
The Genotypes slot is replaced by one containing only samples i and loci j. Likewise, the
PopInfo and Ploidies slots are truncated to contain only samples i, and the Usatnts slot is
truncated to contain only loci j. Other slots are left unaltered.

merge signature(x = "genambig", y = "genambig"): Merges two genotypes objects together.
See merge,genambig,genambig-method.

Author(s)

Lindsay V. Clark

See Also

gendata, Accessors, merge,genambig,genambig-method

Examples

display class definition
showClass("genambig")

create a genambig object
mygen <- new("genambig", samples=c("a", "b", "c", "d"),

loci=c("L1", "L2", "L3"))
add some genotypes
Genotypes(mygen)[,"L1"] <- list(c(133, 139, 145), c(142, 154),

c(130, 142, 148), Missing(mygen))
Genotypes(mygen, loci="L2") <- list(c(105, 109, 113), c(111, 117),

c(103, 115), c(105, 109, 113))
Genotypes(mygen, loci="L3") <- list(c(254, 258), Missing(mygen),

c(246, 250, 262), c(250, 258))

see a summary of the object
summary(mygen)
display some of the genotypes
viewGenotypes(mygen[c("a", "b", "c"),])

genambig.to.genbinary Convert Between Genotype Object Classes

Description

These functions convert back and forth between the genambig and genbinary classes.

Usage

genambig.to.genbinary(object, samples = Samples(object),
loci = Loci(object))

genbinary.to.genambig(object, samples = Samples(object),
loci = Loci(object))

34 genambig.to.genbinary

Arguments

object The object containing the genetic dataset. A genambig object for genambig.to.genbinary,
or a genbinary object for genbinary.to.genambig.

samples An optional character vector indicating samples to include in the new object.

loci An optional character vector indicating loci to include in the new object.

Details

The slots Description, Ploidies, Usatnts, PopNames, and PopInfo are transferred as-is from the
old object to the new. The value in the Genotypes slot is converted from one format to the other,
with preservation of allele names.

Value

For genambig.to.genbinary: a genbinary object containing all of the data from object. Missing,
Present, and Absent are set at their default values.

For genbinary.to.genambig: a genambig object containing all of the data from object. Missing
is at the default value.

Author(s)

Lindsay V. Clark

See Also

genambig, genbinary

Examples

set up a genambig object for this example
mygen <- new("genambig", samples = c("A", "B", "C", "D"),

loci = c("locJ", "locK"))
PopNames(mygen) <- c("PopQ", "PopR")
PopInfo(mygen) <- c(1,1,2,2)
Usatnts(mygen) <- c(2,2)
Genotypes(mygen, loci="locJ") <- list(c(178, 184, 186), c(174,186),

c(182, 188, 190),
c(182, 184, 188))

Genotypes(mygen, loci="locK") <- list(c(133, 135, 141),
c(131, 135, 137, 143),
Missing(mygen), c(133, 137))

convert it to a genbinary object
mygenB <- genambig.to.genbinary(mygen)

check the results
viewGenotypes(mygenB)
viewGenotypes(mygen)
PopInfo(mygenB)

convert back to a genambig object
mygenA <- genbinary.to.genambig(mygenB)
viewGenotypes(mygenA)

genbinary-class 35

note: identical(mygen, mygenA) returns FALSE, because the alleles
origninally input are not stored as integers, while the alleles
produced by genbinary.to.genambig are integers.

genbinary-class Class "genbinary"

Description

This is a subclass of gendata that allows genotypes to be stored as a matrix indicating the presence
and absence of alleles.

Objects from the Class

Objects can be created by calls of the form new("genbinary", samples, loci, ...). After
objects are initialized with sample and locus names, data can be added to slots using the replacement
functions.

Slots

Genotypes: Object of class "matrix". Row names of the matrix are sample names. Each column
name is a locus name and an allele separated by a period (e.g. "loc1.124"); each column rep-
resents on allele. The number of alleles per locus is not limited and can be expanded even after
entering initial data. Each element of the matrix must be equal to either Present(object),
Absent(object), or Missing(object). These symbols indicate, respectively, that a sample
has an allele, that a sample does not have an allele, or that data for the sample at that locus are
missing.

Present: Object of class "ANY". The integer 1 by default. This symbol is used in the Genotypes
slot to indicate the presence of an allele in a sample.

Absent: Object of class "ANY". The integer 0 by default. This symbol is used in the Genotypes
slot to indicate the absence of an allele in a sample.

Description: Object of class "character". A character string or vector describing the dataset,
for the convenience of the user.

Missing: Object of class "ANY". The integer -9 by default. This symbol is used in the Genotypes
slot to indicate that data are missing for a given sample and locus.

Usatnts: Object of class "integer". A vector, named by loci. This indicates the repeat length of
each locus. 2 indicates dinucleotide repeats, 3 indicates trinucleotide repeats, and so on. If the
alleles stored in the column names of the Genotypes slot for a given locus are already written
in terms of repeat number, the Usatnts value for that locus should be 1. In other words, all
alleles for a locus can be divided by the number in Usatnts to give alleles expressed in terms
of relative repeat number.

Ploidies: Object of class "integer". A vector, named by samples. This indicates the ploidy of
each sample.

PopInfo: Object of class "integer". A vector, named by samples. This indicates the population
identity of each sample.

PopNames: Object of class "character". Names of each population. The position of the popu-
lation name in the vector corresponds to the number used to represent that population in the
PopInfo slot.

36 genbinary-class

Extends

Class "gendata", directly.

Methods

Absent signature(object = "genbinary"): Returns the symbol used to indicate that a given
allele is absent in a given sample.

Absent<- signature(object = "genbinary"): Changes the symbol used to indicate that a given
allele is absent in a given sample. The matrix in the Genotypes slot is searched for the old
symbol, which is replaced by the new. The new symbol is then written to the Absent slot.

Genotype signature(object = "genbinary"): Returns a matrix containing the genotype for a
given sample and locus (by a call to Genotypes).

Genotypes signature(object = "genbinary"): Returns the matrix stored in the Genotypes
slot, or a subset as specified by the samples and loci arguments.

Genotypes<- signature(object = "genbinary"): A method for adding or replacing geno-
type data in the object. Note that allele columns cannot be removed from the matrix in the
Genotypes slot using this method, although an entire column could be filled with zeros in or-
der to effectively remove an allele from the dataset. If the order of rows in value (the matrix
containing values to be assigned to the Genotypes slot) is not identical to Samples(object),
the samples argument should be used to indicate row order. Row names in value are ignored.
The loci argument can be left at the default, even if only a subset of loci are being assigned.
Column names of value are important, and should be the locus name and allele name sepa-
rated by a period, as they are in the Genotypes slot. After checking that the column name is
valid, the method checks for whether the column name already exists or not in the Genotypes
slot. If it does exist, data from that column are replaced with data from value. If not, a col-
umn is added to the matrix in the Genotypes slot for the new allele. If the column is new and
data are not being written for samples, the method automatically fills in Missing or Absent
symbols for additional samples, depending on whether or not data for the locus appear to be
missing for the sample or not.

initialize signature(.Object = "genbinary"): Sets up a genbinary object when new("genbinary")
is called. If samples or loci arguments are missing, these are filled in with dummy values
("ind1", "ind2", "loc1", "loc2"). The matrix is then set up in the Genotypes slot.
Sample names are used for row names, and there are zero columns. The initialize method
for gendata is then called.

Missing<- signature(object = "genbinary"): Replaces all elements in matrix in the Genotypes
slot containing the old Missing symbol with the new Missing symbol. The method for
gendata is then called to replace the value in the Missing slot.

Present signature(object = "genbinary"): Returns the symbol used to indicate that a given
allele is present in a given sample.

Present<- signature(object = "genbinary"): Changes the symbol used for indicating that a
given allele is present in a given sample. The symbol is first replaced in the Genotypes slot,
and then in the Present slot.

Samples<- signature(object = "genbinary"): Changes sample names in the dataset. Changes
the row names in the Genotypes slot, then calls the method for gendata to change the names
in the PopInfo and Ploidies slots.

Loci<- signature(object = "genbinary"): Changes locus names in the dataset. Replaces the
locus portion of the column names in the Genotypes slot, then calls the method for gendata
to change the names in the Usatnts slot.

genbinary-class 37

isMissing signature(object = "genbinary"): Returns Boolean values, by sample and locus,
indicating whether genotypes are missing. If there are any missing data symbols within the
genotype, it is considered missing.

summary signature(object = "genbinary"): Prints description of dataset and number of
missing genotypes, then calls the method for gendata to print additional information.

editGenotypes signature(object = "genbinary"): Opens the genotype matrix in the Data
Editor for editing. Useful for making minor changes, although allele columns cannot be added
using this method.

viewGenotypes signature(object = "genbinary"): Prints the genotype matrix to the console,
one locus at a time.

deleteSamples signature(object = "genbinary"): Removes the specified samples from the
genotypes matrix, then calls the method for gendata.

deleteLoci signature(object = "genbinary"): Removes the specified loci from the genotypes
matrix, then calls the method for gendata.

"[" signature(x = "genbinary", i = "ANY", j = "ANY"): Subscripting method. Returns a
genbinary object with a subset of the samples and/or loci from x. Usage: genobject[samples,loci].

estimatePloidy signature(object = "genbinary"): Creates a data frame of mean and maxi-
mum number of alleles per sample, which is then opened in the Data Editor so that the user
can manually specify the ploidy of each sample. Ploidies are then written to the Ploidies
slot of the object.

merge signature(x = "genbinary", y = "genbinary"): Merges two genotype objects to-
gether. See merge,genbinary,genbinary-method.

Author(s)

Lindsay V. Clark

See Also

gendata, Accessors, genambig

Examples

show the class definition
showClass("genbinary")

create a genbinary object
mygen <- new("genbinary", samples = c("indA", "indB", "indC", "indD"),

loci = c("loc1", "loc2"))
Description(mygen) <- "Example genbinary object for the documentation."
Usatnts(mygen) <- c(2,3)
PopNames(mygen) <- c("Maine", "Indiana")
PopInfo(mygen) <- c(1,1,2,2)
Genotypes(mygen) <- matrix(c(1,1,0,0, 1,0,0,1, 0,0,1,1,

1,-9,1,0, 0,-9,0,1, 1,-9,0,1, 0,-9,1,1),
nrow=4, ncol=7, dimnames = list(NULL,
c("loc1.140", "loc1.144", "loc1.150",

"loc2.97", "loc2.100", "loc2.106", "loc2.109")))

view all of the data in the object
mygen

38 gendata-class

gendata-class Class "gendata"

Description

This is a superclass for other classes that contain population genetic datasets. It has slots for pop-
ulation information, ploidy, microsatellite repeat lengths, and a missing data symbol, but does not
have a slot to store genotypes. Sample and locus names are stored as the names of vectors in the
slots.

Objects from the Class

Objects can be created by calls of the form new("gendata", samples, loci, ...). The missing
data symbol will be set to -9 by default. The default initial value for PopNames is a character vector
of length 0, and for Description is the string "Insert dataset description here". The
default initial value for the Ploidies slot is a "ploidymatrix" object, containing a matrix filled
with NA and named by samples in the first dimension and loci in the second dimension. For other
slots, vectors filled with NA will be generated and will be named by samples (for PopInfo) or loci
(for Usatnts). The slots can then be edited using the methods described below.

Note that in most cases you will want to instead create an object from one of gendata’s subclasses,
such as genambig.

Slots

Description: Object of class "character". One or more character strings to name or describe
the dataset.

Missing: Object of class "ANY". A value to indicate missing data in the genotypes of the dataset.
-9 by default.

Usatnts: Object of class "integer". This vector must be named by locus names. Each element
should be the length of the microsatellite repeat for that locus, given in nucleotides. For
example, 2 would indicate a locus with dinucleotide repeats, and 3 would indicate a locus with
trinucleotide repeats. 1 should be used for mononucleotide repeats OR if alleles for that locus
are already expressed in terms of repeat number rather than nucleotides. To put it another way,
if you divided the number used to represent an allele by the corresponding number in Usatnts
(and rounded if necessary), the result would be the number of repeats (plus some additional
length for flanking regions).

Ploidies: Object of class "ploidysuper". This object will contain a pld slot that is a matrix
named by samples and loci, a vector named by samples or loci, or a single value, depending
on the subclass. Each element is an integer that represents ploidy. NA indicates unknown
ploidy.

PopInfo: Object of class "integer". This vector also must be named by sample names. Each
element represents the number of the population to which each sample belongs.

PopNames: Object of class "character". An unnamed vector containing the name of each pop-
ulation. If a number from PopInfo is used to index PopNames, it should find the correct
population name. For example, if the first element of PopNames is "ABC", then any samples
with 1 as their PopInfo value belong to population "ABC".

gendata-class 39

Methods

deleteLoci signature(object = "gendata"): Permanently remove loci from the dataset. This
removes elements from Usatnts.

deleteSamples signature(object = "gendata"): Permanently remove samples from the dataset.
This removes elements from PopInfo and Ploidies.

Description signature(object = "gendata"): Returns the character vector in the Description
slot.

Description<- signature(object = "gendata"): Assigns a new value to the character vector in
the Description slot.

initialize signature(.Object = "gendata"): This is called when the new("gendata") function
is used. A new gendata object is created with sample and locus names used to index the
appropriate slots.

Loci signature(object = "gendata", usatnts = "missing", ploidies="missing"): Re-
turns a character vector containing all locus names for the object. The method accomplishes
this by returning names(object@Usatnts).

Loci signature(object = "gendata", usatnts = "numeric", ploidies = "missing"):
Returns a character vector of all loci for a given set of repeat lengths. For example, if
usatnts = 2 all loci with dinucleotide repeats will be returned.

Loci signature(object= "gendata", usatnts = "missing", ploidies = "numeric"):
Returns a character vector of all loci for a given set of ploidies. Only works if object@Ploidies
is a "ploidylocus" object.

Loci signature(object = "gendata", usatnts = "numeric",ploidies = "numeric"):
Returns a character vector of all loci that have one of the indicated repeat types and one of the
indicated ploidies. Only works if object@Ploidies is a "ploidylocus" object.

Loci<- signature(object = "gendata"): Assigns new names to loci in the dataset (changes
names(object@Usants). Should not be used for adding or removing loci.

Missing signature(object = "gendata"): Returns the missing data symbol from object@Missing.

Missing<- signature(object = "gendata"): Assigns a new value to object@Missing (changes
the missing data symbol).

Ploidies signature(object = "gendata", samples = "ANY", loci = "ANY"): Returns
the ploidies in the dataset (object@Ploidies), indexed by sample and locus if applicable..

Ploidies<- signature(object = "gendata"): Assigns new values to ploidies of samples in the
dataset. The assigned values are coerced to integers by the method. Names in the assigned
vector or matrix are ignored; sample and/or locus names already present in the gendata object
are used instead.

PopInfo signature(object = "gendata"): Returns the population numbers of samples in the
dataset (object@PopInfo).

PopInfo<- signature(object = "gendata"): Assigns new population numbers to samples in
the dataset. The assigned values are coerced to integers by the method. Names in the assigned
vector are ignored; sample names already present in the gendata object are used instead.

PopNames signature(object = "gendata"): Returns a character vector of population names
(object@PopNames).

PopNames<- signature(object = "gendata"): Assigns new names to populations.

PopNum signature(object = "gendata",popname="character"): Returns the number cor-
responding to a population name.

40 gendata-class

PopNum<- signature(object = "gendata", popname = "character"): Changes the pop-
ulation number for a given population name, merging it with an existing population of that
number if applicable.

Samples signature(object = "gendata", populations = "character", ploidies = "missing"):
Returns all sample names for a given set of population names.

Samples signature(object = "gendata", populations = "character", ploidies = "numeric"):
Returns all sample names for a given set of population names and ploidies. Only samples that
fit both criteria will be returned.

Samples signature(object = "gendata", populations = "missing", ploidies = "missing"):
Returns all sample names.

Samples signature(object = "gendata", populations = "missing", ploidies = "numeric"):
Returns all sample names for a given set of ploidies. Only works if object@Ploidies is a
"ploidysample" object.

Samples signature(object = "gendata", populations = "numeric", ploidies = "missing"):
Returns all sample names for a given set of population numbers.

Samples signature(object = "gendata", populations = "numeric", ploidies = "numeric"):
Returns all sample names for a given set of population numbers and ploidies. Only samples
that fit both criteria will be returned. Only works if object@Ploidies is a "ploidysample"
object.

Samples<- signature(object = "gendata"): Assigns new names to samples. This edits both
names(object@PopInfo) and names(object@Ploidies). It should not be used for adding
or removing samples from the dataset.

summary signature(object = "gendata"): Prints some informaton to the console, including
the numbers of samples, loci, and populations, the ploidies present, and the types of mi-
crosatellite repeats present.

Usatnts signature(object = "gendata"): Returns microsatellite repeat lengths for loci in the
dataset (object@Usatnts).

Usatnts<- signature(object = "gendata"): Assigns new values to microsatellite repeat lengths
of loci (object@Usatnts). The assigned values are coerced to integers by the method. Names
in the assigned vector are ignored; locus names already present in the gendata object are used
instead.

"[" signature(x = "gendata", i = "ANY", j = "ANY"): Subscripts the data by a subset
of samples and/or loci. Should be used in the format mygendata[mysamples, myloci].
Returns a gendata object with PopInfo, Ploidies, and Usatnts truncated to only contain
the samples and loci listed in i and j, respectively. Description, Missing, and PopNames
are left unaltered.

merge signature(x = "gendata", y = "gendata"): Merges two genotype objects. See
merge,gendata,gendata-method.

Author(s)

Lindsay V. Clark

See Also

genambig, genbinary, Accessors

gendata.to.genind 41

Examples

show class definition
showClass("gendata")

create an object of the class gendata
(in reality you would want to create an object belonging to one of the
subclasses, but the procedure is the same)
mygen <- new("gendata", samples = c("a", "b", "c"),

loci = c("loc1", "loc2"))
Description(mygen) <- "An example for the documentation"
Usatnts(mygen) <- c(2,3)
PopNames(mygen) <- c("PopV", "PopX")
PopInfo(mygen) <- c(2,1,2)
Ploidies(mygen) <- c(2,2,4,2,2,2)

view a summary of the object
summary(mygen)

gendata.to.genind Convert Data to genind Format

Description

This is a function for exporting data to the package adegenet.

Usage

gendata.to.genind(object, samples = Samples(object), loci = Loci(object))

Arguments

object A "genambig" or (preferably) a "genbinary" object.

samples A character vector indicating the samples to include in the output.

loci A character vector indicating the loci to include in the output.

Details

gendata.to.genind converts a "genambig" or "genbinary" object to a "genind" object using the
package adegenet. The data being converted must all be of a single ploidy. Ploidy and population
information are carried over to the new object. Data will be coded as presence/absence in the new
object. The locus names in the new object are locus and allele names seperated by a hyphen.

adegenet must be installed in order to use this function.

Value

A genetic dataset in the "genind" class, ready for use in adegenet.

Author(s)

Lindsay V. Clark

42 genotypeDiversity

References

http://adegenet.r-forge.r-project.org/

Jombart, T. (2008) adegenet: a R package for the multivariate analysis of genetic markers. Bioin-
formatics 24, 1403–1405.

See Also

freq.to.genpop

Examples

create a "genambig" object
mydata <- new("genambig", samples=c("a","b","c","d"), loci=c("e","f"))
PopNames(mydata) <- c("G","H")
PopInfo(mydata) <- c(1,1,2,2)
mydata <- reformatPloidies(mydata, output="one")
Ploidies(mydata) <- 3
Genotypes(mydata, loci="e") <- list(c(100),c(100,102),

c(98,102,104),c(102,106))
Genotypes(mydata, loci="f") <- list(c(200,202,204),Missing(mydata),

c(210,212),c(204,210,214))

convert to "genind"
mydata2 <- gendata.to.genind(mydata)
mydata2@tab
mydata2@loc.names
mydata2@ind.names
mydata2@pop.names
mydata2@pop

genotypeDiversity Genotype Diversity Statistics

Description

genotypeDiversity calculates diversity statistics based on genotype frequencies, using a distance
matrix to assign individuals to genotypes. The Shannon and Simpson functions are also available
to calculate these statistics directly from a vector of frequencies.

Usage

genotypeDiversity(genobject, samples = Samples(genobject),
loci = Loci(genobject),
d = meandistance.matrix(genobject, samples, loci,

all.distances = TRUE,
distmetric = Lynch.distance),

threshold = 0, index = Shannon, ...)

Shannon(p, base = exp(1))

Simpson(p)

Simpson.var(p)

http://adegenet.r-forge.r-project.org/

genotypeDiversity 43

Arguments

genobject An object of the class "genambig" (or more generally, "gendata" if a value is
supplied to d). If there is more than one population, the PopInfo slot should
be filled in. genobject is the dataset to be analyzed, although the genotypes
themselves will not be used if d has already been calculated. Missing genotypes,
however, will indicate individuals that should be skipped in the analysis.

samples An optional character vector indicating a subset of samples to analyze.

loci An optional character vector indicating a subset of loci to analyze.

d A list such as that produced by meandistance.matrix or meandistance.matrix2
when all.distances = TRUE. The first item in the list is a three dimensional
array, with the first dimension indexed by locus and the second and third di-
mensions indexed by sample. These are genetic distances between samples, by
locus. The second item in the list is the distance matrix averaged across loci.
This mean matrix will be used only if all loci are being analyzed. If loci is a
subset of the loci found in d, the mean matrix will be recalculated.

threshold The maximum genetic distance between two samples that can be considered to
be the same genotype.

index The diversity index to calculate. This should be Shannon, Simpson, or a user-
defined function that takes as its first argument a vector of frequencies that sum
to one.

... Additional arguments to pass to index, for example the base argument for
Shannon.

p A vector of counts.

base The base of the logarithm for calculating the Shannon index. This is exp(1) for
the natural log, or 2 for log base 2.

Details

genotypeDiversity runs assignClones on distance matrices for individual loci and then for all
loci, for each seperate population. The results of assignClones are used to calculate a vector of
genotype frequencies, which is passed to index.

Shannon calculates the Shannon index, which is:

−
∑ pi

N
ln(

pi
N

)

(or log base 2 or any other base, using the base argument) given a vector p of genotype counts,
where N is the sum of those counts.

Simpson calculates the Simpson index, which is:

∑ pi(pi − 1)

N(N − 1)

Simpson.var calculates the variance of the Simpson index:

4N(N − 1)(N − 2)
∑

p3i + 2N(N − 1)
∑

p2i − 2N(N − 1)(2N − 3)(
∑

p2i)
2

[N(N − 1)]2

The variance of the Simpson index can be used to calculate a confidence interval, for example the
results of Simpson plus or minus twice the square root of the results of Simpson.var would be the
95% confidence interval.

44 genotypeProbs

Value

A matrix of diversity index results, with populations in rows and loci in columns. The final column
is called "overall" and gives the results when all loci are analyzed together.

Author(s)

Lindsay V. Clark

References

Shannon, C. E. (1948) A mathematical theory of communication. Bell System Technical Journal
27:379–423 and 623–656.

Simpson, E. H. (1949) Measurement of diversity. Nature 163:688.

Lowe, A., Harris, S. and Ashton, P. (2004) Ecological Genetics: Design, Analysis, and Application.
Wiley-Blackwell.

Arnaud-Haond, S., Duarte, M., Alberto, F. and Serrao, E. A. (2007) Standardizing methods to
address clonality in population studies. Molecular Ecology 16:5115–5139.

http://darwin.phyloviz.net/ComparingPartitions/index.php?link=Tut4

See Also

assignClones, alleleDiversity

Examples

set up dataset
mydata <- new("genambig", samples=c("a","b","c"), loci=c("F","G"))
Genotypes(mydata, loci="F") <- list(c(115,118,124),c(115,118,124),

c(121,124))
Genotypes(mydata, loci="G") <- list(c(162,170,174),c(170,172),

c(166,180,182))
Usatnts(mydata) <- c(3,2)

get genetic distances
mydist <- meandistance.matrix(mydata, all.distances=TRUE)

calculate diversity under various conditions
genotypeDiversity(mydata, d=mydist)
genotypeDiversity(mydata, d=mydist, base=2)
genotypeDiversity(mydata, d=mydist, threshold=0.3)
genotypeDiversity(mydata, d=mydist, index=Simpson)
genotypeDiversity(mydata, d=mydist, index=Simpson.var)

genotypeProbs Calculate Probabilities of Unambiguous Genotypes

Description

Given an ambiguous genotype and either a data frame of allele frequencies or a vector of genotype
probabilities, genotypeProbs calculates all possible unambiguous genotypes and their probabilities
of being the true genotype.

http://darwin.phyloviz.net/ComparingPartitions/index.php?link=Tut4

genotypeProbs 45

Usage

genotypeProbs(object, sample, locus, freq = NULL, gprob = NULL,
alleles = NULL)

Arguments

object An object of class "genambig". The Ploidies and PopInfo slots must be filled
in for the sample and locus of interest.

sample Number or character string indicating the sample to evaluate.
locus Character string indicating the locus to evaluate.
freq A data frame of allele frequencies, such as that produced by simpleFreq or

deSilvaFreq. This argument should only be provided if the selfing rate is zero.
gprob A vector of genotype probabilities based on allele frequencies and selfing rate.

This is generated by meandistance.matrix2 and passed to genotypeProbs
only if the selfing rate is greater than zero.

alleles An integer vector of all alleles. This argument should only be used if gprob is
also being used.

Details

This function is primarily designed to be called by meandistance.matrix2, in order to calculate
distances between all possible unambiguous genotypes. Ordinary users won’t use genotypeProbs
unless they are designing a new analysis.

The genotype analyzed is Genotype(object, sample, locus). If the genotype is unambiguous
(fully heterozygous or homozygous), a single unambiguous genotype is returned with a probability
of one.

If the genotype is ambiguous (partially heterozygous), a recursive algorithm is used to generate
all possible unambiguous genotypes (all possible duplications of alleles in the genotype, up to the
ploidy of the individual.)

If the freq argument is supplied:
The probability of each unambiguous genotype is then calculated from the allele frequencies of the
individual’s population, under the assumption of random mating. Allele frequencies are normalized
so that the frequencies of the alleles in the ambiguous genotype sum to one; this converts each
frequency to the probability of the allele being present in more than one copy. The product of these
probabilities is multiplied by the appropriate polynomial coefficient to calculate the probability of
the unambiguous genotype.

p =

n∏
i=1

f ci
i ∗ (k − n)!∏n

i=1 ci!

where p is the probability of the unambiguous genotype, n is the number of alleles in the ambiguous
genotype, f is the normalized frequency of each allele, c is the number of duplicated copies (total
number of copies minus one) of the allele in the unambiguous genotype, and k is the ploidy of the
individual.

If the gprob and alleles arguments are supplied:
The probabilities of all possible genotypes in the population have already been calculated, based
on allele frequencies and selfing rate. This is done in meandistance.matrix2 using code from De
Silva et al. (2005). Probabilities for the genotypes of interest (those that the ambiguous genotype
could represent) are normalized to sum to 1, in order to give the conditional probabilities of the
possible genotypes.

46 Internal Functions

Value

probs A vector containing the probabilities of each unambiguous genotype.

genotypes A matrix. Each row represents one genotype, and the number of columns is
equal to the ploidy of the individual. Each element of the matrix is an allele.

Author(s)

Lindsay V. Clark

References

De Silva, H. N., Hall, A. J., Rikkerink, E., and Fraser, L. G. (2005) Estimation of allele frequencies
in polyploids under certain patterns of inheritance. Heredity 95, 327–334

See Also

meandistance.matrix2, .genlist

Examples

get a data set and define ploidies
data(testgenotypes)
Ploidies(testgenotypes) <- c(8,8,8,4,8,8,rep(4,14))
get allele frequencies
tfreq <- simpleFreq(testgenotypes)

see results of genotypeProbs under different circumstances
Genotype(testgenotypes, "FCR7", "RhCBA15")
genotypeProbs(testgenotypes, "FCR7", "RhCBA15", tfreq)
Genotype(testgenotypes, "FCR10", "RhCBA15")
genotypeProbs(testgenotypes, "FCR10", "RhCBA15", tfreq)
Genotype(testgenotypes, "FCR1", "RhCBA15")
genotypeProbs(testgenotypes, "FCR1", "RhCBA15", tfreq)
Genotype(testgenotypes, "FCR2", "RhCBA23")
genotypeProbs(testgenotypes, "FCR2", "RhCBA23", tfreq)
Genotype(testgenotypes, "FCR3", "RhCBA23")
genotypeProbs(testgenotypes, "FCR3", "RhCBA23", tfreq)

Internal Functions Internal Functions in polysat

Description

The internal functions .G, .indexg, .genlist, .ranmul, and .selfmat are used for calculating genotype
probabilities under partial selfing. The internal function .unal1loc finds all unique alleles at a single
locus.

Internal Functions 47

Usage

.G(q, n)

.indexg(ag1, na1, m2)

.genlist(ng, na1, m2)

.ranmul(ng, na1, ag, m2)

.selfmat(ng, na1, ag, m2)

.unal1loc(object, samples, locus)

Arguments

q Integer.

n Integer.

ag1 A vector representing an unambiguous genotype.

na1 Integer. The number of alleles, including a null.

m2 Integer. The ploidy.

ng Integer. The number of genotypes.

ag An array of genotypes such as that produced by .genlist.

object A "genambig" object.

samples Optional, a numeric or character vector indicating which samples to use.

locus A character string or number indicating which locus to use.

Value

.G returns

(n+ q)!

(q + 1)! ∗ (n− 1)!

.indexg returns an integer indicating the row containing a particular genotype in the matrix pro-
duced by .genlist.

.genlist returns an array with dimensions ng, m2, containing all possible unambiguous geno-
types, one in each row. The null allele is the highest-numbered allele.

.ranmul returns a list. The first item is a vector of polynomial coefficients for calculating genotype
frequencies under random mating. The second is an array showing how many copies of each allele
each genotype has.

.selfmat returns the selfing matrix. Parental genotypes are represented in rows, and offspring
genotypes in columns. The numbers indicate relative amounts of offspring genotypes produced
when the parental genotypes are self-fertilized.

.unal1loc returns a vector containing all unique alleles, not including Missing(object).

Author(s)

Lindsay V. Clark

References

De Silva, H. N., Hall, A. J., Rikkerink, E., and Fraser, L. G. (2005) Estimation of allele frequencies
in polyploids under certain patterns of inheritance. Heredity 95, 327–334

48 isMissing

See Also

deSilvaFreq, meandistance.matrix2, genotypeProbs, genambig.to.genbinary, alleleDiversity

Examples

Calculation of genotype probabilities in a tetraploid with four
alleles plus a null, and a selfing rate of 0.5. This is a translation
of code in the supplementary material of De Silva et al. (2005).
m2 <- 4
m <- m2/2
na1 <- 5
self <- 0.5
ng <- na1
for(j in 2:m2){

ng <- ng*(na1+j-1)/j
}
ag <- polysat:::.genlist(ng, na1, m2)
temp <- polysat:::.ranmul(ng, na1, ag, m2)
rmul <- temp[[1]]
arep <- temp[[2]]
rm(temp)
smat <- polysat:::.selfmat(ng, na1, ag, m2)
smatdiv <- (polysat:::.G(m-1,m+1))^2
p1 <- c(0.1, 0.4, 0.2, 0.2, 0.1) # allele frequencies

GPROBS subroutine
rvec <- rep(0,ng)
for(g in 1:ng){

rvec[g] <- rmul[g]
for(j in 1:m2){

rvec[g] <- rvec[g]*p1[ag[g,j]]
}

}
id <- diag(nrow=ng)
smatt <- smat/smatdiv
s3 <- id - self * smatt
s3inv <- solve(s3)
gprob <- (1-self) * s3inv
gprob is a vector of probabilities of the seventy genotypes.

isMissing Determine Whether Genotypes Are Missing

Description

isMissing returns Boolean values indicating whether the genotypes for a given set of samples and
loci are missing from the dataset.

Usage

isMissing(object, samples = Samples(object), loci = Loci(object))

isMissing 49

Arguments

object An object of one of the subclasses of gendata, containing the genotypes to be
tested.

samples A character or numeric vector indicating samples to be tested.

loci A character or numeric vector indicating loci to be tested.

Details

isMissing is a generic function with methods for genambig and genbinary objects.

For each genotype in a genambig object, the function evaluates and returns Genotype(object, sample, locus)[1] == Missing(object).
For a genbinary object, TRUE %in% (Genotype(object, sample, locus) == Missing(object))
is returned for the genotype. If only one sample and locus are being evaluated, this is the Boolean
value that is returned. If multiple samples and/or loci are being evaluated, the function creates an
array of Boolean values and recursively calls itself to fill in the result for each element of the array.

Value

If both samples and loci are of length 1, a single Boolean value is returned, TRUE if the genotype
is missing, and FALSE if it isn’t. Otherwise, the function returns a named array with samples in the
first dimension and loci in the second dimension, filled with Boolean values indicating whether the
genotype for each sample*locus combination is missing.

Author(s)

Lindsay V. Clark

See Also

Missing, Missing<-, Genotype, find.missing.gen

Examples

set up a genambig object for this example
mygen <- new("genambig", samples=c("a", "b"), loci=c("locD", "locE"))
Genotypes(mygen) <- array(list(c(122, 126), c(124, 128, 134),

Missing(mygen), c(156, 159)),
dim=c(2,2))

viewGenotypes(mygen)

test if some individual genotypes are missing
isMissing(mygen, "a", "locD")
isMissing(mygen, "a", "locE")

test an array of genotypes
isMissing(mygen, Samples(mygen), Loci(mygen))

50 Lynch.distance

Lynch.distance Calculate Band-Sharing Dissimilarity Between Genotypes

Description

Given two genotypes in the form of vectors of unique alleles, a dissimilarity is calculated as: 1 -
(number of alleles in common)/(average number of alleles per genotype).

Usage

Lynch.distance(genotype1, genotype2, usatnt = NA, missing = -9)

Arguments

genotype1 A vector containing all alleles for a particular sample and locus. Each allele is
only present once in the vector.

genotype2 A vector of the same form as genotype1, for another sample at the same locus.

usatnt The microsatellite repeat length for this locus (ignored by the function).

missing The symbol used to indicate missing data in either genotype vector.

Details

Lynch (1990) defines a simple measure of similarity between DNA fingerprints. This is 2 times the
number of bands that two fingerprints have in common, divided by the total number of bands that
the two genotypes have. Lynch.distance returns a dissimilarity, which is 1 minus the similarity.

Value

If the first element of either or both input genotypes is equal to missing, NA is returned.

Otherwise, a numerical value is returned. This is one minus the similarity. The similarity is calcu-
lated as the number of alleles that the two genotypes have in common divided by the mean length
of the two genotypes.

Author(s)

Lindsay V. Clark

References

Lynch, M. (1990) The similarity index and DNA fingerprinting. Molecular Biology and Evolution
7, 478-484.

See Also

Bruvo.distance, meandistance.matrix

Examples

Lynch.distance(c(100,102,104), c(100,104,108))
Lynch.distance(-9, c(102,104,110))
Lynch.distance(c(100), c(100,104,106))

meandist.from.array 51

meandist.from.array Tools for Working With Pairwise Distance Arrays

Description

meandist.from.array produces a mean distance matrix from an array of pairwise distances by lo-
cus, such as that produced by meandistance.matrix when all.distances=TRUE. find.na.dist
finds missing distances in such an array, and find.na.dist.not.missing finds missing distances
that aren’t the result of missing genotypes.

Usage

meandist.from.array(distarray, samples = dimnames(distarray)[[2]],
loci = dimnames(distarray)[[1]])

find.na.dist(distarray, samples = dimnames(distarray)[[2]],
loci = dimnames(distarray)[[1]])

find.na.dist.not.missing(object, distarray,
samples = dimnames(distarray)[[2]], loci = dimnames(distarray)[[1]])

Arguments

distarray A three-dimensional array of pairwise distances between samples, by locus.
Loci are represented in the first dimension, and samples are represented in the
second and third dimensions. Dimensions are named accordingly. Such an array
is the first element of the list produced by meandistance.matrix if all.distances=TRUE.

samples Character vector. Samples to analyze.

loci Character vector. Loci to analyze.

object A genambig object. Typically the genotype object that was used to produce
distarray.

Details

find.na.dist.not.missing is primarily intended to locate distances that were not calculated by
Bruvo.distance because both genotypes had too many alleles (more than maxl). The user may
wish to estimate these distances manually and fill them into the array, then recalculate the mean
matrix using meandist.from.array.

Value

meandist.from.array returns a matrix, with both rows and columns named by samples, of dis-
tances averaged across loci.

find.na.dist and find.na.dist.not.missing both return data frames with three columns: Lo-
cus, Sample1, and Sample2. Each row represents the index in the array of an element containing
NA.

Author(s)

Lindsay V. Clark

52 meandistance.matrix

See Also

meandistance.matrix, Bruvo.distance, find.missing.gen

Examples

set up the genotype data
samples <- paste("ind", 1:4, sep="")
samples
loci <- paste("loc", 1:3, sep="")
loci
testgen <- new("genambig", samples=samples, loci=loci)
Genotypes(testgen, loci="loc1") <- list(c(-9), c(102,104),

c(100,106,108,110,114),
c(102,104,106,110,112))

Genotypes(testgen, loci="loc2") <- list(c(77,79,83), c(79,85), c(-9),
c(83,85,87,91))

Genotypes(testgen, loci="loc3") <- list(c(122,128), c(124,126,128,132),
c(120,126), c(124,128,130))

Usatnts(testgen) <- c(2,2,2)

look up which samples*loci have missing genotypes
find.missing.gen(testgen)

get the three-dimensional distance array and the mean of the array
gendist <- meandistance.matrix(testgen, distmetric=Bruvo.distance,

maxl=4, all.distances=TRUE)
look at the distances for loc1, where there is missing data and long genotypes
gendist[[1]]["loc1",,]

look up all missing distances in the array
find.na.dist(gendist[[1]])

look up just the missing distances that don't result from missing genotypes
find.na.dist.not.missing(testgen, gendist[[1]])

Copy the array to edit the new copy
newDistArray <- gendist[[1]]
calculate the distances that were NA from genotype lengths exceeding maxl
(in reality, if this were too computationally intensive you might estimate
it manually instead)
subDist <- Bruvo.distance(c(100,106,108,110,114), c(102,104,106,110,112))
subDist
insert this distance into the correct positions
newDistArray["loc1","ind3","ind4"] <- subDist
newDistArray["loc1","ind4","ind3"] <- subDist
calculate the new mean distance matrix
newMeanMatrix <- meandist.from.array(newDistArray)
look at the difference between this matrix and the original.
newMeanMatrix
gendist[[2]]

meandistance.matrix Mean Pairwise Distance Matrix

meandistance.matrix 53

Description

Given a genambig object, meandistance.matrix produces a symmetrical matrix of pairwise dis-
tances between samples, averaged across all loci. An array of all distances prior to averaging may
also be produced.

Usage

meandistance.matrix(object, samples = Samples(object),
loci = Loci(object), all.distances=FALSE,
distmetric = Bruvo.distance, progress = TRUE,
...)

meandistance.matrix2(object, samples = Samples(object),
loci = Loci(object),
freq = simpleFreq(object, samples, loci), self = 0,
all.distances = FALSE, distmetric = Bruvo.distance,
progress = TRUE, ...)

Arguments

object A genambig object containing the genotypes to be analyzed. If distmetric = Bruvo.distance,
the Usatnts slot should be filled in. For meandistance.matrix2, Ploidies
and PopInfo are also required.

samples A character vector of samples to be analyzed. These should be all or a subset of
the sample names used in object.

loci A character vector of loci to be analyzed. These should be all or a subset of the
loci names used in object.

freq A data frame of allele frequencies such as that produced by simpleFreq or
deSilvaFreq.

self A number ranging from 0 to 1, indicating the rate of selfing.

all.distances If FALSE, only the mean distance matrix will be returned. If TRUE, a list will be
returned containing an array of all distances by locus and sample as well as the
mean distance matrix.

distmetric The function to be used to calculate distances between genotypes. Bruvo.distance,
Lynch.distance, or a distance function written by the user.

progress If TRUE, loci and samples will be printed to the console as distances are calcu-
lated, so that the user can monitor the progress of the computation.

... Additional arguments (such as maxl, add, and loss) to pass to distmetric.

Details

Each distance for the three-dimensional array is calculated only once, to save computation time.
Since the array (and resulting mean matrix) is symmetrical, the distance is written to two positions
in the array at once.

meandistance.matrix uses ambiguous genotypes exactly as they are, whereas meandistance.matrix2
uses genotypeProbs to calculate all possible unambiguous genotypes and their probabilities under
random mating or partial selfing. The distance between each possible pair of unambiguous geno-
types for the two samples is calculated with distmetric and weighted by the product of the proba-
bilities of the two gentoypes. As you might expect, meandistance.matrix2 takes longer to process
a given "genambig" object than meandistance.matrix does. Additionally, the distance between
two identical ambiguous genotypes will be zero when calculated with meandistance.matrix, and

54 meandistance.matrix

greater than zero when calculated with meandistance.matrix2, due to potential differences in
copy number of the alleles.

When Bruvo.distance is used, meandistance.matrix2 exaggerates distances between individu-
als of different ploidy as compared to meandistance.matrix. The use of Bruvo2.distance with
meandistance.matrix2 allows individuals with different ploidies to have similar inter-individual
distances to those between individuals of the same ploidy. In general, it will be desirable to use
Bruvo.distance with meandistance.matrix for complex datasets with high ploidy levels, or
Bruvo.distance2 with meandistance.matrix2 for hexaploid or lower datasets (based on how
long it takes my personal computer to perform these calculations) where changes in ploidy are due
to genome doubling or genome loss. If all individuals have the same ploidy, Bruvo.distance
and Bruvo2.distance will give identical results regardless of whether meandistance.matrix or
meandistance.matrix2 is used.

meandistance.matrix2 does not allow a genotype to have more alleles than the ploidy of the
individual (as listed in the Ploidies slot). Additionally, if self is greater than zero, each population
may only have one ploidy at each locus.

Value

A symmetrical matrix containing pairwise distances between all samples, averaged across all loci.
Row and column names of the matrix will be the sample names provided in the samples argument.
If all.distances=TRUE, a list will be produced containing the above matrix as well as a three-
dimensional array containing all distances by locus and sample. The array is the first item in the
list, and the mean matrix is the second.

Author(s)

Lindsay V. Clark

See Also

Bruvo.distance, Bruvo2.distance, Lynch.distance, meandist.from.array, .genlist

Examples

create a list of genotype data
mygendata <- new("genambig", samples = c("ind1","ind2","ind3","ind4"),

loci = c("locus1","locus2","locus3","locus4"))
Genotypes(mygendata) <-

array(list(c(124,128,138),c(122,130,140,142),c(122,132,136),c(122,134,140),
c(203,212,218),c(197,206,221),c(215),c(200,218),
c(140,144,148,150),c(-9),c(146,150),c(152,154,158),
c(233,236,280),c(-9),c(-9),c(-9)))

Usatnts(mygendata) <- c(2,3,2,1)

make index vectors of data to use
myloci <- c("locus1","locus2","locus3")
mysamples <- c("ind1","ind2","ind4")

calculate array and matrix
mymat <- meandistance.matrix(mygendata, mysamples, myloci,

all.distances=TRUE)
view the results
mymat[[1]]["locus1",,]
mymat[[1]]["locus2",,]

merge-methods 55

mymat[[1]]["locus3",,]
mymat[[2]]

add addtional info needed for meandistance.matrix2
mygendata <- reformatPloidies(mygendata, output="one")
Ploidies(mygendata) <- 4
PopInfo(mygendata) <- c(1,1,1,1)

calculate distances taking allele freqs into account
mymat2 <- meandistance.matrix2(mygendata, mysamples, myloci)
mymat2
now do the same under selfing
mymat3 <- meandistance.matrix2(mygendata, mysamples, myloci, self=0.3)
mymat3

merge-methods Merge Two Genotype Objects into One

Description

The generic function merge has methods defined in polysat to merge two genotype objects of the
same class. Each method has optional samples and loci arguments for specifying subsets of
samples and loci to be included in the merged object. Each method also has an optional overwrite
argument to specify which of the two objects should not be used in the case of conflicting data.

Usage

merge(x, y, ...)

Arguments

x One of the objects to be merged. For the methods defined for polysat this should
be of class "gendata" or one of its subclasses.

y The other object to be merged. Should be of the same class as x. y@Ploidies
must also be of the same class as x@Ploidies.

... Additional arguments specific to the method.

Methods

The methods for merge in polysat have four additional arguments: objectm, samples, loci, overwrite.

The samples and loci arguments can specify, using character vectors, a subset of the samples and
loci found in x and y to write to the object that is returned.

If overwrite = "x", data from the second object will be used wherever there is contradicting
data. Likewise if overwrite = "y", data from the first object will be used wherever there
is contradicting data. If no overwrite argument is given, then any contradicting data between the
two objects will produce an error indicating where the contradicting data were found.

The objectm argument is primarily for internal use (most users will not need it). If this argument is
not provided, a new genotype object is created and data from x and y are written to it. If objectm
is provided, this is the object to which data will be written, and the object that will be returned.

56 mergeAlleleAssignments

signature(x = "genambig", y = "genambig") This method merges the genotype data from x
and y. If the missing data symbols differ between the objects, overwrite is used to determine
which missing data symbol to use, and all missing data symbols in the overwritten object
are converted. If overwrite is not provided and the missing data symbols differ between
the objects, an error will be given. The genotypes are then filled in. If certain sample*locus
combinations do not exist in either object (x and y have different samples as well as different
loci), missing data symbols are left in these positions. Again, for genotypes, overwrite
determines which object to preferentially use for data and whether to give an error if there is
a disagreement.
The merge method for gendata is then called.

signature(x = "genbinary", y = "genbinary") This method also merges genotype data for
x and y, then calls the method for gendata. Missing, Present, and Absent are checked
for consistency between objects similarly to what happens with Missing in the genambig
method. Genotypes are then written to the merged object, and consistency between genotypes
is checked.

signature(x = "gendata", y = "gendata") This method merges data about ploidy, repeat length,
and population identity, as well as writing one or both dataset descriptions to the merged ob-
ject.
The same population numbers can have different meanings in PopInfo(x) and PopInfo(y).
The unique PopNames are used instead to determine population identity, and the PopInfo
numbers are changed if necessary. Therefore, it is important for identical populations to be
named the same way in both objects, but not important for identical populations to have the
same number in both objects.

mergeAlleleAssignments

Merge Allele Assignment Matrices

Description

In cases where multiple populations are used separately to assign alleles to homeologous loci,
mergeAlleleAssignments is used to consolidate the results.

Usage

mergeAlleleAssignments(x)

Arguments

x A list, where each element is in the format of results produced by catalanAlleles
or testAlGroups; see example.

Value

A list in similar format to x, but with only one element per locus.

Author(s)

Lindsay V. Clark

pld 57

See Also

testAlGroups, catalanAlleles, recodeAllopoly

Examples

List of allele assignment results for this example; normally these
would be produced by other functions evaluating a genetic dataset.
The example below is for an allotetraploid.

Locus L1 is a well-behaved locus with no homoplasy.
myresults <- list(list(locus="L1", SGploidy=2,

assignments=matrix(c(1,0,0,1,1,0,0,1,0,1), nrow=2,
ncol=5, dimnames=list(NULL,
c("124","128","130","134","138")))),
list(locus="L1", SGploidy=2,
assignments=matrix(c(0,1,1,0,1,0,0,1), nrow=2, ncol=4,
dimnames=list(NULL, c("124","128","132","140")))),
list(locus="L1", SGploidy=2,
assignments=matrix(c(0,1,1,0,0,1,1,0), nrow=2, ncol=4,
dimnames=list(NULL, c("126","128","130","132")))),

Locus L2 is unresolvable because there are no shared alleles between
populations.

list(locus="L2", SGploidy=2,
assignments=matrix(c(1,0,1,0,0,1), nrow=2, ncol=3,
dimnames=list(NULL, c("205","210","225")))),
list(locus="L2", SGploidy=2,
assignments=matrix(c(1,0,0,1,0,1,1,0), nrow=2, ncol=4,
dimnames=list(NULL, c("195","215","220","230")))),

Locus L3 has homoplasy that makes it unresolvable.
list(locus="L3", SGploidy=2,
assignments=matrix(c(1,0,0,1,0,1,1,0), nrow=2, ncol=4,
dimnames=list(NULL, c("153","159","168","171")))),
list(locus="L3", SGploidy=2,
assignments=matrix(c(1,0,0,1,1,0,0,1), nrow=2, ncol=4,
dimnames=list(NULL, c("153","156","165","171")))),

Locus L4 has homoplasy, but the results can still be merged.
list(locus="L4", SGploidy=2,
assignments=matrix(c(1,0,1,0,0,1,0,1,0,1), nrow=2, ncol=5,
dimnames=list(NULL, c("242","246","254","260","264")))),
list(locus="L4", SGploidy=2,
assignments=matrix(c(1,0,0,1,1,0,0,1,0,1), nrow=2, ncol=5,
dimnames=list(NULL, c("242","246","250","254","260"))))
)

myresults

merge within loci
mergedresults <- mergeAlleleAssignments(myresults)
mergedresults

pld Accessor, Replacement, and Manipulation Functions for
"ploidysuper" Objects

58 pld

Description

pld accesses and replaces the pld slot of objects of "ploidysuper" subclasses. plCollapse tests
whether an object of one of these classes can be converted to an object of a simpler one of these
classes, and optionally returns the converted object. These are generic functions with methods for
the subclasses of "ploidysuper". These functions are primarily for internal use.

Usage

pld(object, samples, loci)
pld(object) <- value
plCollapse(object, na.rm, returnvalue)

Arguments

object A "ploidysuper" object.

samples An optional character or numeric vector indexing the samples for which to return
ploidy values.

loci An optional character or numeric vector indexing the loci for which to return
ploidy values.

value A numeric vector or matrix that can be coerced to integers. These represent the
ploidies to store in the object@pld slot.

na.rm Boolean. If TRUE, NA values are ignored when testing to see if the ploidy format
can be simplified. If the sample, locus, or entire dataset all has one ploidy aside
from NA, the NA values will be overwritten by that ploidy when simplifying the
ploidy format. If FALSE, NA is treated as a unique ploidy.

returnvalue Boolean. If TRUE, a "ploidysuper" object will be returned if the ploidy format
can be simplified, and FALSE will be returned if it cannot be simplified. If FALSE,
only TRUE or FALSE will be returned to indicate if the ploidy format can be
simplified or not.

Value

pld returns the vector or matrix containing the ploidy values. This is the contents of object@pld.

plCollapse either returns a Boolean value indicating whether the ploidy can be changed to a
simpler format, or a new "ploidysuper" object with all of the ploidy data of object put into a
simpler format. If object is a "ploidymatrix" object, a "ploidysample", "ploidylocus", or
"ploidyone" object can be returned depending on how many unique ploidy values there are and
how they are distributed. If object is a "ploidysample" or "ploidylocus" object, a "ploidyone"
object can be returned.

Author(s)

Lindsay V. Clark

See Also

reformatPloidies, Ploidies

ploidysuper-class 59

Examples

test <- new("ploidymatrix", samples=c("a","b","c"),
loci=c("l1","l2","l3"))

pld(test) # view the ploidies
pld(test) <- 2 # make it diploid at all samples and loci
pld(test)["a",] <- c(2,4,4) # change the ploidies for sample a
pld(test, samples=c("a","b")) # view ploidies at a subset of samples

test to see if the ploidies can be simplified
p <- plCollapse(test, na.rm=FALSE, returnvalue=TRUE)
p
now change a ploidy and repeat the test
pld(test)["a","l1"] <- 4
p <- plCollapse(test, na.rm=FALSE, returnvalue=TRUE)
p
change something else and collapse it further
pld(p)["a"] <- 2
p2 <- plCollapse(p, na.rm=FALSE, returnvalue=TRUE)
p2

if na.rm=FALSE, NA values are not ignored:
pld(test)["a","l1"] <- NA
pld(test)
plCollapse(test, na.rm=FALSE, returnvalue=TRUE)
NA values are ignored with na.rm=TRUE
plCollapse(test, na.rm=TRUE, returnvalue=TRUE)

ploidysuper-class Class "ploidysuper" and Subclasses

Description

These classes contain ploidy data indexed by sample, locus, both, or neither. They are intended to
go in the Ploidies slot of "gendata" objects.

Objects from the Class

"ploidysuper" is a virtual class: No objects may be created from it.

Objects of the subclasses "ploidymatrix", "ploidysample", "ploidylocus", and "ploidyone"
can be created with the call new(ploidyclass, samples, loci, ...), where ploidyclass is a
character string of one of the class names, and samples and loci are character vectors naming sam-
ples and loci, respectively. The latter two arguments are optional depending on the class (whether
ploidies are indexed by sample and/or locus). The typical user will not have to create an object in
this way, because other functions in polysat will do it for you.

Slots

pld: The only slot for objects of these classes. For "ploidymatrix", this is a matrix of integers,
indexed in the first dimension by sample name and in the second dimension by locus name.
Each element represents the ploidy at a given sample and locus. For "ploidysample" and
"ploidylocus", the slot is an integer vector, named by sample or locus and indicating the
ploidy at each sample or locus, respectively. For "ploidyone", the slot contains a single
integer representing the ploidy for the entire dataset.

60 read.ATetra

Methods

pld signature(object= "ploidymatrix"): Returns the contents of object@pld: a matrix of
ploidies indexed by sample and locus. The samples and loci arguments can be used, option-
ally, to only return a subset of ploidies.

Author(s)

Lindsay V. Clark

See Also

reformatPloidies, pld, plCollapse, gendata

Examples

showClass("ploidysuper")

read.ATetra Read File in ATetra Format

Description

Given a file formatted for the software ATetra, read.ATetra produces a genambig object containing
genotypes, population identities, population names, and a dataset description from the file. Ploidy
in the genambig object is automatically set to 4.

Usage

read.ATetra(infile)

Arguments

infile Character string. A file path to the file to be read.

Details

read.ATetra reads text files in the exact format specified by the ATetra documentation. Note that
this format only allows tetraploid data and that there can be no missing data.

Value

A genambig object as described above.

Author(s)

Lindsay V. Clark

References

http://www.vub.ac.be/APNA/ATetra_Manual-1-1.pdf

van Puyvelde, K., van Geert, A. and Triest, L. (2010) ATETRA, a new software program to ana-
lyze tetraploid microsatellite data: comparison with TETRA and TETRASAT. Molecular Ecology
Resources 10, 331–334.

http://www.vub.ac.be/APNA/ATetra_Manual-1-1.pdf

read.GeneMapper 61

See Also

write.ATetra, read.Tetrasat, read.GeneMapper, read.Structure, read.GenoDive, read.SPAGeDi,
read.POPDIST, read.STRand

Examples

create a file to be read
(this would normally be done in a text editor or with ATetra's Excel template)
cat("TIT,Sample Rubus Data for ATetra", "LOC,1,CBA15",
"POP,1,1,Commonwealth", "IND,1,1,1,CMW1,197,208,211,213",
"IND,1,1,2,CMW2,197,207,211,212", "IND,1,1,3,CMW3,197,208,212,219",
"IND,1,1,4,CMW4,197,208,212,219", "IND,1,1,5,CMW5,197,208,211,212",
"POP,1,2,Fall Creek Lake", "IND,1,2,6,FCR4,197,207,211,212",
"IND,1,2,7,FCR7,197,208,212,218", "IND,1,2,8,FCR14,197,207,212,218",
"IND,1,2,9,FCR15,197,208,211,212", "IND,1,2,10,FCR16,197,208,211,212",
"IND,1,2,11,FCR17,197,207,212,218","LOC,2,CBA23","POP,2,1,Commonwealth",
"IND,2,1,1,CMW1,98,100,106,125","IND,2,1,2,CMW2,98,125,,",
"IND,2,1,3,CMW3,98,126,,","IND,2,1,4,CMW4,98,106,119,127",
"IND,2,1,5,CMW5,98,106,125,","POP,2,2,Fall Creek Lake",
"IND,2,2,6,FCR4,98,125,,","IND,2,2,7,FCR7,98,106,126,",
"IND,2,2,8,FCR14,98,127,,","IND,2,2,9,FCR15,98,108,117,",
"IND,2,2,10,FCR16,98,125,,","IND,2,2,11,FCR17,98,126,,","END",
file = "atetraexample.txt", sep = "\n")

Read the file and examine the data
exampledata <- read.ATetra("atetraexample.txt")
summary(exampledata)
PopNames(exampledata)
viewGenotypes(exampledata)

read.GeneMapper Read GeneMapper Genotypes Tables

Description

Given a vector of filepaths to tab-delimited text files containing genotype data in the ABI Gen-
eMapper Genotypes Table format, read.GeneMapper produces a genambig object containing the
genotype data.

Usage

read.GeneMapper(infiles, forceInteger=TRUE)

Arguments

infiles A character vector of paths to the files to be read.

forceInteger Boolean. If TRUE, alleles will be coerced to integers. This is particularly use-
ful for stripping any white space from allels and preventing alleles from being
imported as character strings. If FALSE, alleles will be imported as numeric or
character values, depending on the content of the input file(s).

62 read.GeneMapper

Details

read.GeneMapper can read the genotypes tables that are exported by the Applied Biosystems Gen-
eMapper software. The only alterations to the files that the user may have to make are 1) delete
any rows with missing data or fill in -9 in the first allele slot for that row, 2) make sure that all
allele names are numeric representations of fragment length (no question marks or dashes), and 3)
put sample names into the Sample Name column, if the names that you wish to use in analysis are
not already there. Each file should have the standard header row produced by the software. If any
sample has more than one genotype listed for a given locus, only the last genotype listed will be
used.

The file format is simple enough that the user can easily create files manually if GeneMapper is
not the software used in allele calling. The files are tab-delimited text files. There should be a
header row with column names. The column labeled “Sample Name” should contain the names of
the samples, and the column labeled “Marker” should contain the names of the loci. You can have
as many or as few columns as needed to contain the alleles, and each of these columns should be
labeled “Allele X” where X is a number unique to each column. Row labels and any other columns
are ignored. For any given sample, each allele is listed only once and is given as an integer that is
the length of the fragment in nucleotides. Alleles are separated by tabs. If you have more allele
columns than alleles for any given sample, leave the extra cells blank so that read.table will read
them as NA. Example data files in this format are included in the package.

read.GeneMapper will read all of your data at once. It takes as its first argument a character vector
containing paths to all of the files to be read. How the data are distributed over these files does not
matter. The function finds all unique sample names and all unique markers across all the files, and
automatically puts a missing data symbol into the list if a particular sample and locus combination
is not found. Rows in which all allele cells are blank should NOT be included in the input files;
either delete these rows or put the missing data symbol into the first allele cell.

Sample and locus names must be consistent within and across the files. The object that is produced
is indexed by these names.

If forceInteger=FALSE, alleles can be non-numeric values. Some functionality of polysat will be
lost in this case, but it could allow for the import of SNP data, for example.

Value

A genambig object containing genotypes from the files, stored as vectors of unique alleles in its
Genotypes slot. Other slots are left at the default values.

Note

A ‘subscript out of bounds’ error may mean that a sample name or marker was left blank in one
of the input files. A ‘NAs introduced by coercion’ warning when forceInteger=TRUE means that
a non-numeric, non-whitespace character was included in one of the allele fields of the file(s), in
which case the file(s) should be carefully checked and re-imported.

Author(s)

Lindsay V. Clark

References

http://www.appliedbiosystems.com/genemapper

http://www.appliedbiosystems.com/genemapper

read.GenoDive 63

See Also

genambig, read.Structure, read.GenoDive, read.SPAGeDi, read.Tetrasat, read.ATetra, write.GeneMapper,
read.POPDIST, read.STRand

Examples

create a table of data
gentable <- data.frame(Sample.Name=rep(c("ind1","ind2","ind3"),2),

Marker=rep(c("loc1","loc2"), each=3),
Allele.1=c(202,200,204,133,133,130),
Allele.2=c(206,202,208,136,142,136),
Allele.3=c(NA,208,212,145,148,NA),
Allele.4=c(NA,216,NA,151,157,NA)
)

create a file (inspect this file in a text editor or spreadsheet
software to see the required format)
write.table(gentable, file="readGMtest.txt", quote=FALSE, sep="\t",

na="", row.names=FALSE, col.names=TRUE)

read the file
mygenotypes <- read.GeneMapper("readGMtest.txt")

inspect the results
viewGenotypes(mygenotypes)

read.GenoDive Import Genotype Data from GenoDive File

Description

read.GenoDive takes a text file in the format for the software GenoDive and produces a genambig
object.

Usage

read.GenoDive(infile)

Arguments

infile A character string. The path to the file to be read.

Details

GenoDive is a Mac-only program for population genetic analysis that allows for polyploid data.
read.GenoDive imports data from text files formatted for this program.

The first line of the file is a comment line, which is written to the Description slot of the genambig
object. On the second line, separated by tabs, are the number of individuals, number of populations,
number of loci, maximum ploidy (ignored), and number of digits used to code alleles.

The following lines contain the names of populations, which are written to the PopNames slot of the
genambig object. After that is a header line for the genotype data. This line contains, separated by
tabs, column headers for populations, clones (optional), and individuals, followed by the name of
each locus. The locus names for the genotype object are derived from this line.

64 read.GenoDive

Each individual is on one line following the genotype header line. Separated by tabs are the pop-
ulation number, the clone number (optional), the individual name (used as the sample name in the
output) and the genotypes at each locus. Alleles at one locus are concatenated together in one string
without any characters to separate them. Each allele must have the same number of digits, although
leading zeros can be omitted.

If the only alleles listed for a particular individual and locus are zeros, this is interpreted by read.GenoDive
as missing data, and Missing(object) (the default, -9) is written in that genotype slot in the
genambig object. GenoDive allows for a genotype to be partially missing but polysat does not;
therefore, if an allele is coded as zero but other alleles are recorded for that sample and locus, the
output genotype will just contain the alleles that are present, with the zeros thrown out.

Value

A genambig object containing the data from the file.

Author(s)

Lindsay V. Clark

References

Meirmans, P. G. and Van Tienderen, P. H. (2004) GENOTYPE and GENODIVE: two programs for
the analysis of genetic diversity of asexual organisms. Molecular Ecology Notes 4, 792-794.

http://www.bentleydrummer.nl/software/software/GenoDive.html

See Also

read.GeneMapper, write.GenoDive, read.Tetrasat, read.ATetra, read.Structure, read.SPAGeDi,
read.POPDIST, read.STRand

Examples

create data file (normally done in a text editor or spreadsheet software)
cat(c("example comment line", "5\t2\t2\t3\t2", "pop1", "pop2",

"pop\tind\tloc1\tloc2", "1\tJohn\t102\t1214",
"1\tPaul\t202\t0", "2\tGeorge\t101\t121213",
"2\tRingo\t10304\t131414","1\tYoko\t10303\t120014"),

file = "genodiveExample.txt", sep = "\n")

import file data
exampledata <- read.GenoDive("genodiveExample.txt")

view data
summary(exampledata)
viewGenotypes(exampledata)
exampledata

http://www.bentleydrummer.nl/software/software/GenoDive.html

read.POPDIST 65

read.POPDIST Read Genotype Data in POPDIST Format

Description

read.POPDIST reads one or more text files formatted for the software POPDIST and produces a
"genambig" object containing genotypes, ploidies, and population identities from the file(s).

Usage

read.POPDIST(infiles)

Arguments

infiles A character vector of file paths to be read.

Details

The format for the software POPDIST is a modified version of the popular Genepop format. The
first line is a comment line, followed by a list of locus names, each on a separate line or on one line
separated by commas. A line starting with the string “Pop” (“pop” and “POP” are also recognized)
indicates the beginning of data for one population. Each individual is then represented on one
line, with the population name and individual genotype separated by a tab followed by a comma.
Genotypes for different loci are separated by a tab or space. Each allele must be coded by two
digits. Zeros (“00”) indicate missing data, either for an entire locus or for a partially heterozygous
genotype. Partially heterozygous genotypes can also be represented by the arbitrary duplication of
alleles.

If more than one file is read at once, locus names must be consistent across all files. Locus and
population names should not start with “Pop”, “pop”, or “POP”, as read.POPDIST searches for
these character strings in order to identify the lines that delimit populations.

Value

A "genambig" object. The Description slot of the object is taken from the comment line of the
first file. Locus names are taken from the files, and samples are given numbers instead of names.
Each genotype consists of all unique non-zero integers for a given sample and locus. The Ploidies
slot is filled in based on how many alleles are present at each locus of each sample (the number of
characters for the genotype, divided by two). reformatPloidies is used internally by the function
to collapse the ploidies to the simplest format. Population names are taken from the individual
genotype lines, and population identities are recorded based on how the individuals are delimited
by “Pop” lines.

Author(s)

Lindsay V. Clark

66 read.SPAGeDi

References

http://gbi.agrsci.dk/~bernt/popgen/

Tomiuk, J., Guldbrandtsen, B. and Loeschcke, B. (2009) Genetic similarity of polyploids: a new
version of the computer program POPDIST (version 1.2.0) considers intraspecific genetic differen-
tiation. Molecular Ecology Resources 9, 1364-1368.

Guldbrandtsen, B., Tomiuk, J. and Loeschcke, B. (2000) POPDIST version 1.1.1: A program to
calculate population genetic distance and identity measures. Journal of Heredity 91, 178-179.

See Also

write.POPDIST, read.Tetrasat, read.ATetra, read.Structure, read.SPAGeDi, read.GeneMapper,
read.GenoDive, read.STRand

Examples

Create a file to read (this is typically done in a text editor)
cat("An example for the read.POPDIST documentation.",
"abcR",
"abcQ",
"Pop",
"Piscataqua\t, 0204 0505",
"Piscataqua\t, 0404 0307",
"Piscataqua\t, 050200 030509",
"Pop",
"Salmon Falls\t, 1006\t0805",
"Salmon Falls\t, 0510\t0308",
"Pop",
"Great Works\t, 050807 030800",
"Great Works\t, 0000 0408",
"Great Works\t, 0707 0305",
file="testPOPDIST.txt", sep="\n")

View the file in the R console (or open it in a text editor)
cat(readLines("testPOPDIST.txt"), sep="\n")

Read the file into a "genambig" object
fishes <- read.POPDIST("testPOPDIST.txt")

View the data in the object
summary(fishes)
PopNames(fishes)
PopInfo(fishes)
Ploidies(fishes)
viewGenotypes(fishes)

read.SPAGeDi Read Genotypes in SPAGeDi Format

Description

read.SPAGeDi can read a text file formatted for the SPAGeDi software and return a genambig
object, as well as optionally returning a data frame of spatial coordinates. The genambig object
includes genotypes, ploidies, and population identities (from the category column, if present) from
the file.

http://gbi.agrsci.dk/~bernt/popgen/

read.SPAGeDi 67

Usage

read.SPAGeDi(infile, allelesep = "/", returnspatcoord = FALSE)

Arguments

infile A character string indicating the path of the file to read.

allelesep The character that is used to delimit alleles within genotypes, or "" if alleles
have a fixed number of digits and are not delimited by any character. Other
examples shown in section 3.2.1 of the SPAGeDi 1.3 manual include "/", " ",
", ", ".", and "--".

returnspatcoord

Boolean. Indicates whether a data frame should be returned containing the spa-
tial coordinates columns.

Details

SPAGeDi offers a lot of flexibility in how data files are formatted. read.SPAGeDi accomodates
most of that flexibility. The primary exception is that alleles must be delimited in the same way
across all genotypes, as specified by allelesep. Comment lines beginning with //, as well as
blank lines, are ignored by read.SPAGeDi just as they are by SPAGeDi.

read.SPAGeDi is not designed to read dominant data (see section 3.2.2 of the SPAGeDi 1.3 man-
ual). However, see genbinary.to.genambig for a way to read this type of data after some simple
manipulation in a spreadsheet program.

The first line of a SPAGeDi file contains information that is used by read.SPAGeDi. The ploidy as
specified in the 6th position of the first line is ignored, and is instead calculated by counting alleles
for each individual (including zeros on the right, but not the left, side of the genotype). The number
of digits specified in the 5th position of the first line is only used if allelesep="". All other values
in the first line are important for the function.

If the only alleles found for a particular individual and locus are zeros, the genotype is interpreted
as missing. Otherwise, zeros on the left side of a genotype are ignored, and zeros on the right side
of a genotype are used in calculating the ploidy but are not included in the genotype object that is
returned. If allelesep="", read.SPAGeDi checks that the number of characters in the genotype
can be evenly divided by the number of digits per allele. If not, zeros are added to the left of the
genotype string before splitting it into alleles.

The Ploidies slot of the "genambig" object that is created is initially indexed by both sample and
locus, with ploidy being written to the slot on a per-genotype basis. After all genotypes have been
imported, reformatPloidies is used to convert Ploidies to the simplest possible format before
the object is returned.

Value

Under the default where returnspatcoord=FALSE, a genambig object is returned. Alleles are
formatted as integers. The Ploidies slot is filled in according to the number of alleles per genotype,
ignoring zeros on the left. If the first line of the file indicates that there are more than zero categories,
the category column is used to fill in the PopNames and PopInfo slots.

Otherwise, a list is returned:

SpatCoord A data frame of spatial coordinates, unchanged from the file. The format of each
column is determined under the default read.table settings. Row names are
individual names from the file. Column names are the same as in the file.

Dataset A genambig object as described above.

68 read.STRand

Author(s)

Lindsay V. Clark

References

http://ebe.ulb.ac.be/ebe/SPAGeDi.html

Hardy, O. J. and Vekemans, X. (2002) SPAGeDi: a versatile computer program to analyse spatial
genetic structure at the individual or population levels. Molecular Ecology Notes 2, 618–620.

See Also

write.SPAGeDi, genbinary.to.genambig, read.table, read.GeneMapper, read.GenoDive, read.Structure,
read.ATetra, read.Tetrasat, read.POPDIST, read.STRand

Examples

create a file to read (usually done with spreadsheet software or a
text editor):
cat("// here's a comment line at the beginning of the file",
"5\t0\t-2\t2\t2\t4",
"4\t5\t10\t50\t100",
"Ind\tLat\tLong\tloc1\tloc2",
"ind1\t39.5\t-120.8\t00003133\t00004040",
"ind2\t39.5\t-120.8\t3537\t4246",
"ind3\t42.6\t-121.1\t5083332\t40414500",
"ind4\t38.2\t-120.3\t00000000\t41430000",
"ind5\t38.2\t-120.3\t00053137\t00414200",
"END",
sep="\n", file="SpagInputExample.txt")

display the file
cat(readLines("SpagInputExample.txt"), sep="\n")

read the file
mydata <- read.SPAGeDi("SpagInputExample.txt", allelesep = "",
returnspatcoord = TRUE)

view the data
mydata
viewGenotypes(mydata[[2]])

read.STRand Read Genotypes Produced by STRand Software

Description

This function reads in data in a format derived from the “BTH” format for exporting genotypes
from the allele calling software STRand.

Usage

read.STRand(file, sep = "\t", popInSam = TRUE)

http://ebe.ulb.ac.be/ebe/SPAGeDi.html

read.STRand 69

Arguments

file A text string indicating the file to read.

sep Field delimiter for the file. Tab by default.

popInSam Boolean. If TRUE, fields from the “Pop” and “Ind” columns will be concatenated
to create a sample name. If FALSE, only the “Ind” column will be used for
sample names.

Details

This function does not read the files directly produced from STRand, but requires some simple
clean-up in spreadsheet software. The BTH format in STRand produces two columns per locus.
One of these columns should be deleted so that there is just one column per locus. Loci names
should remain in the column headers. The column containing sample names should be deleted or
renamed “Ind”. A “Pop” column will need to be added, containing population names. An “Ind”
column is also necessary, containing either full sample names or a sample suffix to be concatenated
with the population name (see popInSam argument).

STRand adds an asterisk to the end of any genotype with more than two alleles. read.STRand will
automatically strip this asterisk out of the genotype.

Missing data is indicated by a zero in the file.

Value

A "genambig" object containing genotypes, locus and sample names, population names, and pop-
ulation identities from the file.

Author(s)

Lindsay V. Clark

References

http://www.vgl.ucdavis.edu/informatics/strand.php/

Toonen, R. J. and Hughes, S. (2001) Increased Throughput for Fragment Analysis on ABI Prism
377 Automated Sequencer Using a Membrane Comb and STRand Software. Biotechniques 31,
1320–1324.

See Also

read.table, read.GeneMapper, read.GenoDive, read.Structure, read.ATetra, read.Tetrasat,
read.POPDIST, read.SPAGeDi

Examples

generate file to read
strtemp <- data.frame(Pop=c("P1","P1","P2","P2"),

Ind=c("a","b","a","b"),
LocD=c("0","172/174","170/172/178*","172/176"),
LocG=c("130/136/138/142*","132/136","138","132/140/144*"))

write.table(strtemp, file="strtemp.txt", sep="\t",
row.names=FALSE, quote=FALSE)

read the file

http://www.vgl.ucdavis.edu/informatics/strand.php/

70 read.Structure

mydata <- read.STRand("strtemp.txt")
viewGenotypes(mydata)
PopNames(mydata)

alternative example with popInSam=FALSE
strtemp$Ind <- c("OH1","OH5","MT4","MT7")
write.table(strtemp, file="strtemp.txt", sep="\t",

row.names=FALSE, quote=FALSE)
mydata <- read.STRand("strtemp.txt", popInSam=FALSE)
Samples(mydata)
PopNames(mydata)

read.Structure Read Genotypes and Other Data from a Structure File

Description

read.Structure creates a genambig object by reading a text file formatted for the software Struc-
ture. Ploidies and PopInfo (if available) are also written to the object, and data from additional
columns can optionally be extracted as well.

Usage

read.Structure(infile, ploidy, missingin = -9, sep = "\t",
markernames = TRUE, labels = TRUE, extrarows = 1,
popinfocol = 1, extracols = 1, getexcols = FALSE,
ploidyoutput="one")

Arguments

infile Character string. The file path to be read.

ploidy Integer. The ploidy of the file, i.e. how many rows there are for each individual.

missingin The symbol used to represent missing data in the Structure file.

sep The character used to delimit the fields of the Structure file (tab by default).

markernames Boolean, indicating whether the file has a header containing marker names.

labels Boolean, indicating whether the file has a column containing sample names.

extrarows Integer. The number of extra rows that the file has, not counting marker names.
This could include rows for recessive alleles, inter-marker distances, or phase
information.

popinfocol Integer. The column number (after the labels column, if present) where the data
to be used for PopInfo are stored. Can be NA to indicate that PopInfo should
not be extracted from the file.

extracols Integer. The number of extra columns that the file has, not counting sample
names (labels) but counting the column to be used for PopInfo. This could
include PopData, PopFlag, LocData, Phenotype, or any other extra columns.

getexcols Boolean, indicating whether the function should return the data from any extra
columns.

read.Structure 71

ploidyoutput This argument determines what is assigned to the Ploidies slot of the "genambig"
dataset that is output. It should be a string, either "one", "samplemax", or
"matrix". This indicates, respectively, that ploidy should be used as the ploidy
of the entire dataset, that the maximum number of alleles for each sample should
be used as the ploidy of that sample, or that ploidies should be stored as a matrix
of allele counts for each sample*locus.

Details

The current version of read.Structure does not support the ONEROWPERIND option in the
file format. Each locus must only have one column. If your data are in ONEROWPERIND for-
mat, it should be fairly simple to manipulate it in a spreadsheet program so that it can be read by
read.GeneMapper instead.

read.Structure uses read.table to initially read the file into a data frame, then extracts informa-
tion from the data frame. Because of this, any header rows (particularly the one containing marker
names) should have leading tabs (or spaces if sep=" ") so that the marker names align correctly
with their corresponding genotypes. You should be able to open the file in a spreadsheet program
and have everything align correctly.

If the file does not contain sample names, set labels=FALSE. The samples will be numbered instead,
and if you like you can use the Samples<- function to edit the sample names of the genotype object
after import. Likewise, if markernames=FALSE, the loci will be numbered automatically by the
column names that read.table creates, but these can also be edited after the fact.

The Ploidies slot of the "genambig" object that is created is initially indexed by both sample and
locus, with ploidy being written to the slot on a per-genotype basis. After all genotypes have been
imported, reformatPloidies is used to convert Ploidies to the simplest possible format before
the object is returned.

Value

If getexcols=FALSE, the function returns only a genambig object.

If getexcols=TRUE, the function returns a list with two elements. The first, named ExtraCol, is a
data frame, where the row names are the sample names and each column is one of the extra columns
from the file (but with each sample only once instead of being repeated ploidy number of times).
The second element is named Dataset and is the genotype object described above.

Author(s)

Lindsay V. Clark

References

http://pritch.bsd.uchicago.edu/structure_software/release_versions/v2.3.3/structure_
doc.pdf

Hubisz, M. J., Falush, D., Stephens, M. and Pritchard, J. K. (2009) Inferring weak population
structure with the assistance of sample group information. Molecular Ecology Resources 9, 1322–
1332.

Falush, D., Stephens, M. and Pritchard, J. K. (2007) Inferences of population structure using multi-
locus genotype data: dominant markers and null alleles. Molecular Ecology Notes 7, 574–578.

http://pritch.bsd.uchicago.edu/structure_software/release_versions/v2.3.3/structure_doc.pdf
http://pritch.bsd.uchicago.edu/structure_software/release_versions/v2.3.3/structure_doc.pdf

72 read.Structure

See Also

write.Structure, read.GeneMapper, read.Tetrasat, read.ATetra, read.GenoDive, read.SPAGeDi,
read.POPDIST, read.STRand

Examples

create a file to read (normally done in a text editor or spreadsheet
software)
cat("\t\tRhCBA15\tRhCBA23\tRhCBA28\tRhCBA14\tRUB126\tRUB262\tRhCBA6\tRUB26",

"\t\t-9\t-9\t-9\t-9\t-9\t-9\t-9\t-9",
"WIN1B\t1\t197\t98\t152\t170\t136\t208\t151\t99",
"WIN1B\t1\t208\t106\t174\t180\t166\t208\t164\t99",
"WIN1B\t1\t211\t98\t182\t187\t184\t208\t174\t99",
"WIN1B\t1\t212\t98\t193\t170\t203\t208\t151\t99",
"WIN1B\t1\t-9\t-9\t-9\t-9\t-9\t-9\t-9\t-9",
"WIN1B\t1\t-9\t-9\t-9\t-9\t-9\t-9\t-9\t-9",
"WIN1B\t1\t-9\t-9\t-9\t-9\t-9\t-9\t-9\t-9",
"WIN1B\t1\t-9\t-9\t-9\t-9\t-9\t-9\t-9\t-9",
"MCD1\t2\t208\t100\t138\t160\t127\t202\t151\t124",
"MCD1\t2\t208\t102\t153\t168\t138\t207\t151\t134",
"MCD1\t2\t208\t106\t157\t180\t162\t211\t151\t137",
"MCD1\t2\t208\t110\t159\t187\t127\t215\t151\t124",
"MCD1\t2\t208\t114\t168\t160\t127\t224\t151\t124",
"MCD1\t2\t208\t124\t193\t160\t127\t228\t151\t124",
"MCD1\t2\t-9\t-9\t-9\t-9\t-9\t-9\t-9\t-9",
"MCD1\t2\t-9\t-9\t-9\t-9\t-9\t-9\t-9\t-9",
"MCD2\t2\t208\t98\t138\t160\t136\t202\t150\t120",
"MCD2\t2\t208\t102\t144\t174\t145\t214\t150\t132",
"MCD2\t2\t208\t105\t148\t178\t136\t217\t150\t135",
"MCD2\t2\t208\t114\t151\t184\t136\t227\t150\t120",
"MCD2\t2\t208\t98\t155\t160\t136\t202\t150\t120",
"MCD2\t2\t208\t98\t157\t160\t136\t202\t150\t120",
"MCD2\t2\t208\t98\t163\t160\t136\t202\t150\t120",
"MCD2\t2\t208\t98\t138\t160\t136\t202\t150\t120",
"MCD3\t2\t197\t100\t172\t170\t159\t213\t174\t134",
"MCD3\t2\t197\t106\t174\t178\t193\t213\t176\t132",
"MCD3\t2\t-9\t-9\t-9\t-9\t-9\t-9\t-9\t-9",
"MCD3\t2\t-9\t-9\t-9\t-9\t-9\t-9\t-9\t-9",
"MCD3\t2\t-9\t-9\t-9\t-9\t-9\t-9\t-9\t-9",
"MCD3\t2\t-9\t-9\t-9\t-9\t-9\t-9\t-9\t-9",
"MCD3\t2\t-9\t-9\t-9\t-9\t-9\t-9\t-9\t-9",
"MCD3\t2\t-9\t-9\t-9\t-9\t-9\t-9\t-9\t-9",
sep="\n",file="structtest.txt")

view the file
cat(readLines("structtest.txt"), sep="\n")

read the structure file into genotypes and populations
testdata <- read.Structure("structtest.txt", ploidy=8)

examine the results
testdata

read.Tetrasat 73

read.Tetrasat Read Data from a TETRASAT Input File

Description

Given a file containing genotypes in the TETRASAT format, read.Tetrasat produces a genambig
object containing genotypes and population identities from the file.

Usage

read.Tetrasat(infile)

Arguments

infile A character string of the file path to be read.

Details

read.Tetrasat reads text files that are in the exact format specified by the software TETRASAT
and TETRA (see references for more information). This is similar to the file format for GenePop
but allows for up to four alleles per locus. All alleles must be coded by two digits. Another
difference between the TETRASAT and GenePop formats is that in TETRASAT the sample name
and genotypes are not separated by a comma, because the columns of data have fixed widths.

Since TETRASAT files also contain information about which samples belong to which populations,
this information is put into the PopInfo slot of the genambig object. Population names are not taken
from the file. The Ploidies slot is filled with the number 4 (using the "ploidyone" class), because
all individuals should be tetraploid. The first line of the file is put into the Description slot.

Locus names should not contain the letters "pop", uppercase or lowercase, adjacent to each other.

Value

A genambig object containing data from the file.

Author(s)

Lindsay V. Clark

References

http://markwith.freehomepage.com/tetrasat.html

Markwith, S. H., Stewart, D. J. and Dyer, J. L. (2006) TETRASAT: a program for the population
analysis of allotetraploid microsatellite data. Molecular Ecology Notes 6, 586-589.

http://ecology.bnu.edu.cn/zhangdy/TETRA/TETRA.htm

Liao, W. J., Zhu, B. R., Zeng, Y. F. and Zhang, D. Y. (2008) TETRA: an improved program for
population genetic analysis of allotetraploid microsatellite data. Molecular Ecology Resources 8,
1260–1262.

See Also

read.GeneMapper, write.Tetrasat, read.ATetra, read.GenoDive, read.Structure, read.SPAGeDi,
read.POPDIST, read.STRand

http://markwith.freehomepage.com/tetrasat.html
http://ecology.bnu.edu.cn/zhangdy/TETRA/TETRA.htm

74 recodeAllopoly

Examples

Not run:
example from the Tetrasat website
mydata <- read.Tetrasat("http://markwith.freehomepage.com/sample.txt")
summary(mydata)
viewGenotypes(mydata, loci="A1_Gtype")

End(Not run)

example with defined data:
cat("Sample Data", "A1_Gtype", "A10_Gtype", "B1_Gtype", "D7_Gtype",
"D9_Gtype", "D12_Gtype", "Pop",
"BCRHE 1 0406 04040404 0208 02020202 03030303 0710",
"BCRHE 10 0406 04040404 07070707 02020202 0304 0710",
"BCRHE 2 04040404 04040404 0708 02020202 010305 0710",
"BCRHE 3 04040404 04040404 02020202 0203 03030303 0809",
"BCRHE 4 04040404 04040404 0608 0203 03030303 070910",
"BCRHE 5 04040404 04040404 0208 02020202 03030303 050710",
"BCRHE 6 0304 04040404 0207 02020202 03030303 07070707",
"BCRHE 7 0406 04040404 0708 02020202 03030303 07070707",
"BCRHE 8 0304 04040404 0203 0203 03030303 0709",
"BCRHE 9 0406 04040404 0708 02020202 03030303 0710",
"Pop",
"BR 1 0406 04040404 05050505 02020202 03030303 1012",
"BR 10 030406 04040404 0607 02020202 03030303 1011",
"BR 2 030406 04040404 07070707 02020202 03030303 09090909",
"BR 3 010304 04040404 07070707 02020202 03030303 09090909",
"BR 4 030406 04040404 07070707 0203 03030303 10101010",
"BR 5 030406 04040404 07070707 02020202 03030303 10101010",
"BR 6 0406 04040404 0507 0203 03030303 10101010",
"BR 7 0304 04040404 0809 02020202 03030303 070910",
"BR 8 030406 04040404 07070707 02020202 03030303 070910",
"BR 9 0406 04040404 07070707 02020202 03030303 07070707",
sep="\n", file="TetrasatExample.txt")
mydata2 <- read.Tetrasat("TetrasatExample.txt")

summary(mydata2)
viewGenotypes(mydata2, loci="B1_Gtype")

recodeAllopoly Create a New genambig Dataset with Loci Split into Isoloci

Description

Given a "genambig" object and a list of allele assignments such as those produced by testAlGroups
or catalanAlleles, recodeAllopoly will generate a new "genambig" object, with genotypes split
according to which alleles belong to which isoloci.

Usage

recodeAllopoly(object, x, allowAneuploidy = TRUE,
samples = Samples(object), loci = Loci(object))

recodeAllopoly 75

Arguments

object A "genambig" object containing the dataset that needs to be re-coded.

x A list. Each item in the list should itself be a list, in the format output by
testAlGroups, catalanAlleles, or mergeAlleleAssignments. Each sub-
list has three items: $locus is the name of the locus, $SGploidy is an inte-
ger indicating the ploidy of each subgenome (e.g. 2 for an allotetraploid), and
$assignments is a matrix of ones and zeros indicating which alleles belong to
which isoloci.

allowAneuploidy

Boolean. This controls what happens when the function encounters genotypes
that have more alleles than are possible for a given isolocus. (For example, the
genotype has four alleles, but three belong to isolocus 1 and one belongs to
isolocus 2.) If TRUE, the individual is assumed to be aneuploid at that locus, and
its ploidy is adjusted only for that locus. If FALSE, missing data are recorded.

samples An optional character vector indicating which samples to analyze and output.

loci An optional character vector indicating which loci to analyze and output.

Details

The same locus may appear more than once in x, for example if distinct populations were analyzed
separately to produce the allele assignments. If this is the case, recodeAllopoly will internally use
mergeAlleleAssignments to consolidate items in x with the same locus name. Loci that are in x
but not object are ignored with a warning. Loci that are in object but not x are retained in the
output of the function, but not re-coded.

This function allows homoplasy, and uses process-of-elimination to try to determine which isoloci
the homoplasious alleles belong to. In cases where genotypes cannot be determined for certain due
to homoplasy, missing data are inserted.

If a genotype has more alleles than should be possible (e.g. five alleles in an allotetraploid), the
genotype is skipped and will be output as missing data for all corresponding isoloci.

Value

A "genambig" object, with loci that are in x split into the appropriate number of isoloci.

Author(s)

Lindsay V. Clark

References

Clark, L. V. and Drauch Schreier A. (2015) Resolving microsatellite genotype ambiguity in popula-
tions of allopolyploid and diploidized autopolyploid organisms using negative correlations between
alleles. bioRxiv, DOI: 10.1101/020610.

Examples

generate a dataset for this example
testdata <- new("genambig", samples = paste("S", 1:9, sep = ""),

loci = c("L1", "L2","L3"))
Genotypes(testdata, loci="L1") <-

list(c(120,124),c(124,126,130),c(120,126),c(126,132,134),
c(120,124,130,132),c(120,126,130),c(120,132,134),

76 reformatPloidies

c(120,124,126,130),c(120,132,138))
Genotypes(testdata, loci="L2") <-

list(c(210,219,222,225),c(216,228),c(210,213,219,222),c(213,222,225,228),
c(210,213,216,219),c(222,228),c(213),c(210,216),c(219,222,228))

Genotypes(testdata, loci="L3") <-
list(c(155,145,153),c(157,155),c(151,157,159,165),c(147,151),c(149,153,157),

c(149,157),c(153,159,161),c(163,165),c(147,163,167))
viewGenotypes(testdata)

generate allele assignments for this example
myAssign <- list(list(locus="L1", SGploidy=2,

assignments=matrix(c(1,0,0,1,1,1,0,1,1,0,1,1), nrow=2,
ncol=6, dimnames=list(NULL,

c("120","124","126","130","132","134")))),
list(locus="L2", SGploidy=2,

assignments=matrix(c(1,1,1,1,1,1,1,0,1,0,1,0,0,1), nrow=2, ncol=7,
dimnames=list(NULL,c("210","213","216","219","222","225","228")))),
list(locus="L3", SGploidy=2, assignments="No assignment"))

myAssign

recode the dataset
splitdata <- recodeAllopoly(testdata, myAssign)

view results
viewGenotypes(splitdata)
Ploidies(splitdata)

reformatPloidies Convert Ploidy Format of a Dataset

Description

This function changes the class of the object in the Ploidies slot of a "gendata" object. (See
the four subclasses described in "ploidysuper".) Existing ploidy data can either be erased or, if
possible, used in the new format.

Usage

reformatPloidies(object, output = "collapse", na.rm = FALSE, erase = FALSE)

Arguments

object A "gendata" object.
output A character string indicating the desired result of the conversion: "matrix"

if ploidies should be indexed by both sample and locus, "sample" if ploidies
should be indexed only by sample, "locus" if ploidies should be indexed only
by locus, "one" if there should be one ploidy for the entire dataset, or "collapse"
if ploidies should be converted to the simplest possible format.

na.rm Boolean. If FALSE, NA is treated as a unique ploidy. If TRUE, NA values are
ignored assuming that each sample and/or locus has only one ploidy otherwise.
This argument is passed directly to plCollapse.

erase Boolean. If TRUE, the new Ploidies slot is simply filled with NA instead of
existing ploidy values from object.

reformatPloidies 77

Details

This is a versatile function that can accomplish several tasks relating to the format of ploidies in the
dataset:

If you wish to change how ploidy is indexed, but don’t care about keeping any data in the Ploidies
slot, set erase=TRUE and output to "matrix", "sample", "locus", or "one".

If you wish to keep ploidy data while moving from a simpler format to a more complex format (i.e.
from "one" to any other format, or from "sample" or "locus" to "matrix"), leave erase=FALSE
and set output to the desired format. Existing data will be duplicated to fill out the new format.
For example, if ploidies were indexed by sample and you change to matrix format, the ploidy that
had previously been recorded for each sample will be duplicated for each locus.

If you wish to keep ploidy data while performing any other format conversions (e.g. "matrix" to
"sample" or "sample" to "locus"), the function will check that there is one unique ploidy for
each sample, locus, or the entire dataset (as appropriate), and will produce an error if the conversion
cannot be done without a loss of information.

If you wish to keep ploidy data and convert to the simplest possible format, set output="collapse".
The function will automatically determine the simplest format for conversion without loss of data.
(The read functions in polysat that take ploidy data from the input file use this option.)

Value

A "gendata" object that is a copy of object but with the Ploidies slot converted to a new class.

Author(s)

Lindsay V. Clark

See Also

plCollapse, "ploidysuper"

Examples

Make a new "genambig" object for this example
testdata <- new("genambig")
Ploidies(testdata)

If you need to reformat before you have entered any ploidy
information:

convert from matrix to sample format
testdata <- reformatPloidies(testdata, output="sample")
Ploidies(testdata)

If you have entered ploidy information but realized you can use a
simpler format:

Enter some ploidies
Ploidies(testdata)[1] <- 2
Ploidies(testdata)

Convert from "sample" to "one" with na.rm=TRUE
testdata <- reformatPloidies(testdata, na.rm=TRUE, output="one")
Ploidies(testdata)

78 simAllopoly

If you change your mind and want to go back to a more complex format

Convert from "one" to "locus"
testdata <- reformatPloidies(testdata, output="locus")
Ploidies(testdata)

simAllopoly Generate Simulated Datasets

Description

Given the number of subgenomes, the ploidy of each subgenome, and optionally, allele frequencies,
simAllopoly will generate a "genambig" object containing simulated data for one locus.

Usage

simAllopoly(ploidy = c(2, 2), n.alleles = c(4, 4), n.homoplasy = 0,
n.null.alleles=rep(0, length(ploidy)), alleles = NULL,
freq = NULL, meiotic.error.rate=0, nSam = 100, locname = "L1")

Arguments

ploidy A vector of integers, with one value for each subgenome, indicating the ploidy
of that subgenome. For example, c(2,2) indicates an allotetraploid. An allo-
hexaploid, with three diploid subgenomes, would be coded as c(2,2,2).

n.alleles A vector, in similar format to the previous argument, indicating how many dif-
ferent unique alleles there are for each isolocus. Ignored if alleles is provided.

n.homoplasy A single value indicating how many homoplasious alleles there are. Ignored
if alleles is provided. This value should not be greater than any value in
n.alleles. If freq is provided, the frequency or frequencies at the end of
each vector will be the frequencies of homopolasious alleles.

n.null.alleles A vector, in similar format to ploidy and n.alleles, indicating how many null
alleles there are for each isolocus. Ignored if alleles is provided. These values
should not be greater than n.alleles. If freq is provided, the frequency or
frequencies at the beginning of each vector will be the null allele frequencies.

alleles Optional. A list of vectors of allele names (which are usually expressed as in-
tegers, but can also be character strings if desired). Each element of the list
contains the allele names for the corresponding isolocus. Zero indicates a null
allele. Allele names that are identical between isoloci will be treated as homo-
plasious. If this argument is not provided, alleles will be named as described in
“Details”.

freq Optional. A list of vectors of allele frequencies. If alleles is provided, all of
the vectors must match in length between the two lists. Otherwise, the lengths
of the vectors much match the values in n.alleles. If freq is not provided, it
will be randomly generated.

meiotic.error.rate

A single value ranging from 0 to 0.5. The probability of a gamete containing a
meiotic error involving this locus. See “Details”.

nSam A single value indicating the number of samples to generate.
locname The name for the locus.

simAllopoly 79

Details

If alleles=NULL, allele names will be generated in the format A-1, A-2, B-1, B-2 etc., where A
and B refer to separate subgenomes. Homoplasious alleles will be named H-1, H-2, etc.

Meiotic errors, as simulated by simAllopoly, always result in balanced aneuploidy, i.e. one copy of
an isolocus will be replaced by an additional copy of a different isolocus. This is simulated on a per-
gamete basis, so each gamete can have a maximum of one meiotic error per locus, but an individual
could potentially be derived from two error-containing gametes. Note that in homozygotes and
partial heterozygotes, it may not be possible to detect aneuploidy by examining the genotype; this
phenomenon lowers the apparent rate of aneuploidy in the dataset.

If alleles are provided by the user with the alleles argument, zero (for sets of numeric alleles)
or "N" (for sets of character alleles) indicates a null allele. The null allele will be simulated at the
frequency specified, but will not be shown in the output dataset. Genotypes with no non-null alleles
are recorded as missing.

Value

A "genambig" object.

Note

Unlike the code supplied in the file extdata/simgen.R, all genotypes in a dataset generated by this
function will be of the same ploidy.

Author(s)

Lindsay V. Clark

References

Clark, L. V. and Drauch Schreier, A. (2015) Resolving microsatellite genotype ambiguity in popula-
tions of allopolyploid and diploidized autopolyploid organisms using negative correlations between
alleles. bioRxiv, DOI: 10.1101/020610.

See Also

alleleCorrelations, catalanAlleles, simgen

Examples

Generate an allotetraploid dataset with no homoplasy.
One isolocus has five alleles, while the other has eight.
test <- simAllopoly(n.alleles=c(5,8))

Generate an allo-octoploid dataset with two tetraploid subgenomes, ten
alleles per subgenome, including one homoplasious allele.
test2 <- simAllopoly(ploidy=c(4,4), n.alleles=c(10,10), n.homoplasy=1)

Generate an allotetraploid dataset, and manually define allele names
and frequencies.
test3 <- simAllopoly(alleles=list(c(120,124,126),c(130,134,138,140)),

freq=list(c(0.4,0.3,0.3),c(0.25,0.25,0.25,0.25)))

Generate an autotetraploid dataset with seven alleles
test4 <- simAllopoly(ploidy=4, n.alleles=7)

80 simpleFreq

Generate an allotetraploid dataset with a null allele at high frequency
test5 <- simAllopoly(n.null.alleles=c(1,0),

freq=list(c(0.5,0.1,0.1,0.3), c(0.25,0.25,0.4,0.1)))

simgen Randomly Generated Data for Learning polysat

Description

genambig object containing simulated data from three populations with 100 individuals each, at
three loci. Individuals are a random mixture of diploids and tetraploids. Genotypes were generated
according to pre-set allele frequencies.

Usage

data(simgen)

Format

A genambig object with data in the Genotypes, PopInfo, PopNames, Ploidies and Usatnts slots.
This is saved as an .RData file. simgen was created using the code found in the “simgen.R” file in
the “extdata” directory of the polysat package installation. This code may be useful for inspiration
on how to create a simulated dataset.

Source

simulated data

See Also

testgenotypes, genambig

simpleFreq Simple Allele Frequency Estimator

Description

Given genetic data, allele frequencies by population are calculated. This estimation method assumes
polysomic inheritance. For genotypes with allele copy number ambiguity, all alleles are assumed
to have an equal chance of being present in multiple copies. This function is best used to generate
initial values for more complex allele frequency estimation methods.

Usage

simpleFreq(object, samples = Samples(object), loci = Loci(object))

simpleFreq 81

Arguments

object A genbinary or genambig object containing genotype data. No NA values are al-
lowed for PopInfo(object)[samples] or Ploidies(object,samples,loci).
(Population identity and ploidy are needed for allele frequency calculation.)

samples An optional character vector of samples to include in the calculation.

loci An optional character vector of loci to include in the calculation.

Details

If object is of class genambig, it is converted to a genbinary object before allele frequency calcu-
lations take place. Everything else being equal, the function will work more quickly if it is supplied
with a genbinary object.

For each sample*locus, a conversion factor is generated that is the ploidy of the sample (and/or
locus) as specified in Ploidies(object) divided by the number of alleles that the sample has at
that locus. Each allele is then considered to be present in as many copies as the conversion factor
(note that this is not necessarily an integer). The number of copies of an allele is totaled for the
population and is divided by the total number of genomes in the population (minus missing data at
the locus) in order to calculate allele frequency.

A major assumption of this calculation method is that each allele in a partially heterozygous geno-
type has an equal chance of being present in more than one copy. This is almost never true, because
common alleles in a population are more likely to be partially homozygous in an individual. The
result is that the frequency of common alleles is underestimated and the frequency of rare alleles
is overestimated. Also note that the level of inbreeding in the population has an effect on the rela-
tionship between genotype frequencies and allele frequencies, but is not taken into account in this
calculation.

Value

Data frame, where each population is in one row. If each sample in object has only one ploidy,
the first column of the data frame is called Genomes and contains the number of genomes in each
population. Otherwise, there is a Genomes column for each locus. Each remaining column contains
frequencies for one allele. Columns are named by locus and allele, separated by a period. Row
names are taken from PopNames(object).

Author(s)

Lindsay V. Clark

See Also

genbinary, genambig

Examples

create a data set for this example
mygen <- new("genambig", samples = paste("ind", 1:6, sep=""),

loci = c("loc1", "loc2"))
mygen <- reformatPloidies(mygen, output="sample")
Genotypes(mygen, loci="loc1") <- list(c(206),c(208,210),c(204,206,210),

c(196,198,202,208),c(196,200),c(198,200,202,204))
Genotypes(mygen, loci="loc2") <- list(c(130,134),c(138,140),c(130,136,140),

c(138),c(136,140),c(130,132,136))
PopInfo(mygen) <- c(1,1,1,2,2,2)

82 testgenotypes

Ploidies(mygen) <- c(2,2,4,4,2,4)

calculate allele frequencies
myfreq <- simpleFreq(mygen)

look at the results
myfreq

an example where ploidy is indexed by locus instead
mygen2 <- new("genambig", samples = paste("ind", 1:6, sep=""),

loci = c("loc1", "loc2"))
mygen2 <- reformatPloidies(mygen2, output="locus")
PopInfo(mygen2) <- 1
Ploidies(mygen2) <- c(2,4)
Genotypes(mygen2, loci="loc1") <- list(c(198), c(200,204), c(200),

c(198,202), c(200), c(202,204))
Genotypes(mygen2, loci="loc2") <- list(c(140,144,146), c(138,144),

c(136,138,144,148), c(140),
c(140,142,146,150),
c(142,148,150))

myfreq2 <- simpleFreq(mygen2)
myfreq2

testgenotypes Rubus Genotype Data for Learning polysat

Description

genambig object containing alleles of 20 Rubus samples at three microsatellite loci.

Usage

data(testgenotypes)

Format

A genambig object with data in the Genotypes, PopInfo, PopNames, and Usatnts slots. This is
saved as a .RData file. Population identities are used here to indicate two different species.

Source

Clark, L. V. and Jasieniuk, M. (2012) Spontaneous hybrids between native and exotic Rubus in the
Western United States produce offspring both by apomixis and by sexual recombination. Heredity
109, 320–328. Data available at: http://dx.doi.org/10.5061/dryad.m466f

See Also

FCRinfo, simgen, genambig

http://dx.doi.org/10.5061/dryad.m466f

viewGenotypes 83

viewGenotypes Print Genotypes to the Console

Description

viewGenotypes prints a tab-delimited table of samples, loci, and alleles to the console so that
genotypes can be easily viewed.

Usage

viewGenotypes(object, samples = Samples(object), loci = Loci(object))

Arguments

object An object of one of the gendata subclasses, containing genotypes to be viewed.

samples A numerical or character vector indicating which samples to display.

loci A numerical or character vector indicating which loci to display.

Details

viewGenotypes is a generic function with methods for genambig and genbinary objects.

For a genambig object, a header line indicating sample, locus, and allele columns is printed. Geno-
types are printed below this. Genotypes are ordered first by locus and second by sample.

For a genbinary object, the presence/absence matrix is printed, organized by locus. After the
matrix for one locus is printed, a blank line is inserted and the matrix for the next locus is printed.

Value

No value is returned.

Author(s)

Lindsay V. Clark

See Also

Genotypes

Examples

create a dataset for this example
mygen <- new("genambig", samples=c("ind1", "ind2", "ind3", "ind4"),

loci=c("locA", "locB"))
Genotypes(mygen) <- array(list(c(98, 104, 108), c(100, 104, 110, 114),

c(102, 108, 110), Missing(mygen),
c(132, 135), c(138, 141, 147),
c(135, 141, 144), c(129, 150)),

dim=c(4,2))

view the genotypes
viewGenotypes(mygen)

84 write.ATetra

write.ATetra Write Genotypes in ATetra Format

Description

write.ATetra uses genotype and population information contained in a genambig object to create
a text file of genotypes in the ATetra format.

Usage

write.ATetra(object, samples = Samples(object),
loci = Loci(object), file = "")

Arguments

object A genambig object containing the dataset of interest. Genotypes, population
identities, population names, and the dataset description are used for creating
the file. Ploidies must be set to 4.

samples A character vector of samples to write to the file. This is a subset of Samples(object).

loci A character vector of loci to write to the file. This is a subset of Loci(object).

file A character string indicating the path and name to which to write the file.

Details

Note that missing data are not allowed in ATetra, although write.ATetra will still process missing
data. When it does so, it leaves all alleles blank in the file for that particular sample and locus, and
also prints a warning indicating which sample and locus had missing data.

Value

A file is written but no value is returned.

Author(s)

Lindsay V. Clark

References

http://www.vub.ac.be/APNA/ATetra_Manual-1-1.pdf

van Puyvelde, K., van Geert, A. and Triest, L. (2010) ATETRA, a new software program to ana-
lyze tetraploid microsatellite data: comparison with TETRA and TETRASAT. Molecular Ecology
Resources 10, 331-334.

See Also

read.ATetra, write.Tetrasat, write.GeneMapper, write.POPDIST

http://www.vub.ac.be/APNA/ATetra_Manual-1-1.pdf

write.freq.SPAGeDi 85

Examples

set up sample data (usually done by reading files)
mysamples <- c("ind1", "ind2", "ind3", "ind4")
myloci <- c("loc1", "loc2")
mygendata <- new("genambig", samples=mysamples, loci=myloci)
mygendata <- reformatPloidies(mygendata, output="one")
Genotypes(mygendata, loci="loc1") <- list(c(202,204), c(204),

c(200,206,208,212),
c(198,204,208))

Genotypes(mygendata, loci="loc2") <- list(c(78,81,84),
c(75,90,93,96,99),
c(87), c(-9))

PopInfo(mygendata) <- c(1,2,1,2)
PopNames(mygendata) <- c("this pop", "that pop")
Ploidies(mygendata) <- 4
Description(mygendata) <- "Example for write.ATetra."

write an ATetra file
write.ATetra(mygendata, file="atetratest.txt")

view the file
cat(readLines("atetratest.txt"),sep="\n")

write.freq.SPAGeDi Create a File of Allele Frequencies for SPAGeDi

Description

A table of allele frequencies such as that produced by simpleFreq or deSilvaFreq is used to
calculate average allele frequencies for the entire dataset. These are then written in a format that
can be read by the software SPAGeDi.

Usage

write.freq.SPAGeDi(freqs, usatnts, file = "", digits = 2,
pops = row.names(freqs),

loci = unique(as.matrix(as.data.frame(strsplit(names(freqs), split =
".", fixed = TRUE), stringsAsFactors = FALSE))[1,]))

Arguments

freqs A data frame of population sizes and allele frequencies, such as that produced
by simpleFreq or deSilvaFreq. Populations are in rows, and alleles are in
columns. A column is needed containing population sizes in number of genomes;
this may either be a single column called “Genomes” or multiple columns named
by the locus and “Genomes”, sepearated by a period. All other columns contain
allele frequencies. The column names for these should be the locus and allele
separated by a period.

usatnts An integer vector containing the lengths of the microsatellite repeats for the loci
in the table. In most cases, if object is the "gendata" object used to generate
freqs, then you should set usatnts = Usatnts(object). This is needed to
convert allele names in the same way that write.SPAGeDi converts allele names.

86 write.freq.SPAGeDi

file The name of the file to write.

digits The number of digits to use to represent each allele. This should be the same
as that used in write.SPAGeDi, so that allele names are consistent between the
two files.

pops An optional character vector indicating a subset of populations from the table to
use in calculating mean allele frequencies.

loci An optional character vector indicating a subset of loci to write to the file.

Details

For some calculations of inter-individual relatedness and kinship coefficients, SPAGeDi can read
a file of allele frequencies to use in the calculation. write.freq.SPAGeDi puts allele frequencies
from polysat into this format.

A weighted average of allele frequencies is calculated across all populations (or those specified by
pops). The average is weighted by population size as specified in the “Genomes” column of freqs.

Allele names are converted to match those produced by write.SPAGeDi. Alleles are divided by
the numbers in usatnts in order to convert fragment length in nucleotides to repeat numbers. If
necessary, 10^(digits-1) is repeatedly subtracted from all alleles until they can be represented
using the right number of digits.

The file produced is tab-delimited and contains two columns per locus. The first column contains
the locus name followed by all allele names, and the second column contains the number of alleles
followed by the allele frequencies.

Value

A file is written but no value is returned.

Note

SPAGeDi can already estimate allele frequencies in a way that is identical to that of simpleFreq.
Therefore, if you have allele frequencies produced by simpleFreq, there is not much sense in
exporting them to SPAGeDi. deSilvaFreq, however, is a more advanced and accurate allele fre-
quency estimation than what is available in SPAGeDi v1.3. write.freq.SPAGeDi exists primarily
to export allele frequencies from deSilvaFreq.

Author(s)

Lindsay V. Clark

References

http://ebe.ulb.ac.be/ebe/SPAGeDi.html

Hardy, O. J. and Vekemans, X. (2002) SPAGeDi: a versatile computer program to analyse spatial
genetic structure at the individual or population levels. Molecular Ecology Notes 2, 618-620.

See Also

write.SPAGeDi, deSilvaFreq

http://ebe.ulb.ac.be/ebe/SPAGeDi.html

write.GeneMapper 87

Examples

Not run:
set up a genambig object to use in this example
mygen <- new("genambig", samples=c(paste("G", 1:30, sep=""),

paste("R", 1:50, sep="")),
loci=c("afrY", "ggP"))

PopNames(mygen) <- c("G", "R")
PopInfo(mygen) <- c(rep(1, 30), rep(2, 50))
mygen <- reformatPloidies(mygen, output="one")
Ploidies(mygen) <- 4
Usatnts(mygen) <- c(2, 2)

randomly create genotypes according to pre-set allele frequencies
for(s in Samples(mygen, populations=1)){

Genotype(mygen, s, "afrY") <-
unique(sample(c(140, 142, 146, 150, 152), 4, TRUE,

c(.30, .12, .26, .08, .24)))
Genotype(mygen, s, "ggP") <-

unique(sample(c(210, 214, 218, 220, 222), 4, TRUE,
c(.21, .13, .27, .07, .32)))

}
for(s in Samples(mygen, populations=2)){

Genotype(mygen, s, "afrY") <-
unique(sample(c(140, 142, 144, 150, 152), 4, TRUE,

c(.05, .26, .17, .33, .19)))
Genotype(mygen, s, "ggP") <-

unique(sample(c(212, 214, 220, 222, 224), 4, TRUE,
c(.14, .04, .36, .20, .26)))

}

write a SPAGeDi file
write.SPAGeDi(mygen, file="SPAGdataFreqExample.txt")

calculate allele frequenies
myfreq <- deSilvaFreq(mygen, self = 0.05)

write allele frequencies file
write.freq.SPAGeDi(myfreq, usatnts=Usatnts(mygen),
file="SPAGfreqExample.txt")

End(Not run)

write.GeneMapper Write Genotypes to a Table Similarly to ABI GeneMapper

Description

Given a genambig object, write.GeneMapper writes a text file of a table containing columns for
sample name, locus, and alleles.

88 write.GeneMapper

Usage

write.GeneMapper(object, file = "", samples = Samples(object),
loci = Loci(object))

Arguments

object A genambig object containing genotype data to write to the file. The Ploidies
slot is used for determining how many allele columns to make.

file Character string. The path to which to write the file.

samples Character vector. Samples to write to the file. This should be a subset of
Samples(object).

loci Character vector. Loci to write to the file. This should be a subset of Loci(object).

Details

Although I do not know of any population genetic software other than polysat that will read this
data format directly, the ABI GeneMapper Genotypes Table format is a convenient way for the user
to store microsatellite genotype data and view it in a text editor or spreadsheet software. Each row
contains the sample name, locus name, and alleles separated by tabs.

The number of allele columns needed is detected by the maximum value of Ploidies(object,samples,loci).
The function will add additional columns if it encounters genotypes with more than this number of
alleles.

write.GeneMapper handles missing data in a very simple way, in that it writes the missing data
symbol directly to the table as though it were an allele. If you want missing data to be represented
differently in the table, you can open it in spreadsheet software and use find/replace or conditional
formatting to locate missing data.

The file that is produced can be read back into R directly by read.GeneMapper, and therefore may
be a convenient way to backup genotype data for future analysis and manipulation in polysat. (save
can also be used to backup an R object more directly, including population and other information.)
This can also enable the user to edit genotype data in spreadsheet software, if the editGenotypes
function is not sufficient.

Value

A file is written but no value is returned.

Author(s)

Lindsay V. Clark

References

http://www.appliedbiosystems.com/genemapper

See Also

read.GeneMapper, write.Structure, write.GenoDive, write.Tetrasat, write.ATetra, write.POPDIST,
write.SPAGeDi, editGenotypes

http://www.appliedbiosystems.com/genemapper

write.GenoDive 89

Examples

create a genotype object (usually done by reading a file)
mysamples <- c("ind1", "ind2", "ind3", "ind4")
myloci <- c("loc1", "loc2")
mygendata <- new("genambig", samples=mysamples, loci=myloci)
mygendata <- reformatPloidies(mygendata, output="one")
Genotypes(mygendata, loci="loc1") <- list(c(202,204), c(204),

c(200,206,208,212),
c(198,204,208))

Genotypes(mygendata, loci="loc2") <- list(c(78,81,84),
c(75,90,93,96,99),
c(87), c(-9))

Ploidies(mygendata) <- 6

write a GeneMapper file
write.GeneMapper(mygendata, "exampleGMoutput.txt")

view the file with read.table
read.table("exampleGMoutput.txt", sep="\t", header=TRUE)

write.GenoDive Write a File in GenoDive Format

Description

write.GenoDive uses data from a genambig object to create a file formatted for the software Gen-
oDive.

Usage

write.GenoDive(object, digits = 2, file = "",
samples = Samples(object), loci = Loci(object))

Arguments

object A genambig object containing genotypes, ploidies, population identities, mi-
crosatellite repeat lengths, and description for the dataset of interest.

digits An integer indicating how many digits to use to represent each allele (usually 2
or 3).

file A character string of the file path to which to write.

samples A character vector of samples to include in the file. A subset of Samples(object).

loci A character vector of loci to include in the file. A subset of Loci(object).

Details

The number of individuals, number of populations, number of loci, and maximum ploidy of the
sample are calculated automatically and entered in the second line of the file. If the maximum
ploidy needs to be reduced by random removal of alleles, it is possible to do this in the software
GenoDive after importing the data. The genambig object should not have individuals with more
alleles than the highest ploidy level listed in its Ploidies slot.

90 write.GenoDive

Several steps happen in order to convert alleles to the right format. First, all instances of the
missing data symbol are replaced with zero. Alleles are then divided by the numbers provided
in Usatnts(object) (and rounded down if necessary) in order to convert them from nucleotides to
repeat numbers. If the alleles are still too big to be represented by the number of digits specified,
write.GenoDive repeatedly subtracts a number (10^(digits-1); 10 if digits=2) from all alleles
at a locus until the alleles are small enough. Alleles are then converted to characters, and a leading
zero is added to an allele if it does not have enough digits. These alleles are concatenated at each
locus so that each sample*locus genotype is an uninterrupted string of numbers.

Value

A file is written but no value is returned.

Author(s)

Lindsay V. Clark

References

Meirmans, P. G. and Van Tienderen P. H. (2004) GENOTYPE and GENODIVE: two programs for
the analysis of genetic diversity of asexual organisms. Molecular Ecology Notes 4, 792-794.

http://www.bentleydrummer.nl/software/software/GenoDive.html

See Also

read.GenoDive, write.Structure, write.ATetra, write.Tetrasat, write.GeneMapper, write.POPDIST,
write.SPAGeDi

Examples

set up the genotype object (usually done by reading a file)
mysamples <- c("Mal", "Inara", "Kaylee", "Simon", "River", "Zoe",

"Wash", "Jayne", "Book")
myloci <- c("loc1", "loc2")
mygendata <- new("genambig", samples=mysamples, loci=myloci)
mygendata <- reformatPloidies(mygendata, output="sample")
Genotypes(mygendata, loci="loc1") <- list(c(304,306), c(302,310),

c(306), c(312,314),
c(312,314), c(308,310), c(312), c(302,308,310), c(-9))

Genotypes(mygendata, loci="loc2") <- list(c(118,133), c(121,130),
c(122,139), c(124,133),

c(118,124), c(121,127), c(124,136), c(124,127,136), c(121,130))
Usatnts(mygendata) <- c(2,3)
PopNames(mygendata) <- c("Core","Outer Rim")
PopInfo(mygendata) <- c(2,1,2,1,1,2,2,2,1)
Ploidies(mygendata) <- c(2,2,2,2,2,2,2,3,2)
Description(mygendata) <- "Serenity crew"

write files (use file="" to write to the console instead)
write.GenoDive(mygendata, digits=2, file="testGenoDive2.txt")
write.GenoDive(mygendata, digits=3, file="testGenoDive3.txt")

http://www.bentleydrummer.nl/software/software/GenoDive.html

write.POPDIST 91

write.POPDIST Write Genotypes to a POPDIST File

Description

write.POPDIST uses data from a "genambig" object to write a file formatted for the software
POPDIST.

Usage

write.POPDIST(object, samples = Samples(object),
loci = Loci(object), file = "")

Arguments

object A "genambig" object. Ploidies and PopInfo are required, and if provided
Usatnts may be used to convert alleles to repeat number in order to represent
each allele with two digits. Locus names and PopNames are used in the file, but
sample names are not.

samples An optional character vector of samples to use. Must be a subset of Samples(object).

loci An optional character vector of loci to use. Must be a subset of Loci(object).

file Character string. File path to which to write.

Details

POPDIST is a program that calculates inter-population distance measures, some of which are avail-
able for polyploid samples with allele copy number ambiguity. Each population must be of uniform
ploidy, but different populations may have different ploidies.

Two types of warning messages may be printed by write.POPDIST. The first indicates that a popu-
lation contains individuals of more than one ploidy. In this case a file is still written, but POPDIST
may not be able to read it. Separate populations with different ploidies are okay. The second type
of warning indicates that an individual has more alleles than its ploidy level. If this occurs, alleles
are randomly removed from the genotype that is written to the file.

If necessary, write.POPDIST converts alleles into a two-digit format, similarly to write.Tetrasat.
If the value of any allele for a given locus is greater than 99, the function first checks to see if the
locus has a Usatnts value greater than 1, and if so divides all alleles by this value and rounds down.
If the locus still has alleles with more than two digits, a multiple of 10 is subtracted from all alleles.
A zero is placed in front of any allele with one digit.

Value

A file is written but no value is returned.

Author(s)

Lindsay V. Clark

92 write.SPAGeDi

References

http://gbi.agrsci.dk/~bernt/popgen/

Tomiuk, J., Guldbrandtsen, B. and Loeschcke, B. (2009) Genetic similarity of polyploids: a new
version of the computer program POPDIST (version 1.2.0) considers intraspecific genetic differen-
tiation. Molecular Ecology Resources 9, 1364-1368.

Guldbrandtsen, B., Tomiuk, J. and Loeschcke, B. (2000) POPDIST version 1.1.1: A program to
calculate population genetic distance and identity measures. Journal of Heredity 91, 178–179.

See Also

read.POPDIST, write.Tetrasat, write.ATetra, write.SPAGeDi, write.GenoDive, write.Structure,
write.GeneMapper

Examples

create a "genambig" object containing the dataset
mygen <- new("genambig", samples=c("a", "b", "c", "d"),

loci=c("loc1", "loc27"))
mygen <- reformatPloidies(mygen, output="sample")
Description(mygen) <- "Some example data for POPDIST"
PopInfo(mygen) <- c(1,1,2,2)
PopNames(mygen) <- c("Old Orchard Beach", "York Beach")
Ploidies(mygen) <- c(2,2,4,4)
Usatnts(mygen) <- c(2,2)
Genotypes(mygen, loci="loc1") <- list(c(128, 134), c(130),

Missing(mygen), c(126, 128, 132))
Genotypes(mygen, loci="loc27") <- list(c(209,211), c(207,217),

c(207,209,215,221), c(211,223))

write the file
write.POPDIST(mygen, file="forPOPDIST.txt")

view the file
cat(readLines("forPOPDIST.txt"), sep="\n")

write.SPAGeDi Write Genotypes in SPAGeDi Format

Description

write.SPAGeDi uses data contained in a genambig object to create a file that can be read by the
software SPAGeDi. The user controls how the genotypes are formatted, and can provide a data
frame of spatial coordinates for each sample.

Usage

write.SPAGeDi(object, samples = Samples(object),
loci = Loci(object), allelesep = "/",
digits = 2, file = "",
spatcoord = data.frame(X = rep(1, length(samples)),

Y = rep(1, length(samples)),
row.names = samples))

http://gbi.agrsci.dk/~bernt/popgen/

write.SPAGeDi 93

Arguments

object A genambig object containing genotypes, ploidies, population identities, and
microsatellite repeat lengths for the dataset of interest.

samples Character vector. Samples to write to the file. Must be a subset of Samples(object).

loci Character vector. Loci to write to the file. Must be a subset of Loci(object).

allelesep The character that will be used to separate alleles within a genotype. If each
allele should instead be a fixed number of digits, with no characters to delimit
alleles, set allelesep = "".

digits Integer. The number of digits used to represent each allele.

file A character string indicating the path to which the file should be written.

spatcoord Data frame. Spatial coordinates of each sample. Column names are used for
column names in the file. Row names indicate sample, or if absent it is assumed
that the rows are in the same order as samples.

Details

The Categories column of the SPAGeDi file that is produced contains information from the PopNames
and PopInfo slots of object; the population name for each sample is written to the column.

The first line of the file contains the number of individuals, number of categories, number of spa-
tial coordinates, number of loci, number of digits for coding alleles, and maximum ploidy, and is
generated automatically from the data provided.

The function does not write distance intervals to the file, but instead writes 0 to the second line.

All alleles for a given locus are divided by the Usatnts value for that locus, after all missing data
symbols have been replaced with zeros. If necessary, a multiple of 10 is subtracted from all alleles
at a locus in order to get the alleles down to the right number of digits.

If a genotype has fewer alleles than the Ploidies value for that sample and locus, zeros are added
up to the ploidy. If the genotype has more alleles than the ploidy, a random subset of alleles is used
and a warning is printed. If the genotype has only one allele (is fully heterozygous), then that allele
is replicated to the ploidy of the individual. Genotypes are then concatenated into strings, delimited
by allelesep. If allelesep="", leading zeros are first added to alleles as necessary to make them
the right number of digits.

Value

A file is written but no value is returned.

Author(s)

Lindsay V. Clark

References

http://ebe.ulb.ac.be/ebe/SPAGeDi.html

Hardy, O. J. and Vekemans, X. (2002) SPAGeDi: a versatile computer program to analyse spatial
genetic structure at the individual or population levels. Molecular Ecology Notes 2, 618–620.

See Also

read.SPAGeDi, write.freq.SPAGeDi, write.GenoDive, write.Structure, write.GeneMapper,
write.ATetra, write.Tetrasat, write.POPDIST

http://ebe.ulb.ac.be/ebe/SPAGeDi.html

94 write.Structure

Examples

set up data to write (usually read from a file)
mygendata <- new("genambig", samples = c("ind1","ind2","ind3","ind4"),

loci = c("loc1", "loc2"))
mygendata <- reformatPloidies(mygendata, output="sample")
Genotypes(mygendata, samples="ind1") <- list(c(102,106,108),c(207,210))
Genotypes(mygendata, samples="ind2") <- list(c(104),c(204,210))
Genotypes(mygendata, samples="ind3") <- list(c(100,102,108),c(201,213))
Genotypes(mygendata, samples="ind4") <- list(c(102,112),c(-9))
Ploidies(mygendata) <- c(3,2,2,2)
Usatnts(mygendata) <- c(2,3)
PopNames(mygendata) <- c("A", "B")
PopInfo(mygendata) <- c(1,1,2,2)
myspatcoord <- data.frame(X=c(27,29,24,30), Y=c(44,41,45,46),

row.names=c("ind1","ind2","ind3","ind4"))

write a file
write.SPAGeDi(mygendata, spatcoord = myspatcoord,

file="SpagOutExample.txt")

write.Structure Write Genotypes in Structure 2.3 Format

Description

Given a dataset stored in a genambig object, write.Structure produces a text file of the genotypes
in a format readable by Structure 2.2 and higher. The user specifies the overall ploidy of the file,
while the ploidy of each sample is extracted from the genambig object. PopInfo and other data can
optionally be written to the file as well.

Usage

write.Structure(object, ploidy, file="",
samples = Samples(object), loci = Loci(object),
writepopinfo = TRUE, extracols = NULL,
missingout = -9)

Arguments

object A genambig object containing the data to write to the file. There must be non-NA
values of Ploidies (and PopInfo if writepopinfo == TRUE) for samples.

ploidy PLOIDY for Structure, i.e. how many rows per individual to write.
file A character string specifying where the file should be written.
samples An optional character vector listing the names of samples to be written to the

file.
loci An optional character vector listing the names of the loci to be written to the file.
writepopinfo TRUE or FALSE, indicating whether to write values from the PopInfo slot of

object to the file.
extracols An array, with the first dimension names corresponding to samples, of Pop-

Data, PopFlag, LocData, Phenotype, or other values to be included in the extra
columns in the file.

missingout The number used to indicate missing data.

write.Structure 95

Details

Structure 2.2 and higher can process autopolyploid microsatellite data, although 2.3.3 or higher is
recommended for its improvements on polyploid handling. The input format of Structure requires
that each locus take up one column and that each individual take up as many rows as the parameter
PLOIDY. Because of the multiple rows per sample, each sample name must be duplicated, as well as
any population, location, or phenotype data. Partially heterozygous genotypes also must have one
arbitrary allele duplicated up to the ploidy of the sample, and samples that have a lower ploidy than
that used in the file (for mixed polyploid data sets) must have a missing data symbol inserted to fill
in the extra rows. Additionally, if some samples have more alleles than PLOIDY (if you are using
a lower PLOIDY to save processing time, or if there are extra alleles from scoring errors), some
alleles must be randomly removed from the data. write.Structure performs this duplication,
insertion, and random deletion of data.

The sample names from samples will be used as row names in the Structure file. Each sample name
should only be in the vector samples once, because write.Structure will duplicate the sample
names a number of times as dictated by ploidy.

In writing genotypes to the file, write.Structure compares the number of alleles in the genotype,
the ploidy of the sample*locus as stored in Ploidies, and the ploidy of the file as stored in ploidy,
and does one of six things (for a given sample x and locus loc):

1) If Ploidies(object,x,loc) is greater than or equal to ploidy, and length(Genotype(object, x, loc))
is equal to ploidy, the genotype data are used as is.

2) If Ploidies(object,x,loc) is greater than or equal to ploidy, and length(Genotype(object, x, loc))
is less than ploidy, the first allele is duplicated as many times as necessary for there to be as many
alleles as ploidy.

3) If Ploidies(object,x,loc) is greater than or equal to ploidy, and length(Genotype(object, x, loc))
is greater than ploidy, a random sample of the alleles, without replacement, is used as the genotype.

4) If Ploidies(object,x,loc) is less than ploidy, and length(Genotype(object, x, loc))
is equal to Ploidies(object,x,loc), the genotype data are used as is and missing data symbols
are inserted in the extra rows.

5) If Ploidies(object,x,loc) is less than ploidy, and length(Genotype(object, x, loc))
is less than Ploidies(object,x,loc), the first allele is duplicated as many times as necessary for
there to be as many alleles as Ploidies(object,x,loc), and missing data symbols are inserted in
the extra rows.

6) If Ploidies(object,x,loc) is less than ploidy, and length(Genotype(object, x, loc)) is
greater than Ploidies(object,x,loc), a random sample, without replacement, of Ploidies(object)[x]
alleles is used, and missing data symbols are inserted in the extra rows. (Alleles are removed even
though there is room for them in the file.)

Two of the header rows that are optional for Structure are written by write.Structure. These are
‘Marker Names’, containing the names of loci supplied in gendata, and ‘Recessive Alleles’, which
contains the missing data symbol once for each locus. This indicates to the program that all alleles
are codominant with copy number ambiguity.

The output file requires a few small modifications, done in a text editor or spreadsheet software, in
order to be read by Structure. In the upper left corner the words “rowlabel” and “missing” should
be deleted. Likewise the first and second rows for any non-locus columns should be deleted if the
extracols argument was used and/or if writepopinfo == TRUE. These should include “PopInfo”
and the second dimension names used in extracols, and zeros, respectively.

Value

No value is returned, but instead a file is written at the path specified.

96 write.Structure

Note

If extracols is a character array, make sure none of the elements contain white space.

Author(s)

Lindsay V. Clark

References

http://pritch.bsd.uchicago.edu/structure_software/release_versions/v2.3.3/structure_
doc.pdf

Hubisz, M. J., Falush, D., Stephens, M. and Pritchard, J. K. (2009) Inferring weak population
structure with the assistance of sample group information. Molecular Ecology Resources 9, 1322-
1332.

Falush, D., Stephens, M. and Pritchard, J. K. (2007) Inferences of population structure using multi-
locus genotype data: dominant markers and null alleles. Molecular Ecology Notes 7, 574-578.

See Also

read.Structure, write.GeneMapper, write.GenoDive, write.SPAGeDi, write.ATetra, write.Tetrasat,
write.POPDIST

Examples

input genotype data (this is usually done by reading a file)
mygendata <- new("genambig", samples = c("ind1","ind2","ind3",

"ind4","ind5","ind6"),
loci = c("locus1","locus2"))

Genotypes(mygendata) <- array(list(c(100,102,106,108,114,118),c(102,110),
c(98,100,104,108,110,112,116),c(102,106,112,118),
c(104,108,110),c(-9),
c(204),c(206,208,210,212,220,224,226),
c(202,206,208,212,214,218),c(200,204,206,208,212),
c(-9),c(202,206)),

dim=c(6,2))
Ploidies(mygendata) <- c(6,6,6,4,4,4)
Note that some of the above genotypes have more or fewer alleles than
the ploidy of the sample.

create a vector of sample names to be used. Note that this excludes
ind6.
mysamples <- c("ind1","ind2","ind3","ind4","ind5")

Create an array containing data for additional columns to be written
to the file. You might also prefer to just read this and the ploidies
in from a file.
myexcols <- array(data=c(1,2,1,2,1,1,1,0,0,0),dim=c(5,2),

dimnames=list(mysamples, c("PopData","PopFlag")))

Write the Structure file, with six rows per individual.
Since outfile="", the data will be written to the console instead of a file.
write.Structure(mygendata, 6, "", samples = mysamples, writepopinfo = FALSE,

extracols = myexcols)

http://pritch.bsd.uchicago.edu/structure_software/release_versions/v2.3.3/structure_doc.pdf
http://pritch.bsd.uchicago.edu/structure_software/release_versions/v2.3.3/structure_doc.pdf

write.Tetrasat 97

write.Tetrasat Write Genotype Data in Tetrasat Format

Description

Given a genambig object, write.Tetrasat creates a file that can be read by the software Tetrasat
and Tetra.

Usage

write.Tetrasat(object, samples = Samples(object),
loci = Loci(object), file = "")

Arguments

object A genambig object containing the dataset of interest. Genotypes, population
identities, microsatellite repeat lengths, and the dataset description of object
are used by the function.

samples A character vector of samples to write to the file. Should be a subset of Samples(object).

loci A character vector of loci to write to the file. Should be a subset of Loci(object).

file A character string indicating the file to which to write.

Details

Tetrasat files are space-delimited text files in which all alleles at a locus are concatenated into a
string eight characters long. Population names or numbers are not used in the file, but samples are
ordered by population, with the line “Pop” delimiting populations.

write.Tetrasat divides each allele by the length of the repeat and rounds down in order to convert
alleles to repeat numbers. If necessary, it subtracts a multiple of 10 from all alleles at a locus
to make all allele values less than 100, or puts a zero in front of the number if it only has one
digit. If the individual is fully homozygous at a locus, the single allele is repeated four times. If
any genotype has more than four alleles, write.Tetrasat picks a random sample of four alleles
without replacement, and prints a warning. Missing data are represented by blank spaces.

Sample names should be a maximum of 20 characters long in order for the file to be read correctly
by Tetrasat or Tetra.

Value

A file is written but no value is returned.

Author(s)

Lindsay V. Clark

98 write.Tetrasat

References

http://markwith.freehomepage.com/tetrasat.html

Markwith, S. H., Stewart, D. J. and Dyer, J. L. (2006) TETRASAT: a program for the population
analysis of allotetraploid microsatellite data. Molecular Ecology Notes 6, 586-589.

http://ecology.bnu.edu.cn/zhangdy/TETRA/TETRA.htm

Liao, W. J., Zhu, B. R., Zeng, Y. F. and Zhang, D. Y. (2008) TETRA: an improved program for
population genetic analysis of allotetraploid microsatellite data. Molecular Ecology Resources 8,
1260–1262.

See Also

read.Tetrasat, write.GeneMapper, write.ATetra, write.POPDIST

Examples

set up sample data (usually done by reading files)
mysamples <- c("ind1", "ind2", "ind3", "ind4")
myloci <- c("loc1", "loc2")
mygendata <- new("genambig", samples = mysamples, loci = myloci)
mygendata <- reformatPloidies(mygendata, output="one")
Usatnts(mygendata) <- c(2, 3)
Genotypes(mygendata, loci="loc1") <- list(c(202,204), c(204),

c(200,206,208,212),
c(198,204,208))

Genotypes(mygendata, loci="loc2") <- list(c(78,81,84),
c(75,90,93,96,99),
c(87), c(-9))

PopInfo(mygendata) <- c(1,2,1,2)
Description(mygendata) <- "An example for write.Tetrasat."
Ploidies(mygendata) <- 4

write a Tetrasat file
write.Tetrasat(mygendata, file="tetrasattest.txt")

view the file
cat(readLines("tetrasattest.txt"),sep="\n")

http://markwith.freehomepage.com/tetrasat.html
http://ecology.bnu.edu.cn/zhangdy/TETRA/TETRA.htm

Index

∗Topic NA
meandist.from.array, 51

∗Topic arith
alleleDiversity, 10
assignClones, 12
Bruvo.distance, 14
Bruvo2.distance, 15
calcFst, 17
estimatePloidy, 26
genotypeDiversity, 42
Lynch.distance, 50
meandist.from.array, 51
meandistance.matrix, 52
simpleFreq, 80

∗Topic array
calcFst, 17
deSilvaFreq, 22
meandist.from.array, 51
meandistance.matrix, 52
write.freq.SPAGeDi, 85

∗Topic classes
genambig-class, 31
genbinary-class, 35
gendata-class, 38
ploidysuper-class, 59

∗Topic cluster
alleleCorrelations, 6

∗Topic datagen
simAllopoly, 78

∗Topic datasets
AllopolyTutorialData, 12
FCRinfo, 28
simgen, 80
testgenotypes, 82

∗Topic distribution
genotypeProbs, 44
Internal Functions, 46

∗Topic file
read.ATetra, 60
read.GeneMapper, 61
read.GenoDive, 63
read.POPDIST, 65
read.SPAGeDi, 66

read.STRand, 68
read.Structure, 70
read.Tetrasat, 73
write.ATetra, 84
write.freq.SPAGeDi, 85
write.GeneMapper, 87
write.GenoDive, 89
write.POPDIST, 91
write.SPAGeDi, 92
write.Structure, 94
write.Tetrasat, 97

∗Topic iteration
deSilvaFreq, 22

∗Topic logic
alleleCorrelations, 6

∗Topic manip
deleteSamples, 21
editGenotypes, 25
find.missing.gen, 28
freq.to.genpop, 29
genambig.to.genbinary, 33
gendata.to.genind, 41
isMissing, 48
merge-methods, 55
mergeAlleleAssignments, 56
pld, 57
recodeAllopoly, 74
reformatPloidies, 76

∗Topic methods
Accessors, 3
estimatePloidy, 26
merge-methods, 55
pld, 57

∗Topic misc
catalanAlleles, 19

∗Topic print
viewGenotypes, 83

∗Topic symbolmath
genotypeProbs, 44

.G (Internal Functions), 46

.genlist, 24, 46, 54

.genlist (Internal Functions), 46

.indexg (Internal Functions), 46

99

100 INDEX

.ranmul (Internal Functions), 46

.selfmat (Internal Functions), 46

.unal1loc (Internal Functions), 46
[,genambig-method (genambig-class), 31
[,genbinary-method (genbinary-class), 35
[,gendata-method (gendata-class), 38

Absent (Accessors), 3
Absent,genbinary-method

(genbinary-class), 35
Absent<- (Accessors), 3
Absent<-,genbinary-method

(genbinary-class), 35
Accessors, 3, 31, 33, 37, 40
alleleCorrelations, 6, 20, 79
alleleDiversity, 10, 44, 48
AllopolyTutorialData, 12
assignClones, 12, 43, 44

Bruvo.distance, 14, 15–17, 50, 52, 54
Bruvo2.distance, 15, 15, 54

calcFst, 17
catalanAlleles, 10, 19, 56, 57, 74, 79

deleteLoci, 5
deleteLoci (deleteSamples), 21
deleteLoci,genambig-method

(genambig-class), 31
deleteLoci,genbinary-method

(genbinary-class), 35
deleteLoci,gendata-method

(gendata-class), 38
deleteSamples, 5, 21
deleteSamples,genambig-method

(genambig-class), 31
deleteSamples,genbinary-method

(genbinary-class), 35
deleteSamples,gendata-method

(gendata-class), 38
Description (Accessors), 3
Description,gendata-method

(gendata-class), 38
Description<- (Accessors), 3
Description<-,gendata-method

(gendata-class), 38
deSilvaFreq, 18, 22, 30, 45, 48, 53, 86

editGenotypes, 5, 25, 88
editGenotypes,genambig-method

(genambig-class), 31
editGenotypes,genbinary-method

(genbinary-class), 35

estimatePloidy, 5, 26, 31
estimatePloidy,genambig-method

(genambig-class), 31
estimatePloidy,genbinary-method

(genbinary-class), 35

FCRinfo, 28, 82
find.missing.gen, 28, 49, 52
find.na.dist (meandist.from.array), 51
freq.to.genpop, 29, 42

genambig, 7, 12, 22, 27, 34, 37, 40, 63, 74,
80–82

genambig-class, 31
genambig.to.genbinary, 33, 48
genbinary, 7, 22, 27, 34, 40, 81
genbinary-class, 35
genbinary.to.genambig, 68
genbinary.to.genambig

(genambig.to.genbinary), 33
gendata, 5, 31, 33, 36, 37, 59, 60
gendata-class, 38
gendata.to.genind, 30, 41
Genotype, 16, 49
Genotype (Accessors), 3
Genotype,genambig-method

(genambig-class), 31
Genotype,genbinary-method

(genbinary-class), 35
Genotype<- (Accessors), 3
Genotype<-,genambig-method

(genambig-class), 31
genotypeDiversity, 11, 13, 42
genotypeProbs, 44, 48, 53
Genotypes, 83
Genotypes (Accessors), 3
Genotypes,genambig-method

(genambig-class), 31
Genotypes,genbinary-method

(genbinary-class), 35
Genotypes<- (Accessors), 3
Genotypes<-,genambig-method

(genambig-class), 31
Genotypes<-,genbinary-method

(genbinary-class), 35

initialize,genambig-method
(genambig-class), 31

initialize,genbinary-method
(genbinary-class), 35

initialize,gendata-method
(gendata-class), 38

Internal Functions, 46

INDEX 101

isMissing, 5, 29, 48
isMissing,genambig-method

(genambig-class), 31
isMissing,genbinary-method

(genbinary-class), 35

Loci, 22
Loci (Accessors), 3
Loci,gendata,missing,missing-method

(gendata-class), 38
Loci,gendata,missing,numeric-method

(gendata-class), 38
Loci,gendata,numeric,missing-method

(gendata-class), 38
Loci,gendata,numeric,numeric-method

(gendata-class), 38
Loci<- (Accessors), 3
Loci<-,genambig-method

(genambig-class), 31
Loci<-,genbinary-method

(genbinary-class), 35
Loci<-,gendata-method (gendata-class),

38
Lynch.distance, 15, 17, 50, 54

meandist.from.array, 12, 51, 54
meandistance.matrix, 12, 15, 16, 43, 50, 52,

52
meandistance.matrix2, 12, 16, 17, 43, 45,

46, 48
meandistance.matrix2

(meandistance.matrix), 52
merge (merge-methods), 55
merge,genambig,genambig-method

(merge-methods), 55
merge,genbinary,genbinary-method

(merge-methods), 55
merge,gendata,gendata-method

(merge-methods), 55
merge-methods, 55
mergeAlleleAssignments, 10, 20, 56, 75
Missing, 16, 49
Missing (Accessors), 3
Missing,gendata-method (gendata-class),

38
Missing<- (Accessors), 3
Missing<-,genambig-method

(genambig-class), 31
Missing<-,genbinary-method

(genbinary-class), 35
Missing<-,gendata-method

(gendata-class), 38

plCollapse, 60, 76, 77
plCollapse (pld), 57
plCollapse,ploidylocus,logical,logical-method

(ploidysuper-class), 59
plCollapse,ploidymatrix,logical,logical-method

(ploidysuper-class), 59
plCollapse,ploidyone,logical,logical-method

(ploidysuper-class), 59
plCollapse,ploidysample,logical,logical-method

(ploidysuper-class), 59
pld, 57, 60
pld,ploidylocus-method

(ploidysuper-class), 59
pld,ploidymatrix-method

(ploidysuper-class), 59
pld,ploidyone-method

(ploidysuper-class), 59
pld,ploidysample-method

(ploidysuper-class), 59
pld<- (pld), 57
pld<-,ploidylocus-method

(ploidysuper-class), 59
pld<-,ploidymatrix-method

(ploidysuper-class), 59
pld<-,ploidyone-method

(ploidysuper-class), 59
pld<-,ploidysample-method

(ploidysuper-class), 59
Ploidies, 27, 58, 59
Ploidies (Accessors), 3
Ploidies,gendata-method

(gendata-class), 38
Ploidies<- (Accessors), 3
Ploidies<-,gendata-method

(gendata-class), 38
ploidylocus, 39
ploidylocus-class (ploidysuper-class),

59
ploidymatrix, 38
ploidymatrix-class (ploidysuper-class),

59
ploidyone, 73
ploidyone-class (ploidysuper-class), 59
ploidysample, 40
ploidysample-class (ploidysuper-class),

59
ploidysuper, 4, 58, 76, 77
ploidysuper-class, 59
PopInfo (Accessors), 3
PopInfo,gendata-method (gendata-class),

38
PopInfo<- (Accessors), 3

102 INDEX

PopInfo<-,gendata-method
(gendata-class), 38

PopNames (Accessors), 3
PopNames,gendata-method

(gendata-class), 38
PopNames<- (Accessors), 3
PopNames<-,gendata-method

(gendata-class), 38
PopNum (Accessors), 3
PopNum,gendata,character-method

(gendata-class), 38
PopNum<- (Accessors), 3
PopNum<-,gendata,character-method

(gendata-class), 38
Present (Accessors), 3
Present,genbinary-method

(genbinary-class), 35
Present<- (Accessors), 3
Present<-,genbinary-method

(genbinary-class), 35

read.ATetra, 60, 63, 64, 66, 68, 69, 72, 73, 84
read.GeneMapper, 61, 61, 64, 66, 68, 69, 72,

73, 88
read.GenoDive, 61, 63, 63, 66, 68, 69, 72, 73,

90
read.POPDIST, 61, 63, 64, 65, 68, 69, 72, 73,

92
read.SPAGeDi, 61, 63, 64, 66, 66, 69, 72, 73,

93
read.STRand, 61, 63, 64, 66, 68, 68, 72, 73
read.Structure, 61, 63, 64, 66, 68, 69, 70,

73, 96
read.table, 68, 69
read.Tetrasat, 61, 63, 64, 66, 68, 69, 72, 73,

98
recodeAllopoly, 10, 20, 57, 74
reformatPloidies, 4, 58, 60, 65, 67, 71, 76

Samples, 22
Samples (Accessors), 3
Samples,gendata,character,missing-method

(gendata-class), 38
Samples,gendata,character,numeric-method

(gendata-class), 38
Samples,gendata,missing,missing-method

(gendata-class), 38
Samples,gendata,missing,numeric-method

(gendata-class), 38
Samples,gendata,numeric,missing-method

(gendata-class), 38
Samples,gendata,numeric,numeric-method

(gendata-class), 38

Samples<- (Accessors), 3
Samples<-,genambig-method

(genambig-class), 31
Samples<-,genbinary-method

(genbinary-class), 35
Samples<-,gendata-method

(gendata-class), 38
save, 88
Shannon (genotypeDiversity), 42
simAllopoly, 20, 78
simgen, 79, 80, 82
simpleFreq, 18, 22, 24, 30, 45, 53, 80
Simpson (genotypeDiversity), 42
summary,genambig-method

(genambig-class), 31
summary,genbinary-method

(genbinary-class), 35
summary,gendata-method (gendata-class),

38

testAlGroups, 56, 57, 74
testAlGroups (alleleCorrelations), 6
testgenotypes, 28, 80, 82

Usatnts, 16
Usatnts (Accessors), 3
Usatnts,gendata-method (gendata-class),

38
Usatnts<- (Accessors), 3
Usatnts<-,gendata-method

(gendata-class), 38

viewGenotypes, 5, 26, 83
viewGenotypes,genambig-method

(genambig-class), 31
viewGenotypes,genbinary-method

(genbinary-class), 35

write.ATetra, 61, 84, 88, 90, 92, 93, 96, 98
write.freq.SPAGeDi, 24, 30, 85, 93
write.GeneMapper, 63, 84, 87, 90, 92, 93, 96,

98
write.GenoDive, 64, 88, 89, 92, 93, 96
write.POPDIST, 66, 84, 88, 90, 91, 93, 96, 98
write.SPAGeDi, 68, 86, 88, 90, 92, 92, 96
write.Structure, 72, 88, 90, 92, 93, 94
write.Tetrasat, 73, 84, 88, 90, 92, 93, 96, 97

	Accessors
	alleleCorrelations
	alleleDiversity
	AllopolyTutorialData
	assignClones
	Bruvo.distance
	Bruvo2.distance
	calcFst
	catalanAlleles
	deleteSamples
	deSilvaFreq
	editGenotypes
	estimatePloidy
	FCRinfo
	find.missing.gen
	freq.to.genpop
	genambig-class
	genambig.to.genbinary
	genbinary-class
	gendata-class
	gendata.to.genind
	genotypeDiversity
	genotypeProbs
	Internal Functions
	isMissing
	Lynch.distance
	meandist.from.array
	meandistance.matrix
	merge-methods
	mergeAlleleAssignments
	pld
	ploidysuper-class
	read.ATetra
	read.GeneMapper
	read.GenoDive
	read.POPDIST
	read.SPAGeDi
	read.STRand
	read.Structure
	read.Tetrasat
	recodeAllopoly
	reformatPloidies
	simAllopoly
	simgen
	simpleFreq
	testgenotypes
	viewGenotypes
	write.ATetra
	write.freq.SPAGeDi
	write.GeneMapper
	write.GenoDive
	write.POPDIST
	write.SPAGeDi
	write.Structure
	write.Tetrasat
	Index

