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SUMMARY

KRAS is the most commonly mutated oncogene, yet no effective targeted therapies exist for KRAS mutant
cancers. We developed a pooled shRNA-drug screen strategy to identify genes that, when inhibited,
cooperate with MEK inhibitors to effectively treat KRAS mutant cancer cells. The anti-apoptotic BH3 family
gene BCL-XL emerged as a top hit through this approach. ABT-263 (navitoclax), a chemical inhibitor that
blocks the ability of BCL-XL to bind and inhibit pro-apoptotic proteins, in combination with a MEK inhibitor
led to dramatic apoptosis in many KRAS mutant cell lines from different tissue types. This combination
caused marked in vivo tumor regressions in KRAS mutant xenografts and in a genetically engineered
KRAS-driven lung cancer mouse model, supporting combined BCL-XL/MEK inhibition as a potential
therapeutic approach for KRAS mutant cancers.

INTRODUCTION

KRAS mutations occur in ~20% of all cancers, with particularly
high frequency in pancreatic (~90%), colorectal (~40%), and
lung (~30%) cancers (Malumbres and Barbacid, 2003; Montagut
and Settleman, 2009). However, no effective therapies exist for
KRAS mutant cancers, largely because KRAS itself has proven
difficult to target directly with small molecules (Young et al.,
2009). Targeting single KRAS effector pathways (e.g., MEK)
has also failed to induce clinical responses (Adjei et al., 2008),
likely because KRAS activates multiple critical effectors, such
as the MEK-ERK, PI3K-AKT, and NF-kB pathways (Montagut
and Settleman, 2009).

Investigators have identified potential therapeutic approaches
for KRAS mutant cancers that are yet to be explored in the clinic,
including inhibitors of TBK1, TAK1, and the GATA2 transcrip-
tional network (Barbie et al., 2009; Singh et al., 2012; Kumar
et al., 2012). Previously, our laboratory and others showed that
simultaneous targeting of more than one KRAS effector pathway
(specifically the MEK-ERK and PI3K-AKT pathways) induced
responses in KRAS-driven mouse tumor models (Engelman
et al., 2008; She et al., 2010). While these data support the
promise of targeted combination strategies, toxicity has pre-
vented dosing both inhibitors at or near their maximally tolerated
doses when used in combination (LoRusso et al., 2012; Sper-
anza et al., 2012). Thus, potent and continuous suppression of

Significance

Although KRAS is the most commonly mutated oncogene in human cancer, KRAS has proven difficult to target pharmaco-
logically, and no effective therapies exist for KRAS mutant cancers. Recently, there has been evidence that targeted therapy
combinations inhibiting multiple downstream effectors of KRAS may be a promising approach for KRAS mutant cancers.
Here, we report a pooled shRNA-drug screen designed to identify MEK inhibitor-based targeted therapy combinations
for KRAS mutant cancers. Through this approach, we identified combined BCL-XL and MEK inhibition as a strategy with
robust in vitro and in vivo efficacy in KRAS mutant cancer models. Thus, this targeted therapy combination may represent
a potential therapeutic avenue for KRAS mutant cancers.

—

@ CrossMark

Cancer Cell 23, 121-128, January 14, 2013 ©2013 Elsevier Inc. 121


mailto:jengelman@partners.org
http://dx.doi.org/10.1016/j.ccr.2012.11.007
http://crossmark.dyndns.org/dialog/?doi=10.1016/j.ccr.2012.11.007&domain=pdf

Cancer Cell
BCL-XL and MEK Inhibition in KRAS Mutant Cancers

Figure 1. Identification of BCL-XL as a
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the MEK and PI3K pathways may not be possible in patients with
currently available agents. Furthermore, this approach may be
effective only in a subset of KRAS mutant cancers. Conse-
quently, additional effective combination therapy strategies for
KRAS mutant cancers are critically needed.

RESULTS

To enable rapid development of MEK inhibitor-based combina-
tion therapies for KRAS mutant cancers, we developed a pooled
shRNA-drug screen strategy (Figure 1A) aimed at identifying
genes that, when inhibited, cooperate with MEK inhibitors to
inhibit the proliferation and survival of KRAS mutant tumor cells.
This screen utilized a ~5000 shRNA library targeting ~1,200
“druggable” genes, such as kinases and regulators of cell prolif-
eration and survival. Target cells infected with this library were
cultured in the presence or absence of the allosteric MEK inhib-
itor selumetinib (AZD6244, ARRY-142886) for 7 days. Since len-
tiviral shRNA integrates into the genome of a target cell, if a given
shRNA decreases cell viability, the relative abundance of that
shRNA will decrease over the 7-day period. We can thus identify
shRNAs that “drop out” specifically with MEK inhibitor treatment
relative to vehicle. This screen differs from other recently per-
formed synthetic lethal RNAi screens in KRAS mutant cancer
cell lines because it specifically assays for genes that cooperate
with MEK inhibitors to reduce cell viability (Barbie et al., 2009;
Luo et al., 2009; Scholl et al., 2009). Furthermore, by selecting
for shRNAs with decreased abundance in MEK inhibitor versus
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readily modified to incorporate other
inhibitors in future studies, MEK inhibitors
were chosen as the backbone of poten-
tial combination strategies in this study
because large-scale screening of >600 cell lines with >100 tar-
geted compounds identified MEK inhibitors as the most effective
agents in KRAS mutant cell lines (Garnett et al., 2012). MEK
inhibitors have also led to stable disease in patients with KRAS
mutant cancer (Infante et al., 2010).

We screened two KRAS mutant cell lines with different sensi-
tivities to MEK/PI3K inhibition—HCT116 (sensitive) and SW620
(insensitive) (Figures S1A and S1B available online)—to identify
combination strategies independent of MEK/PI3K sensitivity.
Hits for each cell line were determined as described in Experi-
mental Procedures, and we identified 17 hits common to both
cell lines (Figure S1C; Tables S1 and S2). The anti-apoptotic
BH3 family member BCL-XL (BCL2L1) emerged as the most
promising hit in validation studies (Figure S1D). Knockdown of
BCL-XL produced profound suppression of cell viability in the
presence of selumetinib (Figures 1B-1D). ABT-263 (navitoclax)
is a small molecule inhibitor that occupies the BH3 binding
groove of BCL-XL and BCL-2, inhibiting their anti-apoptotic
effects (Tse et al., 2008). ABT-263 does not effectively inhibit
the anti-apoptotic proteins MCL-1 and BCL2-A1. The combina-
tion of ABT-263 and selumetinib caused significantly greater
reduction in cell viability than either agent alone (Figure 2A).
Combinations using other MEK inhibitors and another active
BH3 mimetic produced similar efficacy, but a less active enan-
tiomer of ABT-263 was not effective, suggesting that these
effects were on-target (Figures S2A-S2D). These combinations
led to an overall decrease in cell titer, relative to pretreatment
starting cell titer, indicating induction of cell death. Indeed,

HCT116 SW620
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Figure 2. Pharmacologic Inhibition of BCL-XL and MEK in KRAS Mutant Cancer Cells
(A) Cells were treated with vehicle (Control), 1 uM ABT-263 (ABT), 1 uM selumetinib (SEL), or the combination for 72 hr. Values represent the change in viable cell
number relative to starting cell titer immediately before treatment. p < 0.01(*) or < 0.001(**) for ABT/SEL versus all other groups by one-way ANOVA with Tukey

post-hoc test.

(B) Cells were treated as in (A) for 72 hr and the percentage of apoptotic cells was determined by Annexin V staining. All error bars represent SEM.

(C) Western blot of cells treated with ABT, SEL, or the combination for 24 hr.

(D) Cells were treated for 24 hr with ABT, SEL, or the combination. Left, immunoprecipitation was performed with immunoglobulin G control antibody or anti-BIM
antibody, and the immunoprecipitate was probed with the indicated antibodies. Right, pre-immunoprecipitation lysates (L) and supernatants (S) following
immunoprecipitation with anti-BIM antibody were probed with the indicated antibodies.

(E) Thirty KRAS mutant cell lines were treated with ABT, SEL, or the combination for 72 hr and the percentage of apoptotic cells was determined by Annexin V

staining. For each cell line, the percent apoptosis is color-coded by quartile.

(F) The percentage of all cell lines exhibiting the indicated degree of apoptosis is shown.

See also Figure S2 and Table S3.

ABT-263/selumetinib caused significantly more apoptosis than
either agent alone (Figure 2B). Although this screen was not de-
signed to identify combinations with efficacy specific for KRAS
mutant versus wild-type cancers, lack of efficacy of ABT-263/se-
lumetinib in an isogenic HCT116 cell line with wild-type KRAS
suggests that KRAS mutations may indeed predispose to sensi-
tivity to this combination (Figures S2E and S2F).

We investigated the mechanism by which ABT-263 and selu-
metinib cooperate to induce apoptosis in KRAS mutant cancer
cells. Consistent with prior results, suppression of phosphory-
lated ERK (P-ERK) by selumetinib led to increased levels of the
pro-apoptotic protein BIM, a well-known target of MAPK sig-
naling (Figure 2C; Ley et al., 2003; Faber et al., 2009). The lack
of marked apoptosis induced by selumetinib alone (Figures 2B
and 2C) is consistent with previous studies demonstrating that
induction of BIM alone is insufficient to cause apoptosis, but
that concomitant suppression of one or more anti-apoptotic
proteins is also needed (Faber et al., 2009; Rahmani et al.,
2009). As expected, neither ABT-263 nor selumetinib led to a
decrease in the levels of the anti-apoptotic proteins BCL-XL,
BCL-2, or MCL-1 (Figure 2C). Immunoprecipitaion of BIM re-

vealed that when BIM levels are induced by selumetinib, a pro-
portionally increased amount of BCL-XL associates with BIM
(Figure 2D), consistent with the notion that induction of BIM
alone is not sufficient to induce marked apoptosis because it is
bound and inhibited by pro-survival BH3 proteins, including
BCL-XL. However, ABT-263 completely disrupted the associa-
tion of BCL-XL with BIM under basal conditions and following
BIM induction by selumetinib. In the presence of ABT-263, BIM
was now able to complex with MCL-1, which has been shown
to promote apoptosis by freeing apoptotic mediators, such as
BAK and BAX, from inhibition by MCL-1 (Willis et al., 2007).
Thus, ABT-263 may effectively combine with MEK inhibitors to
promote apoptosis by blocking the ability of BCL-XL to bind
and inhibit the increased levels of BIM protein induced by
MEK inhibition, thereby “freeing” BIM to trigger an apoptotic
response. When evaluated across a panel of 30 KRAS mutant
cell lines (ten colorectal, ten lung, ten pancreatic; Table S3),
ABT-263/selumetinib induced marked apoptosis in a large pro-
portion of cell lines (Figures 2E and 2F), suggesting that this
strategy could be effective in a significant proportion of KRAS
mutant cancers of different tissue types.
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To identify potential biomarkers predicting which KRAS
mutant cancers might be most likely to respond to ABT-263/se-
lumetinib therapy, we analyzed gene expression profiles from
these KRAS mutant cell lines to identify genes whose expression
correlated closely with the degree of apoptosis induced by ABT-
263/selumetinib (Figure 3A). Gene set enrichment analysis
(GSEA; Subramanian et al., 2005) revealed that four of the top
ten gene sets enriched were related to epithelial versus mesen-
chymal differentiation (Table S4). Moreover, 25% of the genes
identified were represented in a previously reported epithelial-
to-mesenchymal transition (EMT) gene signature (Figure 3A;
Taube et al., 2010). Increased sensitivity to ABT-263/selumetinib
also correlated with a previously identified “KRAS dependency”
gene signature associated with epithelial differentiation (Fig-
ure 3B; Singh et al., 2009). Expression levels of E-cadherin pro-
tein (@ marker of epithelial differentiation) also correlated with
sensitivity (Figures 3C and S3A). Consistent with this hypothesis,
shRNA-mediated knockdown of Zeb1, a master regulator of
mesenchymal differentiation, in the mesenchymal KRAS mutant
lung cancer cell line A549 induced an epithelial phenotype
(increased E-cadherin and decreased vimentin) and increased
sensitivity to ABT-263/selumetinib (Figures 3D and 3E). Thus,
epithelial differentiation and/or EMT may be useful biomarkers
to predict subsets of KRAS mutant cancers that are sensitive
or resistant to this combination.

Given the broad efficacy of combined BCL-XL/MEK inhibition
in KRAS mutant cancers in vitro, we evaluated the efficacy of
ABT-263/selumetinib in KRAS mutant xenografts. Consistent
with prior results, MEK inhibition alone slowed tumor growth
relative to vehicle-treated control, but failed to induce tumor
regressions (Figure 4A; She et al.,, 2010). Although ABT-263
alone had minimal effect on tumor growth, ABT-263/selumetinib
led to marked tumor regressions in all 3 KRAS mutant xenografts
(Figures 4A and 4B). Mice tolerated combined treatment well
with no overt signs of toxicity (Figure S4A). Selumetinib alone
led to robust suppression of P-ERK and tumor cell proliferation,
but caused only a minimal increase in apoptosis (Figure 4C).
However, ABT-263/selumetinib led to a dramatic induction of
tumor cell apoptosis, consistent with the tumor regressions
observed with this therapy.

Our in vitro studies suggest that subsets of KRAS mutant
cancers from multiple tissue types, including colorectal, lung,
and pancreatic cancers, may be susceptible to this therapeutic
approach. Thus, we assessed the efficacy of combined BCL-
XL/MEK inhibition in established KRAS-driven lung tumors in
the LSL-KRAS®'2P mouse model (Jackson et al., 2001; Engel-
man et al., 2008.) ABT-263/selumetinib led to significantly
greater tumor regression than either agent alone, and led to
near-complete regression of tumors in some cases (Figures 4D
and 4E). In some mice selected for long-term treatment with
ABT-263/selumetinib, durable tumor regressions lasting up to
7 weeks were observed (Figures S4B and S4C). This combina-
tion also led to regressions in a similar model also lacking p53
(Figure S4D). Overall, these data indicate that ABT-263/selume-
tinib has substantial preclinical in vivo efficacy in KRAS mutant
cancer models from different tumor types. The marked tumor
regressions observed support combined BCL-XL/MEK inhibition
as a targeted therapy combination for evaluation in clinical trials
in patients with KRAS mutant cancer.
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Despite the marked in vivo efficacy observed with combined
BCL-XL/MEK inhibition, our results suggest that this strategy is
unlikely to be universally effective in all KRAS mutant cancers
and that biomarkers predicting sensitivity and resistance are
needed. Indeed, we observed that epithelial differentiation and
EMT may help identify subsets of KRAS mutant cancers that
are more or less likely to respond to this therapy (Figures 3A-
3C). Interestingly, some, but not all, xenograft tumors harvested
after long-term treatment with ABT-263/selumetinib showed
loss of membrane expression of E-cadherin and increased
vimentin expression, indicative of EMT (Figure S3B), further sup-
porting the notion that cancers that have undergone EMT may
be less sensitive to this combination. Though no acquired muta-
tions were identified in the tumor cells that survived long-term
treatment (see Supplemental Experimental Procedures), we ob-
served that most residual tumors showed partial recovery of
P-ERK, suggesting that failure to maintain full MAPK pathway
suppression may contribute to the development of resistance
to this combination (Figure S4E). With respect to EMT, analysis
of KRAS mutant lung cancers from 25 patients revealed that
56% of patients showed features of epithelial differentiation,
whereas 44% showed evidence of mesenchymal differentiation
(Figure S3C). These results indicate that the epithelial/mesen-
chymal status of KRAS mutant cancers can be readily assessed
in patients, and that a substantial percentage of KRAS mutant
lung cancers retain an epithelial phenotype, which our data
suggest may predict sensitivity to this therapy. Thus, the epithe-
lial/mesenchymal status of KRAS mutant cancers may be useful
to evaluate in early clinical trials of combined BCL-XL/MEK
inhibition.

DISCUSSION

Although KRAS is the most commonly mutated oncogene, KRAS
mutant cancers have proven refractory to targeted therapies and
remain a major clinical challenge. We identified combined BCL-
XL and MEK inhibition as a therapeutic strategy that led to
increased efficacy in KRAS mutant cancer cell lines from
different tumor types and to in vivo tumor regressions in several
KRAS mutant cancer models. These findings, along with prior
reports (Engelman et al., 2008; She et al., 2010), provide further
evidence that targeted therapy combinations may be an impor-
tant avenue to generate therapeutic efficacy in KRAS mutant
cancers.

Although MEK inhibitors were among the most effective
agents in KRAS mutant cancer cell lines in a large-scale cell
line screen (Garnett et al., 2012), MEK inhibition tends to have
largely cytostatic effects in KRAS mutant cancers, causing
<25% apoptosis in 90% of cell lines tested. The primarily cyto-
static effects of MEK inhibitors may explain why they can slow
tumor growth in vivo in KRAS mutant tumor xenografts, but rarely
cause tumor regressions (Figures 4A and 4B; She et al., 2010).
These findings are also consistent with the clinical experience
with MEK inhibitors in KRAS mutant cancers, where stable
disease is commonly observed, but true tumor regressions
and/or responses are rarely seen (Adjei et al., 2008; Infante
et al., 2010). However, the ability of MEK inhibitors to decrease
proliferation and lead to stable disease in patients with KRAS
mutant cancers suggests that MEK inhibitors may be good
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Figure 3. Epithelial Differentiation Predicts Sensitivity to the Combination of ABT-263 and Selumetinib

(A) Heat map showing the top genes differentially expressed according to sensitivity to ABT-263/selumetinib as generated by the PAMR algorithm utilizing gene
expression profiles from the KRAS mutant cell line panel. Red arrows represent genes that are upregulated and blue arrows represent genes that are down-
regulated in a previously reported EMT gene signature. Vimentin (VIM) and E-cadherin (CDH1), markers of mesenchymal and epithelial differentiation,
respectively, are indicated.

(B and C) Correlation of apoptosis induced by ABT-263/selumetinib with (B) a KRAS dependency gene signature and (C) E-cadherin protein expression. Each dot
represents a single cell line. P values were generated by two-tailed t test.

(D) Western blot of A549 cells infected with shRNA targeting GFP (shGFP) or Zeb1 (shZeb1).

(E) A549 cells infected with shGFP or shZeb1 were treated with vehicle (CON), 1 uM ABT-263 (ABT), 1 uM selumetinib (SEL), or the combination for 72 hr. Values
represent the change in viable cell number relative to starting cell titer immediately before treatment. The p values were determined by one-way ANOVA with
Tukey post-hoc test. All error bars represent SEM.

See also Figure S3 and Table S4.
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SW1463 Figure 4. In Vivo Efficacy of Combined BCL-
CON XL and MEK Inhibition
"";‘EI (A) KRAS mutant xenografts were treated with
Ll . .
—— ABTISEL vehicle (CON), ABT-263 (ABT, 100 mg/kg daily),

selumetinib (SEL, 25 mg/kg twice daily), or both
drugs in combination. The mean percent change in
tumor volume relative to initial tumor volume is
shown. Error bars represent SEM.

(B) Waterfall plot showing the percent change in
tumor volume (relative to initial volume) for indi-
vidual tumors in the SEL and ABT/SEL groups
following 21 days of treatment. P values were
generated by two-tailed t test.

(C) Tumor tissue from HCT116 xenografts treated
for 3 days with the indicated drug regimens was
evaluated by immunohistochemistry for P-ERK,
Ki67 (a marker of proliferation), or cleaved caspase
3 (a marker of apoptosis). Tumors were harvested
3 hr after dosing on day 3. Scale bar represents
100 pm.

(D and E) Established lung tumors in LSL-
KRAS®'2P mice were treated with vehicle, ABT,
SEL, or both drugs in combination as in (A). (D) MR
images of two mice obtained pretreatment and
following 1 week of treatment with the ABT/SEL
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See also Figure S4.

Our results suggest that these increased
levels of BIM are bound and inhibited
by anti-apoptotic proteins, such as
BCL-XL. Thus, BIM induction alone by
MEK inhibitors is insufficient to cause
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backbones for targeted therapy combinations. In particular,
combination approaches that increase the cell death response
to MEK inhibitors may be promising strategies to generate clin-
ical responses in KRAS mutant cancers.

While MEK inhibition alone does not lead to pronounced
apoptosis in KRAS mutant cancer cells, it may “prime” cells
for death through induction of the pro-apoptotic protein BIM.
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apoptosis, but may leave KRAS mutant
cancer cells primed for death by a second
insult. Indeed, we found that ABT-263
could abrogate the inhibitory complex
between BCL-XL and BIM, leading to
robust apoptosis. In broad terms, this
mechanism is consistent with prior
findings that inhibition of another anti-
apoptotic protein, BCL-2, increases the
efficacy of kinase inhibitors in HER2-
amplified cancers, BRAF mutant mela-
nomas, and acute myeloid leukemia cells
(Milella et al., 2002; Konopleva et al.,
2006; Cragg et al., 2008; Muranen et al.,
2012). Thus, potentiators of apoptosis
may be particularly effective when partnered with the appro-
priate targeted therapy in molecularly defined cancer subsets.
Our results suggest that agents (e.g., ABT-263) that directly
target BCL-XL or agents that decrease levels of BCL-XL by
targeting upstream regulators may be particularly effective
therapeutic combination partners with MEK inhibitors in KRAS
mutant cancers.

p<0.05
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EXPERIMENTAL PROCEDURES

Detailed experimental information is provided in Supplemental Experimental
Procedures.

Pooled shRNA Screen and Analysis

Detailed pooled shRNA screen procedures are provided in Supplemental
Experimental Procedures. Briefly, target cells were infected with lentivital
pooled shRNA library and split into three aliquots. One aliquot was immedi-
ately frozen to represent the initial population. The remaining two aliquots
were seeded into separate 15 cm plates. The next day, media containing
DMSO or 1 uM selumetinib was added, and cells were cultured for 7 days.
Genomic DNA was isolated from all three cell aliquots, and shRNA abundance
was quantified by deep sequencing. The ratio of the abundance of each
shRNA in MEK inhibitor-treated versus both the vehicle-treated and initial
samples was calculated. For each cell line, a given shRNA was considered
a “hit” if it showed a decrease in abundance of at least 2-fold relative to
both the vehicle-treated and initial samples.

Mouse Treatment Studies

HCT116, SW620, or SW1463 cells were injected (5 x 10° cells per injection)
into the flanks of athymic nude mice (Charles River Laboratories). Once tumors
reached an average volume of ~100-200 mm?, mice were randomized into
treatment arms and tumor volume was assessed by caliper measurements
over a 21- to 28-day period. Lung tumors in LSL-KRAS®"2P mice were induced
by inhalation of adenoviral Cre recombinase and monitored and measured
by serial MRI scans as previously described (Engelman et al., 2008). All
mouse studies were conducted through Institutional Animal Care and Use
Committee (IACUC) approved animal protocols in accordance with institu-
tional guidelines.

Patient Samples

Human tumor specimens were obtained from the Massachusetts General
Hospital under Institutional Review Board-approved studies. All patients
provided written, informed consent. KRAS mutation status was determined
by the Massachusetts General Hospital Clinical Laboratory and Department
of Pathology.

Statistical Analyses

One-way ANOVA with Tukey post-hoc test was used for Figures 2A, 2B, 3E,
and 4E. A two-tailed t test was used for Figures 3B, 3C, and 4B. Statistical
significance was established for p < 0.05.

SUPPLEMENTAL INFORMATION

Supplemental Information includes four figures, four tables, and Supplemental
Experimental Procedures and can be found with this article online at http://dx.
doi.org/10.1016/j.ccr.2012.11.007.
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