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Founder Sequencing

• 50X coverage per founder

• 1.89 million SNPs

UCSC Genome Browser, D. melanogaster  chrX:6,422,043-6,434,615



RIL Genotyping-By-Sequencing

• 1,700 RILs genotyped at 96-plex

• Genotyped 10,275 SNPs

Light shotgun sequencing

Restriction-site Associated 
DNA (RAD) sequencing 

Low read coverage at any given position

Low confidence in SNP genotype call

High read coverage adjacent to 
restriction sites

Confident genotype calls for SNPs 
within 100-bp



Uncover Mosaic RIL Structure 
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RADseq vs Full Resequencing

!

Sequence

RADseq

97% genomewide identity between RADseq-derived 
genotypes and full resequencing
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Properties of DSPR RILs



QTL Mapping Power

would increase our ability to tightly resolve recombination
breakpoints. A fairly general observation is that the regions
of the genome associated with the most genotyping uncer-
tainty are those that stochastically happen to have the low-
est density of RAD markers cut sites. Thus, in choosing an
appropriate restriction enzyme it is more important to
manage minimum local cut-site density than genome-wide
average cut-site density.

The breeding design to create the mapping panel must
balance mapping resolution against the allele frequency
distribution in the panel. At one extreme, association studies
use natural populations with alleles at their natural fre-
quencies (e.g., the Drosophila Genetic Reference Panel).
These designs rely on the natural history of recombination
and thus have very high mapping resolution but many
alleles will be at low frequency. At the other extreme, in
a traditional QTL mapping design utilizing a two-line cross,
allele frequencies will be near 50%, but resolution is rarely
greater than !10 cM (Mackay 2001). The eight-way syn-
thetic populations from which the DSPR RILs were created
underwent 50 generations of free recombination. This
allows us to localize QTL precisely and achieve high map-
ping resolution. However, during the free recombination
phase the forces of drift and selection were able to act on
the synthetic populations, altering the allele frequency dis-
tribution. The longer the maintenance phase is, the more
likely alleles will be lost and/or frequencies will deviate

from the null expectation, while at the same time mapping
resolution will increase (Valdar et al. 2006; King et al.
2012). The DSPR has the longest maintenance/crossing
phase (F50) of any of the available linkage-based panels
(see Introduction: AMPRIL, CC, NAM, and MAGIC). This
provides lower location error and higher average resolution
than has been achieved by these other panels (Kover et al.
2009; Aylor et al. 2011; Huang et al. 2011). However, the
allele frequency distributions in these other panels also more

Figure 8 The relationship between marker density (number of semico-
dominant markers per centimorgan) and breakpoint distance. The break-
point distance is the distance over which the inferred founder genotype
(with 95% certainty) switches between two different founder genotypes.
The line is the best-fitting exponential curve. Above is the histogram of
breakpoint distances.

Figure 10 Power in the DSPR panel for alleles with different frequencies
in the RILs. Different points correspond to different experimental designs:
solid line, inbred RILs; dashed line, pA–pB cross. In both designs, the QTL
explains 5% of the variation.

Figure 9 Power in the DSPR panel for a design in which inbred RILs are
phenotyped directly (solid line) and matched crosses between the pA and
pB RILs are phenotyped (dashed line) for different sample sizes (x-axis)
and different effect sizes. Different symbols represent different 21effect
sizes: ◻ = 10%, • = 5%, s = 2.5%. Power for a 1% QTL was
,0.05 for all sample sizes and is not shown.

12 E. G. King, S. J. Macdonald, and A. D. Long
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Community Resource

www.FlyRILs.org
• RILs

• Data

• Software



DSPRqtl

Libby King



Complementary Resources

Mackay et al., Nature 2012

• DGRP

• Drosophila Genetic 
Reference Panel

• 168 naturally-derived 
inbred strains

• Sequenced to an average 
of ~19X
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