In a battle between parental chromosomes, a failure to reload

Simon W. L. Chan¹

Department of Plant Biology, University of California, Davis, CA 95616

hat can go wrong after an egg is fertilized by sperm from a different species? One of the most intriguing outcomes to the chromosome biologist is uniparental genome elimination. In this phenomenon, one of the parental chromosome sets is completely lost during embryonic cell divisions, creating sterile haploid offspring (1). Uniparental genome elimination occurs in diverse taxa, including several distantly related plant species and even in fish (1, 2). The mechanism by which chromosomes from one parent are selectively discarded has been studied cytologically in crosses between different grass species. However, these experiments have not revealed what is defective about the eliminated genome in a hybrid. In PNAS, Sanei et al. (3) make a major breakthrough by showing that missegregated chromosomes in a classic barley interspecies cross (Hordeum vulgare × Hordeum bulbosum) fail to assemble kinetochores, the microtubule attachment sites that mediate chromosome inheritance.

The chromosomal location of the kinetochore, termed the centromere, is marked by incorporation of a histone H3 variant named CENH3. CENH3-containing nucleosomes are found at centromeres in all eukaryotes and are essential for recruiting other kinetochore proteins. Sanei et al. (3) used an antibody raised against rice CENH3 to stain embryos created by pollinating cultivated barley (H. vulgare) with its wild relative H. bulbosum—the antibody recognizes CENH3 from both parents. A fascinating observation about this cross is that elimination of the paternal *H. bulbosum* chromosomes is temperature-dependent. At low temperature, CENH3 was found at the predicted foci on all chromosomes, which segregated accurately. In embryos created by fertilization at higher temperature, chromosomes that lagged behind during mitosis and were eventually discarded showed a lack of CENH3 antibody staining. Fluorescence in situ hybridization with labeled genomic DNA (combined with a wealth of previous genetic data) indicates that lagging chromosomes without functional kinetochores were derived from the H. bulbosum parent.

Loss of CENH3 from H. bulbosum chromosomes neatly explains their failure to segregate faithfully during embryonic

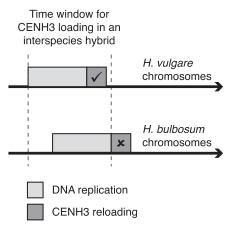


Fig 1. Cell cycle asynchrony could explain why H. bulbosum chromosomes fail to reload the centromere-specific histone CENH3 in an interspecies hybrid. In this model, DNA replication is a chromosome-intrinsic property, so H. bulbosum chromosomes proceed through S phase more slowly than H. vulgare chromosomes. This delay means that H. bulbosum chromosomes miss a narrow time window for CENH3 replenishment and show less condensation. The cell cycle might proceed more slowly at low temperature, possibly explaining why H. vulgare × H. bulbosum hybrids are stable when cultivated below 18 °C

mitosis but also raises important questions about how centromere identity and consequently kinetochore location are preserved when chromosomes are copied. Elimination of the *H. bulbosum* genome in unstable hybrids is gradual, taking place over several days after pollination (4). When chromosomes are replicated during S phase of the cell cycle, histones including CENH3 are distributed between the two sister chromatids (5). These observations suggest that H. bulbosum chromosomes enter the zygote with a normal complement of CENH3, which is gradually depleted by several rounds of DNA replication until the kinetochore is no longer able to function. Therefore, reloading of CENH3 after DNA replication is specifically defective in H. bulbosumderived chromosomes, although it is normal in chromosomes from the H. vulgare parent. What could cause CENH3 loading to fail in one of the two parental genomes? A possible clue is that H. bulbosumderived chromosomes in hybrids appear less condensed than their H. vulgare counterparts. This might indicate that replication of *H. bulbosum* chromosomes is poorly synchronized with the hybrid cell cycle, a factor that could explain why CENH3 reloading does not occur. If asynchronous replication of parental chromosome sets is responsible for a CENH3 loading defect, it would indicate that the time window for replenishment is quite narrow (Fig. 1). Increasing the ploidy of the *H. bulbosum* parent can prevent genome elimination, further suggesting that subtle differences in cell cycle timing may affect whether CENH3 reloading is effective in hybrids (6). Cell cycle asynchrony between H. vulgare and H. bulbosum chromosome replication may be testable through kinetic analysis with cytological markers in the barley interspecies cross. A wild card in the interpretation of these results is the possibility that histones are reprogrammed on a large scale during reproductive development. A substantial fraction of Arabidopsis thaliana CENH3 is unloaded after fertilization and apparently resynthesized from the zygotic genome (7). Whether such a process takes place in the grasses is unknown, but zygote-specific CENH3 dynamics could have a major influence on the segregation of parental genomes in interspecies hybrids.

Cell cycle differences are not the only reason why centromere assembly could differ between H. vulgare and H. bulbosum chromosomes. However, any explanation must account for the fact that H. bulbosum chromosomes load CENH3 normally in selfed plants yet are defective when mixed with *H. vulgare* chromosomes (even this depends on the environmental factor of high temperature). An alternative hypothesis is that H. vulgare CENH3 cannot be loaded into *H. bulbosum* centromeres in unstable hybrids and has a dominantnegative effect on H. bulbosum CENH3 loading in this situation. The lack of evidence for obligate interactions between CENH3 and centromere DNA argues against this model; like conventional nucleosomes, CENH3 nucleosomes seem to package DNA with relatively little sequence specificity. First, Sanei et al. show that barley expresses two CENH3 variants, both of which can coexist at either H. vulgare centromeres or at H. bulbosum

Author contribution: S.W.L.C. wrote the paper. The author declares no conflict of interest. See companion article on pages E498 and 13373. ¹E-mail: srchan@ucdavis.edu.

centromeres in stable low-temperature hybrids (3). Second, CENH3 from Chinese cabbage (Brassica rapa) or maize can be loaded into A. thaliana chromosomes in the presence of the wild-type protein, even though these three species have dissimilar centromere DNA sequences (8). Third, there are many examples of CENH3 loading into chromosome locations completely lacking the normal centromere DNA sequence (9, 10). Centromere sequence differences may still play a role in some genome elimination phenomena. Fusing somatic cells of mouse and tammar wallaby yielded a hybrid cell line that had lost almost all of the marsupial genome (11). Surviving fragments of tammar wallaby chromosomes were fused to mouse chromosomes and had replaced their centromere DNA with corresponding sequences from the mouse genome, possibly indicating that wallaby centromeres were deleterious to sustained inheritance when the two parental genomes were mixed.

The involvement of centromere maintenance defects in genome elimination should stimulate a search for histone chaperones and other factors required to replenish CENH3 in plants. This is complicated by the fact that the CENH3 loading machinery changes rapidly during evolution: the CAL1 chaperone of Drosophila melanogaster, KNL-2 of Caenorhabditis elegans, and the HJURP histone chaperone identified in human cells are not conserved between all sequenced

animal genomes, let alone in plants (12-15). Improvements in barley genomic resources should allow fine genetic mapping of loci that control genome elimination in H. vulgare \times H. bulbosum crosses. Preliminary mapping experiments already suggest that the CENH3 genes themselves are not responsible for chromosome loss

The barley chromosome elimination mechanism may also be relevant to a provocative hypothesis for postzygotic speciation.

in hybrids (16). The efficiency of uniparental genome elimination in barley depends on the H. bulbosum cultivar, providing another source of potentially informative genetic variation.

A broader question is whether the mechanism discovered in barley interspecies hybrids is responsible for other natural cases of uniparental genome elimination. A. thaliana experiments using artificial CENH3 variants have shown that parental centromere differences can cause specific loss of either the maternal or paternal genome (17). An important

difference between these observations and those made in barley hybrids is that parental chromosomes in Arabidopsis experiments were genetically identical, differing only in the proteins incorporated into centromeres. It is likely that genome elimination in this case must be faster than the gradual process seen in barley, because loading of both versions of CENH3 into maternal and paternal chromosomes after DNA replication would rapidly abolish functional differences between the two sets. Therefore, there are two ways for centromeres to differ when divergent parental genomes are mixed in the fertilized zygote. Either CENH3 reloading into one genome can be defective (as shown by Sanei et al.), or functional differences between CENH3 alleles brought into the zygote could cause immediate missegregation during the first few mitotic divisions. The barley chromosome elimination mechanism may also be relevant to a provocative hypothesis for postzygotic speciation. Centromere DNAs and ČENH3 protein sequences evolve very rapidly, and parental centromere differences have been proposed to cause chromosome segregation errors in mitosis or meiosis (18). This infidelity would reduce fitness or fertility when two different species are crossed. Uniparental genome elimination may therefore represent an extreme case of how centromere differences can affect genetic inheritance in interspecies hybrids.

- 1. Dunwell JM (2010) Haploids in flowering plants: Origins and exploitation. Plant Biotechnol J 8:377-424.
- 2. Fujiwara A, Abe S, Yamaha E, Yamazaki F, Yoshida MC (1997) Uniparental chromosome elimination in the early embryogenesis of the inviable salmonid hybrids between masu salmon female and rainbow trout male. Chromosoma 106:44-52.
- 3. Sanei M, Pickering R, Kumke K, Nasuda S, Houben A (2011) Loss of centromeric histone H3 (CENH3) from centromeres precedes uniparental chromosome elimination in interspecific barley hybrids. Proc Natl Acad Sci USA 108:E498-E505.
- 4. Bennett MD, Finch RA, Barclay IR (1976) The time rate and mechanism of chromosome elimination in Hordeum hybrids. Chromosoma 54:175-200.
- 5. Corpet A, Almouzni G (2009) Making copies of chromatin: The challenge of nucleosomal organization and epigenetic information, Trends Cell Biol 19:29-41.
- 6. Kasha KJ, Kao KN (1970) High frequency haploid production in barley (Hordeum vulgare L.). Nature 225: 874-876

- 7. Ingouff M, et al. (2010) Zygotic resetting of the HIS-TONE 3 variant repertoire participates in epigenetic reprogramming in Arabidopsis. Curr Biol 20:2137–2143.
- 8. Ravi M, et al. (2010) The rapidly evolving centromerespecific histone has stringent functional requirements in Arabidopsis thaliana. Genetics 186:461-471.
- 9. Amor DJ, Choo KH (2002) Neocentromeres: Role in human disease, evolution, and centromere study. Am J Hum Genet 71:695-714.
- 10. Nasuda S, Hudakova S, Schubert I, Houben A, Endo TR (2005) Stable barley chromosomes without centromeric repeats. Proc Natl Acad Sci USA 102:9842-9847.
- 11. Brown JD, et al. (2011) Centromere conversion and retention in somatic cell hybrids. Cytogenet Genome Res 134.182-190
- 12. Dunleavy EM, et al. (2009) HJURP is a cell-cycle-dependent maintenance and deposition factor of CENP-A at centromeres. Cell 137:485-497.
- 13. Erhardt S, et al. (2008) Genome-wide analysis reveals a cell cycle-dependent mechanism controlling centromere propagation. J Cell Biol 183:805-818.

- 14. Foltz DR, et al. (2009) Centromere-specific assembly of CENP-a nucleosomes is mediated by HJURP. Cell 137: 472-484.
- 15. Maddox PS, Hyndman F, Monen J, Oegema K, Desai A (2007) Functional genomics identifies a Mvb domaincontaining protein family required for assembly of CENP-A chromatin. J Cell Biol 176:757-763.
- 16. Ho KM, Kasha KJ (1975) Genetic control of chromosome elimination during haploid formation in barley. Genetics 81:263-275
- 17. Ravi M, Chan SW (2010) Haploid plants produced by centromere-mediated genome elimination. Nature 464.615-618
- 18. Henikoff S, Ahmad K, Malik HS (2001) The centromere paradox: Stable inheritance with rapidly evolving DNA. Science 293:1098-1102.