
SEED Academy, Spring 2009 Synthetic Biology Module

Homework #4 Due March 14, 2009

1) Laboratory Project Overview

Here, again, is our lab schematic (adapted from MIT's 20.109 DNA Engineering Module: http://openwetware.org/wiki/20.109(F08):Module_1). Please answer the questions that follow.

a) Which steps in the process did you perform on Day 4? Refer to the step name(s) that appear(s) above the arrow (e.g. "Digest", "Ligate", etc.) rather than the number(s). Give a brief summary of the step(s).

b)	One of the major things that you did on Day 4 is <i>not</i> on the schematic. What is it? Give a two sentence description of this step.
	2) Assume that you gel purified 200 μ L of vector at 75 ng/ μ L, and you purified 50 μ L of PCR product at 1 μ g/ μ L. After purification, you eluted into 30 μ L and obtained 10 ng/ μ L for the vector and 50 ng/ μ L for the PCR product. Calculate the % yield or recovery from you gel purification for the PCR product and vector. (Hint: % Yield = 100% x mass _{out} /mass _{in}). Show <u>ALL</u> work .
3)	Use the information at the end of the homework (NEB pages) to answer the following questions about the sequence below:
	- ATTAGTCTAGAAATTCGCGACTAGTCAGCA - 3' - TAATCAGATCTTTAAGCGCTGATCAGTCGT - 5'
	a) Design the forward and reverse primers (20 base pairs long) you would use to PCR amplify this DNA sequence from your favorite organism.
	b) Draw the products of XbaI digestion of this sequence.
	c) Draw the products of SpeI digestion of this sequence.

	d)	Can any of these products (from the XbaI and SpeI digestions) be ligated to form a <i>new</i> product? Do not include potential products from blunt-end ligations.
	e)	Can this resulting fragment be cut by XbaI or SpeI? Why?
4)	(ht	ad "Idempotent Vector Design for Standard Assembly of BioBricks" tp://hdl.handle.net/1721.1/21168 first 6 pages) and answer the following questions. What is the motivation for a standard assembly scheme?
	b)	What does it mean for assembly to be idempotent?
	c)	What are the 4 standard enzymes used in BioBricks assembly?
	d)	What enzymes should be used to cut a BioBrick part that we wish to add to the back of another part?

e)	Indicate the recipe for a ligation of a plasmid and an insert. Your plasmid is 3000
	bp and the insert is 1000 bp. Assume that all nucleotides are 1000 Da. Assume
	that you want 1 nM concentrations of each of the DNA components in your
	ligation.

Total	_ <u>10</u> _ μL
Water	<u> </u>
T4 DNA Ligase (Enzyme)	_ <u>0.5</u> _ μL
Ligation Buffer (10X)	μL
Insert (50 ng/µL)	μL
Plasmid (10 ng/μL)	μL

PstI

Nomenclature Update

Recognition Site:

Source:

A E. coli strain that carries the PstI gene from Providencia stuartii 164 (ATCC 49762).

Reagents Supplied:

NEBuffer 3 (10X) BSA (100X)

Enzyme Properties

Activity in NEBuffers:

NEBuffer 1: 75% NEBuffer 2: 75% NEBuffer 3: 100% NEBuffer 4: 50%

When using a buffer other than the optimal (supplied) NEBuffer, it may be necessary to add more enzyme to achieve complete digestion.

Methylation Sensitivity:

dam methylation: Not sensitive dcm methylation: Not sensitive CpG methylation: Not sensitive

Heat Inactivation:

80°C for 20 minutes

Survival in a Reaction:

Minimum units to digest 1 µg of substrate DNA in 16 hours: 0.50 unit(s)

Reaction & Storage Conditions

Reaction Conditions:

1X NEBuffer 3 Supplemented with 100 µg/ml Bovine Serum Albumin Incubate at 37°C.

1X NEBuffer 3:

50 mM Tris-HCl 100 mM NaCl 10 mM MgCl₂ 1 mM Dithiothreitol pH 7.9 @ 25°C

Unit Definition:

One unit is defined as the amount of enzyme required to digest 1 μg of λ DNA in 1 hour at 37°C in a total reaction volume of 50 μl .

Concentration:

20,000 units/ml and 100,000 units/ml

Unit Assay Substrate:

λDNA

Storage Conditions:

10 mM Tris-HCl 200 mM NaCl 1 mM Dithiothreitol 0.1 mM EDTA 200 µg/ml BSA 50% Glycerol 0.15% Triton X-100 pH 7.4 @ 25°C

Storage Temperature:

-20°C

Diluent Compatibility:

Diluent C

Notes

General notes:

1. Number of units required to cleave 1 μg of supercoiled plasmid DNA in one hour: pUC19 = 1 unit, pBR322 = 1 unit, LITMUS = 1 unit.

XbaI

Nomenclature Update

Recognition Site:

5'... T"C T A G A ... 3' 3'... A G A T C_{*}T ... 5'

Source:

A E. coli strain that carries the XbaI gene from Xanthomonas badrii (ATCC 11672).

Reagents Supplied:

NEBuffer 2 BSA

Enzyme Properties

Activity in NEBuffers:

NEBuffer 1: NEBuffer 2: 100% NEBuffer 3: 75% NEBuffer 4: 75%

When using a buffer other than the optimal (supplied) NEBuffer, it may be necessary to add more enzyme to achieve complete digestion.

Methylation Sensitivity:

dam methylation: Blocked by overlapping

dcm methylation: Not sensitive CpG methylation: Not sensitive

Heat Inactivation:

65°C for 20 minutes

Survival in a Reaction:

Minimum units to digest 1 µg of substrate DNA in 16 hours: 0.13 unit(s)

Reaction & Storage Conditions

Reaction Conditions:

1X NEBuffer 2 Supplemented with 100 µg/ml Bovine Serum Albumin Incubate at 37°C.

1X NEBuffer 2:

10 mM Tris-HCl 50 mM NaCl 10 mM MgCl₂ 1 mM Dithiothreitol pH 7.9 @ 25°C

Unit Definition:

One unit is defined as the amount of enzyme required to digest 1 μg of λ DNA (dam⁻/HindIII digest) in 1

hour at 37°C in a total reaction volume of 50 μ l.

Concentration:

20,000 units/ml and 100,000 units/ml

Unit Assay Substrate: λ DNA (*dam*-/Hind III digest)

Storage Conditions: 10 mM Tris-HCl 50 mM NaCl 1 mM Dithiothreitol 0.1 mM EDTA 200 µg/ml BSA 50% Glycerol pH 7.4 @ 25°C

Storage Temperature: -20°C

Diluent Compatibility: Diluent A

SpeI

Nomenclature Update

Recognition Site:

Source:

A E. coli strain that carries the SpeI gene from Sphaerotilus species (ATCC 13923).

Reagents Supplied:

NEBuffer 2 **BSA**

Enzyme Properties

Activity in NEBuffers:

NEBuffer 1: 75% NEBuffer 2: 100% NEBuffer 3: 25% NEBuffer 4: 75%

When using a buffer other than the optimal (supplied) NEBuffer, it may be necessary to add more enzyme to achieve complete digestion.

Methylation Sensitivity:

dam methylation: Not sensitive dcm methylation: Not sensitive CpG methylation: Not sensitive

Heat Inactivation:

65°C for 20 minutes

Survival in a Reaction:

Minimum units to digest 1 μg of substrate DNA in 16 hours: 0.50 unit(s)

Reaction & Storage Conditions

Reaction Conditions:

1X NEBuffer 2 Supplemented with 100 µg/ml Bovine Serum Albumin Incubate at 37°C.

1X NEBuffer 2:

10 mM Tris-HCl 50 mM NaCl 10 mM MgCl₂ 1 mM Dithiothreitol pH 7.9 @ 25°C

Unit Definition:

One unit is defined as the amount of enzyme required to digest 1 μg of Adenovirus-2 DNA in 1 hour at 37°C in a total reaction volume of 50 μl .

Concentration:

10,000 units/ml and 50,000 units/ml

Unit Assay Substrate:

Adenovirus-2 DNA

Storage Conditions:

10 mM Tris-HCl 50 mM KCl 1 mM Dithiothreitol 0.1 mM EDTA 200 µg/ml BSA 50% Glycerol pH 7.4 @ 25°C

Storage Temperature:

-20°C

Diluent Compatibility:

Diluent A

Notes

General notes:

 Cleaves to leave a 5´ CTAG extension which can be efficiently ligated to DNA fragments generated by AvrII, NheI, or XbaI.

EcoRI

Nomenclature Update

Recognition Site:

Source:

An E. coli strain that carries the cloned EcoRI gene from E. coli RY13 (R.N. Yoshimori).

Reagents Supplied:

NEBuffer EcoRI (10X)

Enzyme Properties

Activity in NEBuffers:

NEBuffer 1: 100% NEBuffer 2: 100% NEBuffer 3: 100% NEBuffer 4: 100%

When using a buffer other than the optimal (supplied) NEBuffer, it may be necessary to add more enzyme to achieve complete digestion.

Methylation Sensitivity:

dam methylation: Not sensitive dcm methylation: Not sensitive

CpG methylation: Impaired by overlapping

Heat Inactivation:

65°C for 20 minutes

Survival in a Reaction:

Minimum units to digest 1 µg of substrate DNA in 16 hours: 0.13 unit(s)

Reaction & Storage Conditions

Reaction Conditions:

1X NEBuffer EcoRI Incubate at 37°C.

1X NEBuffer EcoRI:

100 mM Tris-HCl 50 mM NaCl 10 mM MgCl₂ 0.025 % Triton X-100 pH 7.5 @ 25°C

Unit Definition:

One unit is defined as the amount of enzyme required to digest 1 μg of λ DNA in 1 hour at 37°C in a total reaction volume of 50 μl .

Concentration:

20,000 units/ml and 100,000 units/ml $\,$

Unit Assay Substrate:

λDNA

Storage Conditions:

300 mM NaCl 10 mM 2-Mercaptoethanol 0.1 mM EDTA 200 µg/ml BSA 50% Glycerol 0.15% Triton X-100 pH 7.5 @ 25°C

Storage Temperature:

-20°C

Diluent Compatibility:

Diluent C

Notes

General notes:

1. Conditions of low ionic strength, high enzyme concentration, glycerol concentration > 5%, or pH > 8.0 may result in star activity.