International Journal of Digital Earth, Taylor & Francis
Vol. 2, Supplement 1, 2009, 40-61 Teylor &Francls Group

RESTful implementation of geospatial services for Earth and Space
Science applications

P. Mazzetti***, S. Nativi®® and J. Caron®

“Institute of Methodologies for Environmental Analysis (IMAA), Italian National Research
Council (CNR), Tito Scalo, Italy; ®PIN, University of Florence, Prato, Italy; ‘UNIDATA-
UCAR P.O. Box 3000 Boulder, CO 80307-3000, USA

(Received 12 January 2009; final version received 7 February 2009)

In recent years, Representational State Transfer (REST) has been proposed as the
architectural style for the World Wide Web. REST promises of scalability and
simple deployment of Web Services seem to be particularly appealing for Earth
and Space Science (ESS) applications. In fact, most of the available solutions for
geospatial data sharing, applying standard interoperability specifications, require
complex service-oriented infrastructures; these are powerful and extensible
environments, but they usually result in difficult to deploy and manage for ESS
research teams. Thus, ESS researchers would gain great benefit from an easy way
of sharing geo-information using the international interoperability standards. The
variety and complexity of geo-information sharing services poses several
architectural issues; in fact these services encompass sensor planning and
observation, coverages and features publication and retrieving, models and
simulations running, data citation and annotation. Consequently, the adoption of
a specific architectural style must be carefully evaluated against these specific
requirements. In this work we analyse the existing geospatial services from an
architectural perspective and investigate their possible RESTful implementation.
Particular attention is paid to the OGC Web Coverage Service (WCS). Possible
benefits and drawbacks, along with open issues and possible solutions are
discussed. Our investigation suggests that REST may fit well to the typical ESS
research usage cases. However, the architectural choice (e.g. Simple Object Access
Protocol (SOAP) vs REST) will depend on a case-by-case analysis. Other
important factors must be considered, such as the application context: a valuable
example in point are the e-Business and e-Government application scenarios
which require message based solutions — like those implemented by SOAP. In any
case, there is a clear need for harmonization and reconciliation of these two
approaches.

Keywords: geospatial web services; ROA; REST; WCS; SOA; e-Science

Introduction

Earth and Space Science Informatics (ESSI) is a recent discipline aiming to provide
scientists with advanced information and computational services in support of Earth
and space systems research. In such a context, geospatial services play an important
role enabling geo-information sharing; this is essential to provide scientists with
services for data discovery, publishing and access. Besides, the geospatial services are

*Corresponding author. Email: mazzetti@imaa.cnr.it

ISSN 1753-8947 print/ISSN 1753-8955 online
© 2009 Taylor & Francis

DOI: 10.1080/17538940902866153
http://www.informaworld.com

http://www.informaworld.com

International Journal of Digital Earth 41

the building blocks for more complex disciplinary services — e.g. processing,
simulation, etc.

Since its beginnings the World Wide Web (WWW) was chosen as the preferred
infrastructure for geospatial services. Most initiatives for the specification and
standardization of geo-information resources (e.g. services, models, and formats)
adopted Web technologies as their protocols and encodings; also, they used the Web
interaction model for services based on the navigation paradigm. A significant case
in point is the Open Geospatial Consortium (OGC) which converted its specifica-
tions to Web technologies from other solutions — e.g. CORBA (http://www.corba.
org/), OLE/DCOM (http://www.microsoft.com/COM/) — since the end of the 1990s.
The adoption of WWW technologies allowed to benefit from the pervasiveness and
scalability of the Web and from the dynamicity of its development community which
provides an ever-growing set of open specifications and solutions. Therefore, today
Web technologies, and in particular HTTP, Simple Object Access Protocol (SOAP),
and XML (http://www.w3.org/XML/) are the cornerstones for designing and
developing really interoperable geospatial services.

In recent years the WWW has undergone important changes. The advent of new
technologies — e¢.g. AJAX (http://www.w3schools.com/ajax/default.asp), JSON
(http://www.json.org/) — new services — e.g. Web 2.0 services (O’Reilly 2005) — and
new architectural approaches — e.g. Representational State Transfer (REST)
(Fielding 2000) — although often based on newly interpreted existing solutions,
have deeply changed the way the Web is built and experienced by the users (O’Reilly
2005). Since REST has been proposed as the architectural style for the Web, it
promises the scalability of the original Web and the simplicity for services
development and deployment. While, the traditional Web and the powerful, but
complex, Service-Oriented-Architectures (SOA) do not seem to provide these
benefits. In the Web community, a great debate arose about the real and the ‘best’
architecture for the future Web; essentially, each approach has its own advantages
and disadvantages. Therefore, the architecture choice should be actually based on the
requirements emerging from specific usage cases. In keeping with that, REST
architectures and related technologies seem to be appealing when simplicity and
flexibility are the main requirements as it is common for research applications.
Indeed, scientists’ main objective is not to develop and maintain the complex
infrastructures required for SOA implementation, but to access and publish
information in the easiest possible way. Thus, geospatial services for the Earth
system science might gain benefit from REST architectures; an accurate investigation
and experimentation is needed.

Service-oriented and resource-oriented architectures

The characteristics of a distributed system like the WWW are determined by its
architecture, which could be defined as ‘the fundamental organization of a system,
embodied in its components, their relationships to each other and the environment, and
the principles governing its design and evolution’ (ANSI/IEEE 2000). Actually, many
important characteristics can be inferred from the architectural style instead of the
particular architectural instance. In fact, since an architecture embodies both
functional and non-functional properties, it may be difficult to directly compare
architectures conceived for different types of systems. Styles are a mechanism for

42 P. Mazzetti et al.

categorizing architectures and for defining their common characteristics. An
architectural style can be defined as ‘a coordinated set of architectural constraints
that restricts the roleslfeatures of architectural elements and the allowed relationships
among those elements within any architecture that conforms to that style’ (Fielding
2000).

The architectures adopted in the development of Web systems can be classified in
three main categories: Object-Oriented Architectures (OOA), SOA and Resource-
Oriented Architectures (ROA). The former derives from the Object-Oriented
approach, successfully used for the design and development of computational systems.
It was proposed also for the Web through the development of specifications for remote
method invocations — e.g. CORBA, Java RMI (http://java.sun.com/javase/technolo
gies/core/basic/rmi/index.jsp), XML-RPC (http://www.xmlrpc.com/), SOAP-RPC
(http://www.w3.0rg/TR/2003/REC-soap12-part2-20030624/#soapforrpc) — on top of
Web and Internet protocols. Several drawbacks limit the usefulness of OOAs in a
heterogeneous environment as the Web is; they are mainly related to the strict coupling
between the interacting objects (Vogel 2003). Hence, the other two approaches, SOA
and ROA, are now the sole competitors in the Web arena. Indeed both SOA and ROA
provide means for loosely-coupled access to the logical resources involved in the
provision of a service. The main difference between these two approaches is that SOAs
define (and limit) the way the interaction can be performed, while ROAs allow a basic
but direct interaction with the resources.

Service-oriented-architectures (SOA)

SOA is a paradigm for organizing and utilizing distributed capabilities that may be
under the control of different ownership domains. SOA is a means of organizing
solutions that promote reuse, growth and interoperability. It is not itself a solution to
domain problems but rather an organizing and delivery paradigm that enables one to
get more value using capabilities which are locally ‘owned’ and those under the
others control. SOA reflects the reality that ownership boundaries are a motivating
consideration in the architecture and systems design.

The central focus of SOA is the task or business function — getting something
done. Indeed, the central concept of SOA is the service: a mechanism to enable
access to a set of one or more capabilities (OASIS 2006). A service can enable users
to perform arbitrarily complex tasks involving the resources which are handled by
the service provider and not directly exposed to the user. Therefore, SOA defines a
class of architectures which enable loosely-coupled access to generic capabilities
provided by service providers (Thomas 2005). The generality of services in terms of
information, structure, semantics, behavior, action and process models require the
provision of functionalities supporting visibility and awareness — through service
description and policy definition. This makes SOA really powerful but complex,
especially if only simple tasks are required.

Resource-oriented architectures (ROA)

ROA is a paradigm for organizing and utilizing distributed resources that may be
under the control of different ownership domains. Unlike SOA, the ROA central
focus is the resource — a logical entity which is exposed for direct interaction

International Journal of Digital Earth 43

(Overdick 2007). In SOA the human or machine user interacts with a distributed
system through delegation, that is specifying the desired actions to a computational
component instead of directly acting on the resources. For instance, the user can
perform a complex task like ‘generate model forecasts’ delegating actions to the
information systems (through a service invocation) instead of acting directly on the
involved logical resources like the ‘forecast model’, ‘input data’, ‘output data’ and so
on. On the other side, in ROA the human or machine user interacts directly with the
exposed resources. Table 1 reports the main characteristics of both SOA and ROA
approach.

SOA and ROA in the web

In principle, the Web is an information system characterized by a small set of open
specifications — at the minimum the URI addressing standard, only. Thus, the Web
could accommodate both architectural approaches. This means that a Web system
could be based either on a SOA or a ROA. In recent years both approaches have
been proposed for Web Systems and also as the basis for the Web itself. In fact, to
assure the preservation of Web capabilities and characteristics a clear architecture
definition is needed.

SOAP specifications suite

In the WWW the emergence of SOAP provided a common specification for service
invocation between Web components. Lately SOAP, originally born for conveying
remote methods invocation in XML, being fully suitable for generic messaging
between objects, evolved in a more general standard for sending services calls
targeted to endpoints exposed in the Web and addressed through a specific URL
(Box 2001). Further specifications such as WSDL (http://www.w3.org/TR/wsdl),
UDDI (http://www.oasis-open.org/committees/uddi-spec/), WS-I (http://www.ws-i.
org/), WS-* etc. from various standardization bodies, mainly W3C (http://

Table 1. SOA and ROA main characteristics.

ROA approach SOA approach
Web architectural REST W3C Web services (SOAP
style Framework)
Web services RESTful (HTTP, XML, ...) SOAP suite (SOAP, WSDL, ...)
implementation
Key concept Resource (exposed logical entity) Service (mechanism to access
capabilities)
Identification Resource address Service endpoint
Interaction Uniform interface Service-specific interface
Semantics capabil- Low (uniform interface) High (arbitrarily complex)
ities
Visibility Through address and URL space Through service description
description
Awareness Registry, search engine Registry

Infrastructure Simple Complex

44 P. Mazzetti et al.

www.w3.org/) and OASIS (http://www.oasis-open.org/) make the SOAP suite, a
complete set of standards for building SOA over the Web providing service
description, cataloguing, security and so on. Indeed, this is currently the most
spread solution for e-Business and e-Government systems.

SOAP Version 1.2 is a lightweight protocol intended for exchanging structured
information in a decentralized, distributed environment (W3C 2007). A SOAP
Message is made of a Header and a Body. The optional SOAP Header element
contains application specific information (like authentication, payment, etc.) about
the SOAP message. The SOAP Body provides a mechanism for transmitting
information to an ultimate SOAP receiver, that is the service provider. An important
characteristic is that a SOAP Message could be transmitted using any protocol as
long as it allows to transfer the serialized Infoset to the destination. Actually, several
transport mechanisms (bindings) are defined for SOAP using application-level
protocols such as HTTP and SMTP. This generality is obtained at the expense of the
loss of protocol-specific characteristics. For example the HTTP binding utilizes
HTTP as a transport-level protocol: the semantics of the request line and of most of
the HTTP headers is actually lost.

Representational state transfer style

In the early 2000s W3C issued the document named ‘Web Services Architecture’
(W3C 2004a) which made SOAP the fundamental basis for a ‘new’ Web, a Web of
exposed services instead of shared documental resources. But the great success of
SOAP in many application fields like e-Business and e-Government did not
guarantee the same success in other fields and applications characterized by different
requirements. In fact, SOAP fits well to SOA, where different organizations expose
complex services (e.g. banking transactions, travel reservations, commercial orders)
implemented in background facilities which can be composed in workflows for
carrying out high-level business processes. These great capabilities have the drawback
of a complex infrastructure for services discovery, description, etc. But common Web
applications, in particular the so-called Web 2.0 services, are light services dedicated
to publish and access structured and semi-structured information (e.g. Web sites,
Web interfaces to databases and repositories, Content and Document Management
Systems, blogs, etc.), a context where SOA seems to be overloading. Basing on such
considerations, the Web architecture underwent a deep reflection. In 2005, the W3C
proposed a new vision of the Web architecture to make it conform to its original
concept (W3C 2004b). Such architecture is based on an architectural style named
REST proposed by Fielding (one of the designers of the original Web specifications)
as the architectural style for the Web (Fielding 2000).

REST is a ROA style for distributed systems defined to describe the original Web
architecture and to guide its future evolution preserving its fundamental character-
istics — namely scalability. REST is defined starting from a set of constraints chosen
to describe the way the Web works:

1. Client—Server interaction: in REST architectures there are two logical
components with different functionalities: clients performing requests and
servers which provide responses.

International Journal of Digital Earth 45

2. Stateless interaction: in REST architectures the server generates the response
using only the information included in the request message. It cannot rely on
server stored information; therefore, sessions are not supported.

3. Cache support: to improve performances, responses can be stored on end or
intermediate systems for reuse.

4. Uniform interface: in REST architectures the client-server interface has four
main characteristics:

a. identification of resources, that is their addressability through proper
identifiers;
. manipulation of resources through representations;
c. self-descriptive messages;
d. hypermedia as the engine of application state, that is the application is
built following hyperlinks according to the navigation paradigm.

5. Layered systems: to generate a response a server can perform requests to other
servers — acting as a client.

6. Code-on-Demand support: a resource representation can include code to be
run on the client-side to improve capabilities — e.g. plugins for visualizing
unsupported formats, client-side processing, etc.

Although REST is defined bearing in mind the Web, all the architectures satisfying
the REST constraints are REST based architectures, not only the Web itself. For the
same purpose of the term ‘object-oriented’, the term ‘RESTful’ was introduced
(Richardson and Ruby 2007).

By our point of view, REStful architectures present two essential characteristics
deriving from the Uniform Interface constraint:

1. All the significant resources are addressed and accessible through the same set of
methods. This means that there are no resource-specific actions; possible actions
should apply to all the exposed resources. Obviously this imposes to limit the
possible actions to a small set of low-semantics actions which make sense for every
resource in the information space. For example, they could be the four basic
actions enabling the so-called CRUD pattern: Create, Retrieve, Update, Delete;

2. Logical connections between resources are made explicit as hyperlinks. A
resource should be related to others through proper references using the
resource identifiers. A REST application is realized moving along the
hyperlinks to act on the target resources. This behavior maps the typical
Web interaction based on the navigation (through hyperlinks) paradigm.
What is transferred during the navigation is a representation (in a given
format) of the resource state. This is actually the meaning of the name
REST.

It is noteworthy that REST is not a technology. In particular, REST is not simply
XML +HTTP which seems to be a common misunderstanding (Kelly 2007). In fact,
a system could use XML, HTTP and other technologies in a REST way or not. What
makes a system RESTful is not the adopted technologies but the way they are used,
that is the architecture the system conforms to. Systems using traditional Web
technologies (mainly HTTP and XML) in a non-REST way are usually referred to as
POX-HTTP — Plain Old XML over HTTP.

46 P. Mazzetti et al.

Common RESTful architecture implementation

A Web system can implement a RESTful architecture in many different ways.
Actually, only the adoption of URI addressing is mandatory. However, a common
implementation is based on the use of HTTP as the unique application-level
protocol. In this case, the HTTP verbs or methods: GET, PUT, POST, DELETE
define the action to be performed on the target resource. These basic actions allow to
implement the CRUD pattern: GET =retrieve; POST =create; PUT =update;
DELETE =delete. In computer systems, the CRUD pattern has proven its validity
when a low-level access to resources is required (e.g. file-system management actions,
SQL for DB interaction). Nevertheless, other implementations are possible: e.g.
ATOM (an XML-based Web content and metadata syndication format; http://
www.ietf.org/html.charters/atompub-charter.html) defines a RESTful architecture
implementing the CRUD pattern limiting the use of HTTP to GET and POST
methods; Wikis (http://wiki.org) are basically RESTful systems.

RESTful architecture for earth sciences

A comparison between SOAP and REST architectures is just a subset of the general
comparison between SOA and ROA. In general, it is not possible to say that one
architecture is better than the other. The selection of the most effective system
architecture depends on application requirements. Therefore, we need to have in
mind a target usage case to analyse and discuss the effectiveness of the REST
approach for Earth and Space Science (ESS). A meaningful usage case can be simply
expressed as follows:

An Earth and space scientist needs to share datasets in a simple way, for her/his usual
research activities.

Typically, Earth and space researchers need to publish and access datasets in an easy
way avoiding the trouble of maintaining complex technological infrastructures.
Scientists know very well the application capabilities and logic they want to
implement/use; while, they are less interested in the technology to build them.
Common application capabilities include: to publish data and metadata (i.e.
datasets), to discover and access datasets, to document them for processing,
reference in research papers, and so on. For ESS applications, the conditions to
set up and manage an information system is a major concern. An ESS research team
is very different from a great enterprise or public administration needing to serve e-
Commerce or e-Government applications. Typically, Earth and space scientists are
not profound IT experts — actually, they are not required to be. Besides, they cannot
often rely on full-time technical staff administrating a complex IT infrastructure. On
the other side, they should stay focused on their research topics. One solution might
be the outsourcing of data provision to advanced data centers; but this cannot solve
the problem on the client-side. In addition, ESS researchers would like to utilize the
same instruments they use in their day-to-day activities.

Consequently, the traditional Web approach is particularly appealing since it is
well-known and is based on simple and extensible specifications which can be easily
implemented in the existing modeling tools and applications. Anyway, to achieve
user-friendliness, other important characteristics, such as scalability and overall

International Journal of Digital Earth 47

performances, should not be sacrificed. This is the reason the REST approach seems
to be particularly attractive for ESS applications. In fact, REST preserves the
usability of the traditional Web, providing a solid architectural ground for future
extensions.

RESTful implementation of coverage access services

In order to evaluate the feasibility of a RESTful architecture for ESS, it is useful to
consider the existing geospatial services and evaluate which architectural approach
they are based on and if and how they adopt or could adopt REST concepts.

Since data shared by Earth and space scientists are usually coverages (typically
acquired from remote sensing systems), we will focus on two access services widely
used by the ESS community: the OGC Web Coverage Service (WCS) and the NASA
Community Data Access Protocol (DAP).

OGC WCS 1.0

The WCS defined by the OGC supports electronic interchange of geospatial data as
‘coverages’ — that is, digital geospatial information representing space-varying
phenomena (OGC 2005).

The version 1.0 of the WCS specification will be considered, to avoid unneeded
complexity in the discussion. Basing on this specification, we can extract a few
logical entities representing the most important concepts for the coverage provision
service. Figure 1 depicts a simplified information model of WCS 1.0 — expressed as
UML Class Diagram. This shows five main logical entities:

e The WCS Server: it has some Capabilities and publishes an enumerable set of
Coverage Offerings.
e The Capabilities: it expresses what the WCS Server can provide —i.e. the server

properties.
WCS Server Coverage Offering Description
offers > - name : String described by P>
1 0.r 1 1
{enumerable}
1 1
gengrates
ﬂesc@eu by v
{non-enurmerable}
1 |+
Capabilities Coverage

- parameters : object

Figure 1. Simplified information model of OGC WCS 1.0.0. In dark color the hidden
entities; in light color the exposed entities which are accessed through the WCS interface.

48 P. Mazzetti et al.

e The Coverage Offering: it is the logical generator of Coverages. A Cover-
ageOffering can produce a non-enumerable set of Coverages by subsetting,
interpolating, resampling, reference system transformations, etc.

e A Description: it expresses the properties of a CoverageOffering, especially
describing the parameters which can be used to retrieve Coverages.

e A Coverage: this is the ‘values or properties of a set of geographic locations’. The
WCS GetCoverage operation allows for the retrieval of Coverages from a
Coverage Offering.

In Figure 1 the entities in dark color are not directly exposed by the WCS interface,
while the entities in light color are accessed through the standard operations, namely:
GetCapabilities, DescribeCoverage and GetCoverage.

In a SOA approach this information model is hidden in one or more
computational elements which provide specific interfaces to it. The access is
delegated to the computational elements which perform all the required interactions
with the back-end information system in order to provide a response to the
requestor. The following is the (partially implicit) approach as specified in the
definition of WCS 1.0:

1. The WCS implementing component publishes a service endpoint exposing
three operations — see the ‘REQUEST’ parameter;

2. Only the service endpoint needs to be addressed. This is the server URL.

3. No action can be performed on the internal resources other than the ones
expressed by the interfaces;

4. The published interfaces are service-specific — they are meaningful only for an
OGC coverage access service, not for accessing different resources (e.g.
features, maps, documents) or for different types of coverage access services.

Figure 2 shows the WCS approach. Therefore, the interfaces do not need to be
‘universally’ known. Consequently, they must be described either in human-readable
format (as for the KVP encoding in the specifications) or in a machine-readable
format — as using WSDL for the SOAP encoding. It is remarkable that using the
HTTP binding, either with GET method and KVP encoding, or with POST method
and XML encoding, does not make the implementation RESTful. It is still a Service-
Oriented approach, since the computational elements expose service-specific
interfaces hiding meaningful resources. In particular, the semantics is contained in

N

. \ describeCoverage
Web Coveérage Servicé

Figure 2. The service-oriented approach for implementing the OGC WCS.

getCapabilities

getCoverage

International Journal of Digital Earth 49

the request parameters (message payload or in the query part) and not in the
interface signature. Generally the OGC Web Services (OWS) specifications describe
two possible implementations: SOAP-based and POX-HTTP. In comparison with
the SOAP approach, the POX-HTTP approach provides some benefits such as the
addressability of resources (with the KVP encoding) and the greater simplicity for
service deployment and access. These two advantages are typical of RESTful
systems, but since the underlying architecture is not REST-based, they are reduced
by the lack of the other REST benefits. For example, since the interface is not
uniform, a service description is required and a client should access the description
before accessing the service, much like as in SOAP. Hence, in this service-oriented
approach the system gains clear benefits from the full adoption of the SOAP suite;
for example, the WSDL standard allows a complete service description, which
provides the benefit of the availability of tools and libraries.

Figure 3 shows a possible hypothetical resource-oriented approach for imple-
menting the WCS. Here all the significant resources (see Figure 1) are exposed
through individual addressing and Uniform Interface. In Figure 3 the allowed

WCS Server |
® Get
Coverage ® Post
Server ® Put
A /) @® Delete
1
® Get
agag s . P t
Capabilities 0s
2 ® pyt
=7 ® pelete
Coverage Offering 1 \
- name : String ¥ N
® Get
Coverage ® Post
Offering ® Put
® Delete
[osscriton |
N
N
Coverage | ® Get
Offering : Post
Description ® ggtlete
Coverage 1 :
- parameters : objec N
N
®Get
Coverage @ post
Put
®pelete

Figure 3. The possible resource-oriented approach for implementing the OGC WCS.

50 P. Mazzetti et al.

operations match the four HTTP verbs whose semantics conforms to the CRUD
pattern. As each resource is accessed through the same methods, whose semantics is
‘universally’ clear, no operations description is required. The computational
elements implement the basic application logic to realize each operation semantics
for a specific kind of resources — e.g. what “‘update’ means for a Description element
or what ‘delete’ means for a Coverage Offering element).

Identification and interaction

In WCS (and other access services) the difference between a service-oriented and a
resource-oriented approach tends to blur, because the exposed services are intended to
‘access’, that is to retrieve, a resource. This is a basic service which can also be provided
by a uniform interface based on the CRUD pattern. Therefore, the implementation of
either a SOA or a ROA seems to reduce only to an interface rewriting. Nevertheless,
much more problems arise when the systems need to be extended.

As far as the service and resource oriented implementation approaches are
concerned, Table 2(a) and (b) try to summarize the differences in term of
Identification (what is addressed) and Interaction (which actions are allowed).
There exists a clear difference. The SOA approach defines a closed system with only
one endpoint and a set of pre-defined actions. To extend the system capabilities, a
definition of new operations is required. No limitation exists on the possible
operations. In this approach, designers want that users access the resources only
following a set of predefined ways, formalized by the exposed interfaces. This
conforms to the guiding principles of SOA, which reflects the reality that ownership
boundaries are a motivating consideration in the architecture and design of systems
(OASIS 2006). In keeping with that, resources must not be exposed to the users. On
the other hand, the ROA approach shows many more addressable entities which the
user can interact with. However, the interaction is at a very basic level. More complex
actions can be performed making use of workflow solutions. The user is allowed to
build her/his own application and is responsible for implementing the corresponding
application logic. It is remarkable that the system can be extended exposing other
resources, without introducing new operations (unless they are considered mean-
ingful for all the resources defined in the information space). Table 2(b) shows that
even the four basic operations of the CRUD pattern could be easily used to
implement effective actions that in service-oriented systems should be provided by
specifically defined service interfaces. Valuable cases in point are: to update the
description of a Coverage Offering element (i.e. PUT directed to a Description
element) and to delete a Coverage Offering element (i.e. DELETE directed to a
CoverageOffering element).

DAP 2.0

The DAP 2.0 is a NASA Community Standard for data transmission, designed
specifically for science data. The concepts handled by DAP move around the Data
Source entity:

e The DAP Server which serves Datasets from Data Sources.
e The Data Source which collects data organized as name-datatype-value tuples.

International Journal of Digital Earth 51

Table 2. — Different approaches for coverage access services. Angle brackets (<’ and *>")
enclose constant values; curly brackets (‘{" and ‘}’) enclose variables; square brackets ([’ and
‘1’) enclose options (separated by °|’). QP stands for the Query Part containing parameters
expressed as Key-Value-Pairs.

(a)

Entities URI getCapabilities describeCoverage getCoverage

(Services)

WCS <end Retrieve Retrieve Retrieve
Service pointURI > capabilities description coverage

b)

Entities URI GET POST PUT DELETE
(Services)

WCS server <baseURI >/ capabilities - - -

WCS

Coverage <baseURI >/ contentMetadata add an offering — -
offerings ~ WCS/cov- capabilities
collection erages section

Coverage <baseURI >/ offering - update the Delete the
offering WCS/cov- representation offering offering

erages/{name}

Coverage <baseURI >/ coverage - - -

WCS/cov- representation
erages/
{name}?{QP}

Coverage <baseURI >/ description - update the —
offering WCS/cov- description
description erages/

{name}/
description

e The Dataset extracted by the originating Data Source through constraint
expressions (parameter selection, subsetting, etc.).

e The Dataset Attribute Structure (DAS) which characterizes the variables, their
datatypes, names and attributes of a Data Source.

e The Dataset Descriptor Structure (DDS) which characterizes the variables,
their datatypes, names and attributes of a Dataset.

e The Data Dataset Descriptor Structure (DataDDS) which holds data values
along with the DDS.

In Figure 4, the entities in light color are accessed through the DAP standard
requests. Although the diagram has some similarities with the one shown in Figure 1
for WCS, there are some important differences. In fact, DAP is explicitly based on
HTTP and it uses the semantics of GET verb to express the action of retrieving
resources representations. Although this conforms to a more RESTful architecture,
some other characteristics are missing:

52 P. Mazzetti et al.

DAP Server Data Source Dataset Attribute Descriptor (DAS)
serves P - hame : String described by
1 0.* 1 1
{enumerable}
1
generates
v
{non-enumerable} 1.*
Dataset Dataset Descriptor Structure (DDS)

described by >

1 1

represented by
v

1

Data Dataset Descriptor Structure (DataDDS)

Figure 4. Simplified information model of an OPeNDAP implementation called DODS
(Distributed Oceanographic Data System) 2.0. In dark color the hidden (implicit) entities; in
light color the exposed entities which are accessed through the OPeNDAP interface.

e The generation of Datasets from Data Sources might actually hide a processing
action. In addition to the basic constraint expressions (e.g. projection,
selection, etc.) that generate Datasets simply filtering the originating Data
Source, DAP specification states that: ‘A constraint expression MAY also use
functions executed by the server’ (NASA-ESDS-SPG 2007). OPeNDAP, a
widespread implementation of DAP, relies on these ‘Server Functions’ for
capabilities extension (OPeNDAP 2004a). Obviously, this choice implies a
service-oriented approach introducing service discovery and interface descrip-
tion issues. Actually, the OPeNDAP developers are ‘working out the details of
the discovery and documentation mechanism’ (OPeNDAP 2004b).

e The main resources have not any hypermedia representations. Therefore, it is
not possible to make explicit the relationships existing between the resources.
However, some DAP implementations provide HTML representations. For
example, OPeNDAP servers can provide an HTML Data Source representa-
tion including a form to generate Datasets.

In its basic form DAP is implicitly based on a resource-oriented approach. Thus,
excluding the adoption of ‘Server Functions’ and with the introduction of
hypermedia representations to support RESTful applications (and possibly support-
ing more basic operations such as the full CRUD pattern), DAP might conform to a
RESTful architecture.

WCS and DAP were discussed in order to show how ROA and SOA concepts are
actually present in the existing architectures and how a clear choice could provide

International Journal of Digital Earth 53

benefits to both. However, a comparison between WCS and DAP is out of this paper
scope. In fact, the architecture is just one of the important issues that may affect a
successful choice. Actually, a main point to consider would be related to the
semantics level mismatch existing between WCS and DAP services. WCS handles
coverages, while DAP handles data. Hence, DAP works at a lower semantics level
than WCS. This allows to claim the ‘discipline neutrality of the DAP and the
relationship between this and adoption of the DAP in disciplines other than the Earth
sciences’ (NASA-ESDS-SPG 2007). Actually, the neutrality can be either a benefit
(e.g. using the same service for accessing heterogeneous sources) and a drawback —
e.g. no exact operation for specific data types is allowed, such as for specific
geospatial data types.

RESTful implementation of geospatial web services

The ROA and SOA comparative analysis dealing with the coverage access services
can be extended to most of the existing geospatial Web services. Besides, the
introduced RESTful implementation recognized some general problems. For an
effective RESTful implementation of Geospatial Web Services, a couple of
important issues need to be carefully considered:

e Addressing: this includes:
e Caching and the URL Space description;
e RESTyling service-oriented specifications.
e Information Navigation: this comprises:
e Hyperlink inclusion strategies.

Addressing: the URL space

Addressability, which is the capability of providing an individual address to every
significant resource, is essential for web applications. Along with the uniform
interface — that makes clear which actions can be performed, the addressability
makes it easy for clients to use web sites in ways the original designers never
imagined (Richardson and Ruby 2007). As previously outlined, addressing is the
main difference between RESTful and service-oriented implementations. Because of
the large amount of exposed resources, in a RESTful implementation, the definition
of a simple addressing schema (URL Space) becomes important for usability and
resource reference. For example, a URL like:

http:Ilwww.example.orglwes,; 1.0.0/mycoverage?bbox =10.1,40.3,12.2,44.0&resx =
150&resy =150

would be much more readable than the corresponding KVP encoded WCS request: htzp://
www.example.orglwes?service = WCS&version = 1.0.0&request = Get Coverage&format =
GeoTIFF&resx = 150&resy = 150&bbox =10.1,40.3,12.2,44.0&coverage = mycoverage

In this resource-oriented reference the required operation is not specified in the URL
as in the service-oriented WCS POX-HTTP version (i.e. ‘request =GetCoverage’).
Operations should be expressed in the method of the HTTP request. Moreover, some
parameters (i.e. ‘service = WCS&version =1.0.0’) are moved in the hierarchical part
of the URL. Indeed, a RESTful implementation should make use of the full

54 P. Mazzetti et al.

capabilities of Web specifications. Especially, URL has options which are often
unused. For example, path parts parameters (e.g. the /.0.0’ after the semicolon in the
example) can be used to specify options related only to specific parts of the URL —in
this case ‘WCS’. Besides, taking into account the HTTP protocol specifications,
format negotiation information (i.e. ‘format = GeoTIFF’) should be included in the
HTTP header (e.g. ‘Accept’ field). Nevertheless, since Web clients usually does not
allow users to modify request headers, it is a common practice to introduce specific
query parameters to override HTTP headers (e.g. a ‘mimetype’ parameter). In such a
case a request like GET /resource?mimetype =image/png would be interpreted as
GET /resource including the header field Accept: image/png. This also allows to
include the format in the URI, which could be useful for citation purposes.

Caching and the URL space description

The URL HTTP Schema addresses an information space which is made up of a
hierarchical part (including the server name, port and path) and a non-hierarchical
part (including the query part after the question mark). The non-hierarchical part
poses problems for caching, since query parameters can appear in a different order
for different requests and a normalization is needed to associate URLs to the cached
copies of documents. Thus, the use of hierarchical parameters, where possible, is
really suggested. In general, this is possible when a resource is a collection of an
enumerable set of other resources as for the Coverage Server and its Coverage
Offerings. When the collection contains a non-enumerable set of resources they
should be generally specified in the query part; an example is represented by a
Coverage Offering and the Coverages generated from it. Figure 5 shows the
hierarchical and non-hierarchical parts for the proposed WCS RESTyling. In the
example, the WCS server has three Coverage Offering elements. Each element (i.e.
resource) is characterized by an URL.

Due to the greater number of exposed resources, the URL Space of a RESTful
system is much wider than for SOA systems which contain only service endpoints.
Therefore, it should be described to users to make them aware of the exposed
resources. Some specifications have been proposed, such as the Sun Web Application
Description Language (WADL) to describe formally the URL Space handled by a
server (Hadley 2006).

RESTyling service-oriented specifications

When systems follow a service-oriented approach (like WCS), RESTyling them is not
simply a matter of rewriting their interface. For example, many WCS parameters are
intended for guiding the interpolation and coordinate transformation internal
processes; actually, they may be considered complex negotiation parameters and
should be fully described to users. This makes these WCS parameters much like
operation specifications. In a possible RESTful implementation, the Coverage
Service element should provide coverages which are obtained by subsetting the
coverage offerings and simply resampling them according to a pre-defined
interpolation method and coordinate reference system. Different interpolation
techniques and coordinate reference systems transformations depend more on users’

International Journal of Digital Earth 55

needs rather than on provider’s duties. Hence, they should be delegated to external
and specialized services.

Information navigation: including hyperlinks

An underestimated yet important characteristic of RESTful systems is that the
logical relationships between the resources should be made explicit through
hyperlinks included in their representations — see Figure 5. In fact, the hyperlinks
existence enables several capabilities and application scenarios; they include:

e The adoption of the navigation paradigm. As in the Web, a user could move
from a resource to another one simply following the existing hyperlinks.
Hence, a complete application scenario (search, view description, access
dataset, etc.) could be implemented through hyperlink navigation.

e The information harvesting. A crawler application could follow hyperlinks to
extract information about the available resources. This is the concept search
engines are based on.

To implement these capabilities the resource representations should include
hyperlinks. For example, a Coverage representation might include a reference to
its generating Coverage Offering and to the Coverage Server, and so on. A problem
arises with resources usually represented in binary formats (GALEON 2005). In fact,
these formats might not accommodate hyperlinks — e.g. image formats like PNG;
besides, they might be not a Web standard format; then, Web clients need specific
plug-ins to interpret them — e.g. netCDF (http://www.unidata.ucar.edu/software/
netcdf/), HDF (http://www.hdfgroup.org/) and so on.

Actually, it is not required that every resource representation includes hyperlinks,
but that at least one of them does. Therefore, a possible strategy is to provide binary

Coverage Content Dataset
Service resources resources
resources

==

Hyperlinks/XForms
==

Hierarchical ferin -
Part
> Description
Non-
hierarchical
gl

Figure 5. Hierarchical and non-hierarchical parts of the proposed WCS RESTyling. In this
example the WCS server has three Coverage Offering elements.

56 P. Mazzetti et al.

representations along with a Web-safe alternative representation which includes all
the needed references — for example an XML or HTML representation.

It is noteworthy that when references are numerous or even infinite it is not viable
to provide all the hyperlinks. In such cases, hyperlinks can be built dynamically from
user inputs using mobile code, e.g. JavaScript/ECMAScript (http://www.ecma-
international.org/publications/standards/Ecma-262.htm) or simply forms, e.g.
XForms (http://www.w3.org/MarkUp/Forms/). For example, a Coverage Offering
representation could be an XHTML document including: (a) the Description of the
Coverage Offering; (b) a hyperlink to the offering server (i.e. the WCS Server); and
(c) an XForm accepting parameters to access the infinite set of Coverages generated
from the offering — see Figure 5.

Towards a Geospatial Information Space: challenges and open issues

The adoption of a REST architecture for Geospatial Web Services would have an
important benefit: the seamless integration with the Web. The traditional Web, but
also the so-called Web 2.0, is inherently based on a resource-oriented approach.
Therefore, the possible RESTful geospatial artifacts could be considered fully part of
the entire Web. Geospatial resources can refer to other Web resources, such as
documents and services, and vice versa. This approach would enable a Geospatial
Information Space working much like the Web. This is particularly interesting for
data curation and citation services. In fact, data publishing could be provided
through a RESTful interface based on HTTP PUT method, ATOM Publishing
Protocol or WEBDAV (Web-based Distributed Authoring and Versioning; http://
www.ietf.org/rfc/rfc2518.txt) extension. While, data citation would be assured
through the full addressability of resources in REST. Moreover, annotation services
could be implemented using Semantic Web specifications (e.g. Resource Description
Framework (RDF); http://www.w3.org/RDF/). Anyway, some issues need to be
faced; they are briefly described in the next paragraphs.

Processing and sensor services

REST is a promising approach for implementing discovery and access services; in
fact, they can benefit from traditional Web success developments, such as: document
repositories and search engines. For other geospatial services, a RESTful imple-
mentation needs further analysis. This is especially true for the processing and sensor
services.

Processing services

Processing capabilities are inherently service oriented. They specify complex tasks
(e.g. transformations, simulations, modeling, etc.) to be performed accessing other
resources. Therefore, their integration in a RESTful architecture raises semantic
issues (what really a processing resource is?) as well as syntactic ones (how can
parameters be expressed?). From a semantics point of view, a resource is a logical
entity which could indeed represent a ‘processing service’. But the semantics to be
applied to the uniform REST interface needs to be carefully defined, for a

International Journal of Digital Earth 57

‘processing service’ element. In other words: what is the retrieving of a ‘processing
service’? Is it a process representation or a representation of its output?

Concerning the syntax of a ‘processing service’, KVP parameters might be unable
to express the complexity of service input parameters; therefore, an XML encoding
should be used. Experiences from SOAP encodings should be the basis to address
this point. Also experiences from REST interfaces for Cloud Computing systems
should be useful (Chappell 2008).

Sensor services

Sensors are one of the main geospatial data sources, while the others are data
repositories. Thus, the integration of sensors is fundamental to build an effective
Geospatial Information Space. This requires to support both sensor planning and
sensor observation services. Observation may require to access data in very different
ways including streams, notifications and so on. While REST poses no limitations on
the nature of resource representations, some technological issues may arise. In fact,
the Web was mainly conceived for retrieving static or dynamic documents on user
request. The main Web protocol, HTTP, is a request-response protocol which does
not support streaming. Today, other Internet protocols are available for streaming
services and could be adopted for sensors interaction — e.g. RTP/UDP (Real-time
Transport Protocol; http://www.rfc-editor.org/rfc/rfc3047.txt). Besides, new services
widely spread on the Internet show that the Web can provide access to effective
streaming services — e¢.g. Web radio, video sharing, etc. However, an investigation is
needed to carefully evaluate if they are able to satisfy the requirements of ESS
Community.

Asynchronous services

In the ESS application domain some access services are inherently asynchronous.
High-level services, such as updates notification, and alerts from ESS applications,
might require an asynchronous infrastructure. Even basic access services could
benefit from the introduction of an asynchronous infrastructure. A valuable
example is the generation of a set of complex and huge coverages which is a
time-consuming task. In fact, the output could be provided asynchronously to the
requestor. In other cases, a geospatial dataset might be generated by a processing
service which runs on a Computational Grid which implements an inherently
asynchronous system. Therefore, an asynchronous infrastructure is a required
capacity. HTTP, the Web main protocol, implements a synchronous pattern of
communication. Anyway, several solutions have been designed for supporting
asynchronous patterns. For example RSS, based on periodic polling of resources
over HTTP, is widely adopted for simple notification services. Other solutions, like
COMET, provide the right support to more complex asynchronous schemas (Crane
and McCarthy 2008).

Machine-to-machine interaction

In keeping with the Web approach, the REST Uniform Interface constraints define
the hyperlinks as the means for relating resources. This enables the adoption of the

58 P. Mazzetti et al.

navigation paradigm to perform complex tasks and building applications. While this
is a successful model for human-to-machine interaction — as demonstrated by the
Web, it poses problems for machine-to-machine interaction. Actually, the flexibility
of the navigation paradigm might be difficult to handle for machines. There exists
the need to associate some semantics to hyperlinks and provide information about
the target resources. This would be clear for humans but not for machines. Advances
in the ‘Semantic Web’ (http://www.w3.0rg/2001/sw/) specifications are useful for this
objective.

Caching

REST style is particularly suitable for read-mostly services, where cache can improve
performances. Many geospatial resources (e.g. coverages) are often generated
dynamically applying complex parameters; thus, it is difficult to associate parameters
to a specific response. In fact, two requests could be syntactically different but
semantically equivalent. They may differ for: (a) the order of request parameters; (b)
parameter syntaxes — e.g. in a bounding box a latitude could be expressed as 2.0 or
2.00; and (c) the output formats specified by requests. Hence, common caching based
on the association of a resource information and its generated response might be
actually useless. In that case, the architectural basis remains unaltered but
performances could be heavily affected. Smart caching techniques, based on
parameters normalization, should be adopted. Besides, it could be useful to
implement responses caching using intermediate format — and address format
transformation issues.

Security

Another important issue is security. In order to support services and data policy, the
provision of security services for access control, authentication, confidentiality,
integrity, non-repudiation is required. While SOAP suite provides a complete and
consistent set of specifications (i.e. WS-Security and related WS-* specification
series), nothing similar exists in the traditional Web to be used in RESTful
implementations. Once more, solutions can be found in IETF (http://www.ietf.org)
and W3C specifications or in other existing standard extensions for the Web. For
example, confidentiality and integrity can be provided at the transport-level by the
SSL/TLS (http://www.treese.org/ietf-tls/) protocols, and at the message-level by
multipart-encryption and multipart-signature (http://www.ietf.org/rfc/rfc2015.txt)
standards. JA-SIG CAS (Central Authentication Service; http://www.ja-sig.org/
products/cas) and OpenSSO (Open Web SSO project; https://opensso.dev.java.net)
are examples of implementations of transparent Single Sign-On (SSO) authenti-
cation schemes.

Interoperation of service-oriented and RESTful geospatial services

As already discussed, the architectural choice depends on Community’s usage cases
and its critical requirements. Geospatial resources are needed for many applications
domains — not only ESS. Thus, a RESTful implementation of geospatial services
is not in competition with a service-oriented one. Traditionally, service-oriented

International Journal of Digital Earth 59

implementations have been used for the integration of geospatial services in
e-Government or e-Commerce infrastructures. In these cases, the adoption of
SOAP provides a more complete and consistent set of specifications. However, where
a POX-HTTP implementation is considered useful, a RESTful approach might be
preferable.

Therefore both SOAP-based and RESTful implementations can coexist, as long
as user requirements are made clear. Only after the definition of RESTful and
service-oriented specifications for geospatial services, a reconciliation can be done at
the technological level. For example, the same data repository might be accessed
both directly, publishing a RESTful interface, and through delegation, deploying a
SOAP interface.

Different approaches are possible to harmonize a service-oriented with a
resource-oriented system. If resources exposed through a RESTful system must be
accessed from a SOAP-based system, a specific component should implement a
service-oriented interface carrying out, in the background, all the required
operations on the resources. For example, this logical component could: (a) access
a coverage; (b) apply an interpolation; (c) execute a coordinate transformation; and
(d) provide the result to the requestor. Through the composition of basic actions on
the published resources, the workflow could be arbitrarily complex and build a
complete application — e.g. a model run. Adopting this approach, RESTful systems
can be viewed as low-level systems used by high-level services to interact with the
user; there exists a clear analogy with computer file-systems being used by computer
applications.

On the other side, if a SOA service must be accessed through a RESTful system,
some problems may arise. In fact, to simply provide access to the service in POX-
HTTP, instead of SOAP, does not appear a good solution: as previously discussed,
this implementation is service-oriented as well. A possible solution consists of
providing a logical component which: (a) exposes a set of resources publishing a
RESTful Uniform Interface; and (b) translates service requests into a set of Uniform
Interface actions. Since services can be arbitrarily complex, the resulting RESTful
interface might be not equipotent to the original service one. For example, to
preserve the resource-oriented approach, coordinate transformation capability might
be not supported; hence, responses are generated by calling the backend service and
assuming a default coordinate reference system.

Conclusions

REST architectural style was conceived to describe the Web architecture and guide
its future evolution. This aims to define, on a more stable ground, architectures
characterized by the traditional Web scalability and simplicity. RESTful systems are
open; in fact, providers directly expose resources leaving users to decide how to use
them. This is very different from the SOA approach, where providers define exactly
how to interact with the resources. In the ESS domain, and more generally in many
other scientific research contexts, it is typically clear what must be shared — e.g the
geospatial resources. On the contrary, there are few a-priory restrictions on how
resources should be accessed and used. A flexible ESS resources sharing infra-
structure should reflect this important aspect. Therefore, the REST approach seems
very functional for typical ESS usage scenarios. The resource concept matches well

60 P. Mazzetti et al.

the logical entities involved in most of the ESS usage cases — i.e. geospatial data-
sets, documents, etc., while no actions other than simple publishing and retrieving is
pre-defined.

On the other hand, current international standards for geospatial data services
are generally based on a service-oriented approach. In fact, this is particularly
useful for different usage scenarios, including e-Business and e-Government ones.
Therefore, it would be beneficial to define RESTful services beside the existing
specifications. This task is not limited to a simple interface redefinition, as
discussed in the present work. In fact, it includes a complete revision of what the
service should provide. Moreover, while service-oriented approaches can benefit of
the mature set of SOAP specifications, a RESTful architecture should be based on
traditional and new Web technologies. In the recent years, many technologies have
been introduced to address open issues and support new functionalities. However,
several Web systems and services have been designed and developed without a
clear architectural view. As a result, they often implement hybrid architectures
using heterogeneous approaches and solutions. Hence, a deep investigation is
required to verify the Web solutions which fit well in a REST-based geo-
information system.

The adoption of the existing technologies would be a great benefit. In fact,
avoiding to introduce new solutions, the hypothetical REST-ful geospatial informa-
tion space would be integrated with the other existing Web systems gaining
advantages from traditional and new Web services — like the so-called Web 2.0
services.

Notes on contributors

Paolo Mazzetti is a researcher at the Italian National Research Council (CNR). He is also
contract professor of Telematics at the University of Florence in Prato. His main interest is in
the Earth and Space Science Informatics with particular reference to the study and design of
architectures for geospatial data sharing and processing. He is involved in several projects and
initiatives for the design and development of Web and Grid infrastructures for Earth Science
applications.

Stefano Nativi received the first and second (Laurea) degree in electronic engineering
(telecommunications field) and the Ph.D. degree in “methods and technologies for environ-
mental monitoring” from the University of Florence, Florence, Italy. He was appointed a
PDRA Grant from the University of Bristol, Bristol, U.K. He is currently the Coordinator of
the Earth and Space Science Informatics Laboratory, Institute of Methodologies for
Environmental Analysis, Italian National Research Council, Florence, where he is also a
Coordinator of the National Inter-university Consortium for Telecommunications Opera-
tional Unit. He is adjunct Professor of the University of Padua, Padua Italy, teaching “systems
for land management” for the informatics specialis degree (Faculty of Mathematics). Dr.
Nativi is the President of the Earth and Space Science Informatics division of the European
Geosciences Union. He is a member of the IEEE Standards Working Group of ICEO and of
IEEE GRSS Data Archiving and Distribution Technical Committee. He is co-PI of the OGC
GALEON Interoperability Experiment (Geo-interface to Atmosphere, Land, Earth, Ocean
netCDF) and a member of the Web Coverage Service standard working group. He co-leads the
GEOSS IP3 initiative and is a member of the GEOSS SIF. He is a member of the “Metadata
Core Drafting Team” for the Implementing Rules of the INSPIRE (INfrastructure for Spatial
InfoRmation in Europe) European directive.

International Journal of Digital Earth 61

References

ANSI/IEEE, 2000. Std, ISO/IEC 42010 IEEE std 1471-2000, System and software engineering-
Recommended practice for architectural description of software-intensive systems. Available
from: http://iecexplore.icee.org/servlet/opac?punumber =4278470 [Accessed 24 March
2009].

Box, D., 2001. A4 brief history of SOAP [online]. Webservices. XML. Available from: http://
webservices.xml.com/pub/a/ws/2001/04/04/soap.html [Accessed 4 February 2009].

Chappell, D., 2008. 4 short introduction to cloud platforms: an enterprise-oriented view [online].
Chappell & Associates. Available from: http://www.davidchappell.com/CloudPlatforms--
Chappell.pdf [Accessed 4 February 2009].

Crane, D. and McCarthy, P., 2008. Comet and reverse ajax: the next gemeration ajax 2.0.
Berkeley, CA: Apress.

Fielding, R.T., 2000. Architectural styles and the design of network-based software architectures.
Thesis (PhD). University of California.

GALEON (Geo-interface to Atmosphere, Land, Environment, Ocean netCDF), 2005.
GALEON mailing list [online]. Available from: http://www.unidata.ucar.edu/mailing_lists/
archives/galeon/ [Accessed 4 February 2009].

Hadley, M.J., 2006. Web application description language (WADL) [online]. Available from:
https://wadl.dev.java.net/#spec [Accessed 4 February 2009].

Kelly, B., 2007. REST [online]. UKOLN. Available from: http://standards-catalogue.ukoln.
ac.uk/index/REST [Accessed 4 February 2009].

NASA-ESDS-SPG, 2007. ESE-RFC-004.1.1. The data access protocol—DAP 2.0 [online].
Available from: http://www.esdswg.org/spg/rfc/ese-rfc-004 [Accessed 4 February 2009].

OASIS, 2006. OASIS standard soa-rm. Reference model for service oriented architecture 1.0
[online]. Available from: http://docs.oasis-open.org/soa-rm/v1.0/soa-rm.pdf [Accessed 4
February 2009].

OGC, 2005. OGC 05-076. Web coverage service (WCS), Version 1.0.0 (Corrigendum).

OPeNDAP, 2004a. Open-source project for a network data access protocol [online]. Available
from: http://opendap.org [Accessed 26 January 2009].

OPeNDAP, 2004b. An OPeNDAP quick start guide [online]. Available from: http://docs.
opendap.org/index.php/QuickStart [Accessed 26 January 2009].

O’Reilly, T., 2005. What is web 2.0 — design patterns and business models for the next generation
of software [online]. Available from: http://www.oreillynet.com/pub/a/oreilly/tim/news/2005/
09/30/what-is-web-20.html [Accessed 4 February 2009].

Overdick, H., 2007. The resource-oriented architecture. In: IEEE Congress on Services, 9-13
July 2007. Salt Lake City, UT: IEEE, 340-347.

Richardson, L. and Ruby, S., 2007. RESTful web services. Sebastopol, CA: O’Reilly Media.

Thomas, E., 2005. Service-oriented architecture (SOA): concepts, technology, and design.
Upper Saddle River, NJ: Prentice-Hall.

Vogel, W., 2003. Web services are not distributed objects. IEEE Internet Computing, 7 (6), 59—
66.

W3C, 2004a. W3C working group note. Web services architecture [online]. Available from:
http://'www.w3.org/TR/ws-arch/ [Accessed 4 February 2009].

W3C, 2004b. W3C recommendation. Architecture of the world wide web, volume one [online].
Available from: http://www.w3.org/TR/webarch/ [Accessed 4 February 2009].

W3C, 2007. W3C recommendation. SOAP version 1.2 part 1: messaging framework. 2nd ed
[online]. Available from: http://www.w3.org/TR/soap12-partl/ [Accessed 4 February 2009].

http://webservices.xml.com/pub/a/ws/2001/04/04/soap.html
http://webservices.xml.com/pub/a/ws/2001/04/04/soap.html
http://www.davidchappell.com/CloudPlatforms--Chappell.pdf
http://www.davidchappell.com/CloudPlatforms--Chappell.pdf
https://wadl.dev.java.net/#spec
http://standards-catalogue.ukoln.ac.uk/index/REST
http://standards-catalogue.ukoln.ac.uk/index/REST
http://www.esdswg.org/spg/rfc/ese-rfc-004
http://docs.oasis-open.org/soa-rm/v1.0/soa-rm.pdf
http://opendap.org
http://docs.opendap.org/index.php/QuickStart
http://docs.opendap.org/index.php/QuickStart
http://www.oreillynet.com/pub/a/oreilly/tim/news/2005/09/30/what-is-web-20.html
http://www.oreillynet.com/pub/a/oreilly/tim/news/2005/09/30/what-is-web-20.html
http://www.w3.org/TR/ws-arch/
http://www.w3.org/TR/soap12-part1/

Copyright of International Journal of Digital Earth is the property of Taylor & Francis Ltd and
its content may not be copied or emailed to multiple sites or posted to a listserv without the
copyright holder's express written permission. However, users may print, download, or email
articles for individual use.

