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Inferring Adaptive Landscapes from Phylogenetic Trees:
A Dissertation Proposal

Carl Boettiger®*
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Abstract

Phylogenetically based comparative methods are an established and rapidly expanding area of research
in macroevolution. Existing approaches may produce misleading results when the traits under con-
sideration reflect different niche specialization across the taxa in question. I propose a method that
addresses these difficulties and extends our ability to ask new questions using phylogenetic comparative
data, such as the inferring number of niches represented in the data and rate of evolutionary transitions
between niches.

Keywords: Evolution, Phylogenetics, Comparative Methods

1. Multiple niches can confound existing methods

Imagine we have identified a continuously valued phenotypic trait which seems to play an important
role in determining the niches of species across some array of taxa. We seek to explain the diversity
across these taxa through an adaptive radiation facilitated by adaptation in this functional trait. For
instance, island Anolis lizards are thought to differ in hind limb sizes and consequently select different
size perches — dividing them into different classes or ecomorphs that has been observed repeatedly in
different islands (Williams, 1969). To characterize the radiation, we may wish to reconstruct ancestral
states of the phenotype of this trait, estimate the rate of diversification in this trait, and explore how the
diversification rate may differ between clades or have changed over time. To address these questions,
we must consider both the constraints of evolutionary history as well as adaptation (Losos, 1996).
Using DNA sequence data, we can construct an ultrametric phylogenetic tree showing the evolutionary
connections between each of his lizard species, as in Fig. 1. Then we approach these questions using
the tools of phylogenetic comparative methods.

Ancestral state reconstruction methods for continuous traits (Martins and Hansen, 1997; Schluter
et al., 1997) are all essentially based on the Brownian motion (BM) model of character trait evolu-
tion Felsenstein (1985), though in principle could be carried out with the Ornstein-Uhlenbeck (OU)
model described by Hansen (1997). Using these methods on this data, one will always infer interme-
diate states such as seen in Fig. 1(a). This raises some cause for concern as the predicted values have
little overlap with the values observed in the present day, Fig. 1(b). This difficulty arises whenever the
observed taxa represent two distinct ranges in the continuous trait, as may be expected if the trait is
responsible for niche differentiation. While such limitations have been identified, (e.g. Losos (1999)
or Cunningham (1998)), it remains challenging to account for niche differences with existing methods.

Estimates of diversification rate are similarly challenged by this data. The actual estimations are
straight-forward: For a unit-length tree shown in Fig. 1(a) under BM, the maximum likelihood estimate
for the diversification rate is ¢ = 9.4, while under an OU model the diversification rate is estimated
at 0 = 41 while the stabilizing selection strength a = 42, centered on a trait value of 6 = 7.3. The
OU model does slightly better in model comparison measures, i.e. an AIC of 58 for OU vs 64 under
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BM. This analysis prefers a model with an adaptive peak located in the middle of the valley between
the two modes of the data, resembling the same pattern as in Fig. 1(b). The stabilizing selection is

centered at the intermediate value 8 = 7.3 with an equilibrium width of \/g = 4.4, approximately
the same as the width of either mode. Once again, the apparent multiple niche structure of the data
seems at odds with existing approaches.

A proposed signature of adaptive radiations is a decelerating rate of character evolution (Gavrilets
and Vose, 2005; Gavrilets and Losos, 2009), which comparative methods approaches may attempt to
measure through standardized contrasts (Freckleton and Harvey, 2006). Standardized contrasts are
constructed by differences between ancestral and descendant states weighted by the time separating
them. Applying this to the data in Fig. 1(a), we appear to see a clear signal of accelerating rates of
evolution, where most trait change occurs in a burst of evolution at the tips. Clearly this could just be

an artifact of the model due to the ancestral state estimates.

2 .

21 — tips

-~ ancestor
OU peak

Density
0.15
|

0

limb length

(a) (b)

Figure 1: (a) Hypothetical Anolis hind limb lengths on a phylogenetic tree. Ancestral states inferred under Felsenstein’s
Brownian motion model of evolution are shown at the interior nodes. (b) Distribution of observed limb lengths at tips
compared to the inferred ancestral states

The challenges introduced by phylogenies that span traits sampled from different niches requires a
new approach to accurately account for the importance of phylogenetic relationships in using compar-
ative data. In this, we follow an emerging pattern in the field of comparative methods. (1) Felsenstein
(1985) first introduced BM as a model of trait evolution to enable existing applications of compar-
ative methods, usually correlations between two traits or trait and environment, to account for the
biological reality of phylogenetic relatedness. This approach was quickly adapted to answer novel ques-
tions such as estimating rates of diversification (Garland, 1992) and comparing these rates between
clades (O’Meara et al., 2006; Collar et al., 2005). While the BM model provided a reasonable de-
scription of diversification, it could not capture the biological reality of stabilizing selection, and could
consequently give spurious results when applied to traits that were strongly conserved over a phylogeny.
(2) To address this, Hansen (1997) introduced the OU model as a description of adaptive trait evolution
under stabilizing selection, which in turn introduced a new class of questions — identifying the strength
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Figure 2: Possible paintings of a phylogenetic tree, taken from Butler and King (2004).

of selection and comparing model fits between OU and BM models. The existence of multiple niches
continues this evolutionary cycle. To accurately apply these existing methods on such data, we need
an approach that can capture multiple niches, impossible with linear models such as OU and BM.
(3) Creating such a method not only allows us to accommodate this biological reality, but opens the
door to once again exploring new questions in a comparative context, such as how many niches may
be represented and how frequently transitions have occurred between them.

There is an existing approach attempting to deal with the challenge of multiple niches known
as painting, which applies different OU models to different branches on the tree (Butler and King,
2004). In this model-comparison approach one asks if there is evidence that a particular clade has a
statistically significantly different optima than other clades (or branches) on the tree; much as has been
done for BM model in O’Meara et al. (2006). There are several difficulties with this approach. First,
it requires an informed way of selecting possible paintings of the tree, identifying different branches
with different colors indicating they are governed by an independent evolutionary regime, as in Fig 2.
Searching over all possible paintings may not only be infeasible but uninformative, as the transitions
between regimes remove the phylogenetic signal. While the interpretation of different parts of the
tree falling under different selective regimes seems very reasonable, transitions between such regimes
may not occur only at nodes, particularly those nodes where both branches have a surviving ancestor
(extinct lines introduce additional nodes on the tree). Further, it is difficult to estimate transition
rates between regimes or the number of regimes that best fits the data — both potential quantities of
interest. By taking a much more general, nonlinear model framework we will be able to address each
of these challenges.

The introduction of OU model and the painting of multiple OU models onto a tree has allowed the
field to enter the realm of model testing and model comparison. These comparisons are typically based
on information criteria such as AIC, which penalize models that have more parameters by a certain
factor. However, there is little reason to believe that AIC is fundamentally meaningful way to perform
this discrimination. Using the data of Butler and King (2004) I fitted a Brownian motion model which
I used to generate 1000 simulated datasets, then repeated the analysis on the simulated data. In 391
of the sets the best chosen model of Butler and King (2004), which uses three different OU models,
still has the best AIC score, indicating the penalization for extra parameters is not sufficient. As can
be seen in figure 3, this 4:6 error rate is little better than a coin flip to choose models. Clearly the



88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

question of model selection must be considered more carefully.
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Figure 3: Points falling below the 1:1 line indicate a better (smaller, more negative) AIC score for the painted OU model
despite the fact that the data was generated under BM. Note that some of the widest differences in AIC are errors.

In light of this, we need a new method. I propose to develop a robust, general Bayesian approach
that avoids these difficulties. Such a framework could explicitly account for multiple niches, and identify
clusters in traits or behaviors or ecology that representing niche differentiation. In the process we will
also visit how this approach can be used to capture other nonlinear models as well, such as bounded
Brownian motion models or even arbitrarily general models.

2. A model for multiple niches

Adaptive radiations are characterized by extensive diversification into a variety of ecological niches
over relatively short time scales that may generate much of the diversity of life. Typically this may be
driven either by invading an underutilized environment or through the development of a key innovation
(such as flight) which makes an array of possible niches available (though both these concepts of an
empty niche and a key innovation are subjects of active research).

Few examples are better studied than that of the Anolis lizards, particularly the six recognized
ecomorphs of the Greater Antilles Islands in the Caribbean. This radiation appears to have repeated
itself on four islands, through a balance of repeated invasions and repeated evolution. The ecomorphs
represent clusters of a suite of ecological, morphological and behavioral traits that occur repeatedly
though through different species across the islands, (see Losos (2009) for a thorough discussion).
Underlying the description of ecomorph is an evolutionary assumption — that evolution acts on this
suite of traits to generate the repeated emergence of the clusters.
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1. It matters which traits we include in the description. We are interested in describing functional
traits. Measuring arbitrary traits and clustering along PCA is insufficient, as the functional trait
may not be a linear combination of the morphology — indeed the “many-to-one” mapping that
results from nonlinear interactions between morphology and performance is thought to be both
pervasive and important in our understanding of evolution. Fish jaw morphology provides an
excellent example, where performance can be well-characterized by suction index of a fish — an
example of the “right” functional trait which is not a linear combination of basic morphological
values.

2. We would like a robust quantitative way to define clusters along these trait axes. We should be
able to determine how many clusters exist and quantify how well we can discriminate between
peaks. Having identified interesting traits to test, there are two broad reasons why this clustering
may not be immediately apparent — noise and phylogenetic inertia. Noise could come from
many sources, from measurement error to environmental variation to the suite of other selective
demands on the traits; all of which serve to blur out distinct clusters. Phylogenetic inertia may
blur the distinction between groups if certain species have actively evolving in the direction of a
particular cluster from the vicinity of another, and hence may not fall clearly into one group.

3. We would like to do so in a way which reflects the evolutionary process. This will allow us to
better interpret the evolutionary significance of the parameters which define the clusters — for
instance, strength of selection within groups and rates of transitions between groups.

4. We would like to utilize phylogenetic information to inform the clusters. If we know the phyloge-
netic tree connecting all species in the analysis, we may be able to use this information not only
to correct for phylogenetic inertia but to penetrate the noise that may obscure clusters.

To make all of this more precise, we define a model that captures each of these elements. The
model consists of n regimes over trait space of dimension k. Within each regime is a single, linear,
multidimensional attractor driven by a white noise perturbation — e.g. the multi-dimensional Ornstein-
Uhlenbeck model,

dX = (® — X)dt + cdW, (1)

While in general X and 6 are k dimensional trait vectors, a and ¢ k x k matrices of the trait
correlations and covariances and dW; a k dimensional Weiner process (Brownian walk). For simplicity,
we will often consider a single trait, ¥ = 1. In addition, a trait value may take a large jump into a
new regime — representing a sudden transition of environment or other selective pressure. Each regime
may have a unique transition rate into every other regime, reflecting how common available niches may
be, which we take to be constant. Assume that these transitions are independent of each other, we
have a Poisson process we can represent by the transition rate from regime ¢ to j as the i,j term in
transition matrix Q, ¢ # j, where the diagonal terms are such that rows sum to zero. Fig. 4 provides
a conceptual illustration of such a model. For simplicity, we may assume that all transition rates are
symmetric (the rate from i to j equals the rate from j to i) or that some transitions are impossible.
Another convenient simplification may be that all regimes are characterized by the same diversification
rate o, making the width determined entirely by « (recall that at the stationary state the distribution
is Gaussian with variance %)

Such a model can capture each of the criteria discussed above.! (1) This model is defined over the
trait space of interest, or a subspace thereof. (2) It provides a quantitative description the clusters:

! Tt is worth noting that this is certainly not the only formulation of a model that satisfies these objectives. For
instance, we could have used a singular nonlinear stochastic differential equation rather than this collection of multiple
linear ones (the OU models). The regime formulation has both conceptual and practical advantages, such as separating
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Figure 4: A conceptual model of four ecomorphs and transitions between them. Axes represent trait space, and ecomorphs
differ in the location of their optima with respect to each trait and the strength of selection in each dimension. Rates
of transitions may differ (as indicated by different weights) and need not be symmetric. Mathematically this could be
captured by an OU process centered at the optimum of each cluster with the appropriate strength of selection « relative
to diversification o. Transitions could be captured as a Poisson process with transition rate matrix Q.

the number (n), size (;i) , and locations (6;) and capacity (through the transition rates — regimes
with rapid transitions out will represent niches with lower occupancy). (3) The model has a meaningful
evolutionary interpretation — 6; are selective optima under ¢ different environments/interactions, a; the
strengths of selection, variation within a regime is captured by ¢; while diversification rate across niches
is determined by the transition rates. This can explicitly model the noise due to competing selective
forces, or other fluctuations through o;. Lastly, it is a dynamic model, explicitly describing a time
dependent process. This enables us to (4) use the phylogenetic information in the tree by assuming
that separate branches of the tree spawn independent instances of the process starting from the same
initial condition. Not only will this allow us to correct for phylogenetic inertia, but it improves our
ability to estimate dynamic quantities of the model.

3. Method

3.1. The right data

The data refers to a suite (vector) of observed traits across taxa their ultrametric tree. We will
assume for the moment that the traits are continuously valued. We imagine defining the observed

the process of diversification within a regime from that between regimes, while the linearity makes the regimes easy to
treat.
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traits at all of the tips of the tree, where they are interpreted as mean trait values for the species
(though in practice they may consist of single samples). This data could be morphological (limb length),
behavioral (movement speed) or ecological (structural habitat). For the moment we will ignore both any
uncertainty in the tree and variation in around these trait means, though later we will explore including
both. This kind of data and assumptions are typical of comparative methods applications. While it
is common to transform trait values and to use principle component analysis (PCA) combinations of
trait values, we caution against the unconsidered application of either of these, and prefer to focus
on a carefully selected, interpretable trait. Log-transforms are particularly common as a way of non-
dimensionalizing the data. The difficulty in doing so is that the expectation of the transformed trait
is not the same as the transformation of the expected trait value under non-linear transformation
such as logarithms — e.g. if the expected log limb size is constant, then the expected limb size is
shrinking. As mentioned before, the difficulty in PCA also stems form the linearity assumption. A good
example is the concept of suction index in fish feeding performance. Suction index is a non-dimensional
morphological trait that is closely correlated with feeding performance and differs significantly across
fish with different diets. The index is a nonlinear function of five morphological measurements of
the fish jaw, and is likely to be much more informative than generic transforms. Starting with good
functional morphology greatly enhances the potential of these approaches.

3.2. The Joint Probability

Having framed the model, we must define the how to evaluate the joint probability of the observed
data given the model. This joint probability will be the fundamental building block of the method
which we will use to fit parameters of the model and select between models. The joint probability of
seeing the observed trait data at the particular nodes at which it appears under a given model can be
calculated by unfolding the tree and integrating over the unknown nodes as follows: If we know the
root, we can use the transition densities to determine probability distribution of trait values for each
of its daughter nodes by knowing the length of time between them, w(z,,z;,t;;). As we don’t know
the root, we must integrate this transition density over all possible values of the root note, P(z,).
Similarly, we must integrate over possible values for each of the internal nodes, as they are unknown.
To visualize this, consider a simple example such as the tree given in Fig. 5. We could write the joint
probability as:

P(xy,x0, 23, 34) = /dﬂ??“/df135’w(567,5657t5)w(565,$17t1)w(9€5,$2,t1)]

X |:/ dwﬁw(az7,xg,tﬁ)w(%,azg,tg)w(scg,m,tg)} P(ac7) (2)

In a numerical implementation, this can be defined as a recursion over matrix multiplications.
Assume the trait assumes values in an interval I which we discretize into m points. Then along each
branch we can place the transition rate as an m by m matrix of the transition rates from any point in
the space to any other during that time interval. As the values at the tips are known, we need only the
column corresponding to transitions to the observed state. If the root node is specified (as a parameter
of the model) then its branches are row vectors from the given trait to each point along the interval.
The recursion starts at the root with this row vector and multiplies the row vector it receives from
the previous node by the transition matrices of its left and right children. This proceeds up the tree
until it reaches a tip, in which case the row vector multiplies the column vector of the tip to produce
a scalar. The product of all these scalars is the joint probability.
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Figure 5: A simple phylogenetic tree.

If we assume that when a population transitions to a new state it immediately assumes trait values
from the stationary distribution of the process, then the transition probability along a branch from
node ¢ to j is given by:

tii tiq g tis 5
w(zi, 8i, 5, 85, tij) = {6 ”Q} I (z5) + D= —eli @il (2;) + %iwg (1 = aj,tyy)
8iSj N~
~~ Indicator fn | minus case no transitions use the transition density instead

all transitions
3)
where Il () is the stationary distribution of regime s; and w, (x; — x;,t;;) is the time dependent
rate of the OU process (see Appendix).

4. Fitting the model

Once we can calculate the joint probability of the data under a given model and parameterization,
we have a wide array of potential methods that will help us search for the best value of the parameters
and subsequent selection between models. For a variety of reasons, it is particularly appealing to frame
this question in Bayesian context where the analysis will be performed through Markov Chain Monte
Carlo (MCMC). Of particular interest is the trans-dimensional MCMC proposed by Green (1995, 2003),
which provides a unified framework for simultaneously fitting model parameters and selecting between
models that differ in the number of regimes (and hence the number of parameters) they have. Without
such approach the comparison of number of transitions can be done in an information-theoretic context
such as AIC or Bayes (Schwartz) Information Criterion after the models have been fitted.

5. Example Systems

Labrid fishes are a potentially rich example of such a radiation, accounting for over 600 species of
wrasses and parrotfish found in diverse micro-habitats in coral reefs around the world and spanning a
particularly impressive range of dietary niches, including molluscs, corals, fish parasites, zooplankton
and other fishes (Bellwood et al., 2006). Dietary preference is strongly controlled by both skull and
pectoral fin morphology which limits the kind of resources the fish can capture and process, and the
morphological diversity in these traits reflects the ecological variation in diet (Collar et al., 2008).
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Extensive research has documented the particular morphological traits responsible for feeding per-
formance. Labrid fish swim almost entirely with there pectoral fins alone, rather than relying on body
and caudal fin motion. Fins vary between high aspect ratio (AR), long, thin shapes that flap in a
wing like motion, and low AR, rounder shapes that row in a paddle motion, Fig. 6(a). High AR fins
perform at higher speeds and these species tend to occupy higher flow areas of the reef, while lower
AR fins perform better at rapid turns and maneuverability (Wainwright and Bellwood, 2001). Jaw
morphology differs between strong sucking jaws and powerful crushing jaws, Fig 6(b) which correlate
strongly with diet composition (Wainwright, 1988). As the functional roles of these complex traits
has clear implications for the array of possible niche types characteristic in the diversity of Labrids,
they provide a natural system to test how phylogenetic comparisons inform our understanding of niche
differences. Using these traits and available ultrametric trees for Labrid fishes, we want to explore the
following questions:

1. How many different niches are represented?

2. How frequently do transitions occur between niche strategies?

3. Where is each niche optima located, how far apart and with what width?

4. Can we make niche assignments of present-day species based on this reconstruction?

These traits may capture much of the functional diversity responsible for the niche diversity that
may underly an adaptive radiation, and phylogenetic comparative methods have already proved useful
in exploring their evolutionary significance (Collar et al., 2005, 2009, 2008). As they may underlie niche
differentiation, they may exhibit the kinds of clustering shown to be a challenge for existing methods
when exploring concepts such as ancestral states or changing rates of diversification. However, due
to competing demands of selection on these and other correlated traits as well as other sources of
variability, the distribution of traits observed in the present day may not reveal the obvious niche
differences presented in the imaginary example of Fig. 1(b). In fact, many potentially differentiating
traits often present an essentially unimodal distribution of values across observed species. Our goal,
then, is use the way in which those values are distributed across a phylogenetic tree to infer how many
different niche strategies may be represented across this distribution of traits. To see how this might
work in principle, let us consider another hypothetical example.

The first step in demonstrating that such an inference is possible in principle is to demonstrate
how a continuous trait under stabilizing selection for one of two distinct optima representing different
niche strategies could produce a unimodal distribution in trait values due to random selection on other
traits, environmental variation, or genetic drift. We illustrate this with a simulation shown in Fig. 7
under different intensities of such random effects.

Having seen how the problem arises, we describe how the phylogeny can help us reveal the underlying
structure despite the noise. Given some unimodal distribution of traits, there are many possible
arbitrary phylogenetic trees we could draw potentially showing how they are related. The simplest
description of the unimodal peak will be a single attractor (OU) at the mode or BM diffusion that
began at that mode. The key to distinguishing between BM, OU, and multiple niche description will
rely on the differences in closely related species compared to those in distantly related species. Under
BM, the distance in traits should be increase (as the square root) of the branch lengths between traits
(as this model has no stationary distribution, distances always increase). Under OU model, distantly
related species should appear independent, given by the decorrelation time introduced by the selective
force (), since they become samples from the stationary distribution of the model. In a multiple niche
model, distantly related species will still appear more correlated than expected, as they may still be
trapped near the same niche, while not having reached the stationary distribution where they may be
independently likely to be found in any of the niches. We simply require an approach that can consider
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Figure 6: Fin morphology falls into essentially two distinct classes: fins with low aspect ratio (left) for faster turns and
fins with high aspect ratio (right) for sustained swimming at high speed, reproduced from (Collar et al., 2008).

the impact of the phylogenetic structure has on the likelihood we observe the particular distribution
of data along the tree tips.

Ultimately, we would like such a method to be implemented as an open source and freely distributed
software package to facilitate this analysis, as researchers have done for existing methods i.e. Harmon
et al. (2008); Butler and King (2004); Hansen et al. (2008); Pagel and Meade (2006); Paradis (2004);
O’Meara et al. (2006).

6. Extensions

Beyond the ability to search for number and positions of niches and transitions between them,
this general framework allows many other possible extensions to the phylogenetic comparative method
framework. To convey this potential, we briefly list several possible directions here which we hope to
incorporate.

6.1. Statistical indicators: estimating power, confidence intervals and posteriors

Some statistical validation should be part of any method. Particularly important here is the ob-
servation that any particular outcome is intrinsically unlikely, given the enormous number of possible
outcomes of any model. Nevertheless, estimates of power are relatively straight forward, if computa-
tionally intense, to provide. Given a selected model with its maximum likelihood parameter values, one
can create a set of simulated data sets and then run the method on this simulated data and compare
the spread in parameter estimates from each of these runs. Creating simulated data sets is quite fast,
though clearly the comparison will scale linearly with the number of simulated sets used. In the same
fashion one can estimate the power of the model selection algorithm by asking for how many of the
simulated data sets does the method select the same model as the best choice?

10
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Figure 7: Variance due to random effects obscures the underlying two basins of attraction (niches) on the left. On the
right, under reduced variance the shape of the adaptive landscape is more visible

6.2. Multi-dimensional traits

Though we have discussed this in the context of a single continuous trait, the principles involved
are the same for vector valued traits. This requires determining the transition density from any point
in this vector space to any other point, which quickly becomes computationally intensive in the general
case. In practice, several analytical shortcuts may be possible. Further, if the evolution of the traits is
independent, a scalar valued model could be applied independently for each trait. Such an approach
could be used to create independent contrasts under models other than BM that could then be tested
for correlations with classical regression techniques.

6.3. Discrete traits

While we have focused on continuous traits for simplicity of presentation, this method is equally well
suited to handle discrete phenotypic traits. While Pagel (1994); Pagel et al. (2004) already provide
a phylogenetic comparative methods framework for discrete traits, our approach can handle both
simultaneously; in fact the regime model is one such example of this — the regimes could represent
discrete traits which influence which optimum a continuous trait centers around; i.e. nocturnal /
diurnal behavior and temperature preference, or carnivory / omnivory / herbivory and a continuous
measure of tooth morphology.

6.4. Incorporating fossils

Incorporating fossil information in this approach is very straight forward, as the information can
be specified at the appropriate node and then treated like a tip value, rather than being integrated
over. Available fossil information can also be used to assess the accuracy of ancestral state reconstruc-
tion under this approach by running the model without the fossil data and comparing. The method
could also be applied to evolutionary experiments in microbes, where freezers could preserve samples
throughout the evolutionary history for comparison.

6.5. Changing Environments: Niche creation and loss

This relaxes the Markov assumption in the transition densities, calculating transition densities for
going from state z1 at time t; to state zo at time ty (w(z1, x2,t1,t2), rather than going from z; to x in
an interval ¢t = 5 — t1. Simple applications of this would simply divide the tree into epochs — say after
a fixed time (perhaps predetermined based on external data) transition densities are computed with a
model of three peaks and before that time with a model using only two peaks, and this fit is compared
to the model scores of always using two or always using three peaks. This provides a potential test
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of whether the data shows any evidence of such a shift occurring, or at least an estimate that the
data lacks the power to detect such a change. This can be used as a way of incorporating additional
information about climate such as might be estimated from timing of ice ages or the introduction of
a novel species or an antibiotic (say, for model of bacterial evolution) into the system, or attempt to
estimate the timing of the transition as a model parameter.

The goal of the extensions is to allow more of what we know about the biology and its environmental
context to inform our method, rather than increase the number of things we attempt to estimate with
limited data. This is crucial to bear in mind, for while they may sound different, the ability to do one
enables the ability to do the other — adding a source of information or estimating it as a free parameter.
Thus adding fossils is the converse of estimate ancestral states, and estimating such a time shift the
converse of using external information about such a change to enforce a shift. While it is tempting
to be as agnostic as possible, the goal should be more on the former use, fixing constraints based on
additional data, than on the latter — estimating more quantities with less data.

6.6. Bounded diversification and noise models

Brownian motion may provide a reasonable model within a certain range of trait values but be
bounded by certain constraints. We may imagine this as a random walk in a box, and attempt to
estimate where the locations of the walls of this box might be based on the data. These could be
represented by reflecting boundaries or as soft boundaries where species experience stronger selection
towards the center if they approach the boundary but no directional selection when far from any wall.

An alternative construction to this might simply limit the phenotypic variance available at the
extreme ends of a range. For instance, one could choose a model of the form:

—(X —0)?
dX =fe ————— | dBy, 4
pop (52 ) a ()
a random walk where the size of the steps decreases away from the center of the range 6, that is, high
diversification rates are found near the center of the trait distribution but decrease as one moves away.>

6.7. Ecologically realistic models

Ecological interactions are largely abstracted away in this approach. Gavrilets and Vose (2005) and
Gavrilets and Losos (2009) consider several detailed individual-based computer simulations of adaptive
radiations driven by explicit mechanisms. It would thus be a valuable test what level of detail can be
recovered by the methods proposed here using data generated under these simulations (which recreate
both the phylogenetic history and the character trait evolution).

Such individual, mechanistically based descriptions could also be employed directly in this approach.
Recall that the only conditions on possible models is the ability to somehow specify (potentially by
simulation) a transition density. In this way such rich mechanistic simulations can be directly tested
against phylogenetic data, or used to approximate a transition density equation that can be so tested.

6.8. Scoring empirical performance landscapes

This approach is not limited to adaptive landscapes or niche structures that can be specified by
simple functions. In some cases, researchers can actually measure performance of an organism with
respect to a fitness correlate across a diversity of morphologies — such as suction index or prey capture.
These performance landscapes could be input directly into the model as representations of fitness

20ne could view this as an SDE for the transformed variable with constant noise term by Lamperti transform, see Iacus
(2008).

12



356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

constraints with respect to these traits, rather than the simple multi-modal functional forms otherwise
assumed. The method would not have to fit any parameters for the shape of this landscape, though it
may choose the best fit of a noise parameter, and could return likelihood score for the model. While not
directly amiable to simple model comparison metrics such as AIC, the ability to determine likelihood
alone may be informative.

7. Significance and Broader Impacts

An understanding of the mechanisms and patterns responsible for generating biodiversity lies at
the heart of many important challenges we face today — from vanishing biodiversity due to exploitation
and anthropogenic environmental changes and the ability of existing species to adapt in face of those
changes to the control of diseases and pests that continually evolve away from control measures. Thanks
to rapid developments in sequencing technology, bioinformatic methods and computational power,
phylogenetic information is increasingly available for a diversity of taxa. Despite there limitations in
power, simplifying assumptions and other shortcomings, phylogenetic comparative methods often offer
us our only periscope back into the past of evolutionary history, beyond the temporal capacities of
experiment and the paucity of the fossil record. New methods both extend our ability to utilize this
information and lessen our chances of being trapped by the limited tools we have available.

The continued development in phylogenetic comparative methods influences not only how we ap-
proach problems but in how we approach science as a process. We select the best description available
based on the observed evidence rather than evaluating and rejecting descriptions serially. We use meth-
ods customized for the particular biological questions we seek to answer, rather than one-size-fits-all
methods designed to ignore and abstract away that biology. Though the methods become more com-
plex, they are implemented in software that makes it easier for researchers to easily and accurately
implement the method in way that is repeatable, standardized, and easily verifiable by the rest of the
community. Software is open source, allowing the research community to see clearly how details and
methods are implemented, as well as catch errors or suggest improvements or extensions that can easily
be distributed. Research communities emerge around the infrastructure these methods create, such
as email lists, forums, websites and wikis that connect researchers across boundaries of institutions,
nationalities, disciplines and academic degrees. New data sets and methods are more rapidly dissemi-
nated and shared through the common infrastructure, and science proceeds at both a greater pace and
with greater cross-validation.

Appendix A. Model Library

Brownian Motion
dXt == O'dBt (Al)
Ornstein-Uhlenbeck
dXt = Oé(e — Xt)dt + O'dBt (AQ)

N Gaussian Niches:
_(0,-Xp)?

dXt = (Z az(@ — Xt)e 2%,2 ) dt + O'dBt (A?))
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Appendix B. Why the linear process is easy

If the continuous trait dynamics are generated by a diffusion process with linear rates, i.e. an
stochastic differential equation (SDE) of the form dX; = f(X;)dt + ¢(X;)dB; and f(z) and g(x) are
linear functions of x, then the resulting diffusion is a Gaussian process. Any collection of points resulting
from a Gaussian process has a multivariate normal distribution. Further, if evolution unfolds on a
phylogenetic tree according to a Gaussian process, the joint distribution of any set of taxon phenotypes
is a multivariate normal, as proved in Hansen and Martins (1996). This is easily demonstrated by
induction: starting with MVN set of traits X we can always add a node Y that is not an ancestor to any
of the existing nodes, then the joint distribution of X and Y is multivariate normal. Consequently, to
determine the joint distribution it suffices to calculate the expected trait values and variance-covariance
structure of the nodes.

Cov(X;, X;) = Cov(B(X| X.), B(X;|X.)) (B.1)

Because f is linear, it is straightforward to find the moments of the SDE. The conditional expec-
tation E(X;|X,) comes from solving the ODE with linear f and constant g, dE(X;) = E(f(X;))dt
with the initial condition E(X;(0)) = X,. Similarly we can find the variance: for instance, for the OU
process with initial condition X (0) = X, we have,

t
E(X/|X,) = « / 0(s)e ™t =)ds + X,e (B.2)
0
which for constant 6 is
E(X¢|X,) =0 (1—e ) + X, (B.3)
0.2
Var(X;| X,) = — (1 — e~2%), (B.4)
2c
Cov(X;, X;) = e “iVar(X,), (B.5)

see Hansen (1997).
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