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Abstract

Bacteriophage lambda infection of Escherichia coli can result in distinct cell fate out-
comes: for example, some cells lyse while others survive as lysogens. A quantitative
molecular model of lambda infection supports the hypothesis that spontaneous dif-
ferences in the timing of individual molecular events during lambda infection leads
to variation in the selection of cell fates. Building from this analysis, the lambda
lysis-lysogeny decision now serves as a paradigm for how intrinsic biomolecular noise
can influence cellular behavior, drive developmental processes, and produce popula-
tion heterogeneity. The aim of this thesis is to re-evaluate lambda as a paradigm
for stochastic behavior by determining whether and to what extent variation in cell
fate selection results from pre-existing cell-cell differences rather than chance events
during infection. I find that physical differences among cells present prior to infection
can control lambda developmental outcomes. Specifically, variation in cell volume
at the time of infection can be used to predict cell fate: small cells tend to produce
lysogens while larger cells favor lytic growth. I then present evidence that the appar-
ent sensitivity to host volume is encoded by components of the lambda regulatory
network acting upstream or at the level of CII, a critical regulator of the lambda
lysis-lysogeny decision. I also detail the construction and evaluation of new strains,
tools and methodology to size-fractionate populations of cells, to detect lambda in-
fection and gene expression at the single cell level, and to enumerate individual phage
particles. My results motivate further research to understand how and to what ex-
tent natural biological systems tolerate, buffer or correct for spontaneous molecular
variation during development in order to produce deterministic behavior.
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Chapter 1

Introduction

Multi-cellular systems have the extraordinary ability to develop and differentiate,
giving rise to many specialized cell types. Cellular differentiation is typically highly
controlled, and is thus an exciting process with which to study how cells can inte-
grate information from their environment to direct their developmental response. Of
particular interest are the constraints that might limit the ability of cells to make ac-
curate developmental decisions. For example, commitment to a given cell fate must
typically be made within a limited time window and involves collecting environmen-
tal and internal cues which may be complex, ambiguous or fluctuating. Given such
constraints, the reliability often observed in the development of natural biological
systems is remarkable [73]. For instance, the patterns of programmed death and
terminal differentiation during embryonic development of Caenorhabditis elegans are
nearly invariant from one individual to the next [164].

One particularly useful model system to study the properties of cell fate deci-
sion networks is bacteriophage lambda (), a 48,502 bp dsDNA virus that infects
the bacterium FEscherichia coli [65,99,100]. Lambda-infected cells typically become
lytic or lysogenic. Cells that become lytic produce and release progeny phage into
the environment following lysis of the host cell. Alternatively, if infected cells be-
come lysogenic, the phage genome integrates into the bacterial chromosome and
the resulting prophage is passively replicated within the surviving cell and its off-

spring [65,69, 111, 140]. The lysis-lysogeny regulatory network is one of the best-
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studied natural biological networks, giving the opportunity to study system-level
behaviors [2,107,120,156, 178, 183].

In this Chapter, I first describe the cascade of events leading to commitment to
lytic growth or lysogeny. I next describe how the lambda regulatory network may
sense two important aspects of its environment: the nutritional status of the host cell
and the number of phage concurrently infecting a given cell. I conclude by describing
a puzzling observation that motivated my thesis research: genetically-identical cells,
infected by the same number of phage, do not always adopt the same cell fates, and

present two models that may explain this observation.

1.1 Timing of lambda gene expression during de-

velopment

The development of phage lambda is typically described as a cascade of gene expres-
sion divided into three stages. ‘Immediate-early’ genes are the first to be expressed
after entry of phage DNA into the host cell. It is generally thought that lambda
does not commit to lytic growth or lysogeny during this stage. In the ‘delayed early’
phase, infected cells produce regulators of the lysis-lysogeny decision, and are thought
to commit to a given cell fate. Finally, in the ‘late’ stage of infection, lambda imple-
ments the developmental decision made in the ‘delayed early’ stage. Each of these
stages is now described in greater detail, and depicted in Figure 1-1 (p.21) and Figure
1-2 (p.22)

1.1.1 Immediate-early stage
See Figure 1-1a; p.21

Immediately after phage DNA entry into a cell, the strong promoters of the right (pR)
and left (pL) operons are active, driving expression of the regulators Cro and N, respec-
tively [44,125,148|. Expression of ‘delayed early’ genes, located downstream of N and cro, is

attenuated by transcriptional terminators located beyond these two genes [110,152]. How-
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ever, these terminators are not 100% efficient, and so a limited amount of downstream genes
are also transcribed during the immediate-early stage. For example, tR1 is only ~50% effi-
cient [28], so that cII, O and P are transcribed to a certain degree. Similarly, tL1 is ~80%
efficient, although this value was determined with ¢L1 out of the phage context [32,41,133].
Nevertheless, a limited amount of products of the pL operon, such as CIII, may be produced

during this initial phase of lambda infection.

1.1.2 Delayed-early stage
See Figure 1-1b; p.21

Efficient expression of delayed-early genes, located downstream of the ¢tL.1 and tR1 termi-
nators, depends on a product from the immediate-early stage: the N protein [148]. Lambda
N is a transcriptional antiterminator that forms a complex with host factors, thereby allow-
ing RNA polymerase to overcome most lambda transcriptional terminators, including ¢L1
and tR1 [18,52,65]. N-mediated antitermination allows efficient transcription of downstream
genes, both those participating in the lytic pathway (e.g., @, replication and recombination
genes) and those involved in the establishment of lysogeny (clII, cIII) [79]. Finally, Cro
accumulates to sufficient levels to start repressing the pL. and pR operons by binding to its
cognate operator sites [62], thus limiting further transcription of early genes.

Commitment to lytic growth or lysogeny is thought to occur at the delayed-early stage,
but the exact timing and mechanism of the lysis-lysogeny decision is still not completely
understood [69,131,140]. However, the activity of the delayed-early protein CII is thought
to be critical in determining cell fate: infected cells with high CII activity tend to become
lysogens, while those with low CII activity tend to follow the lytic pathway [7,9,17, 31,
65,69, 88,131, 140] (see also later sections and Chapter 5). Another delayed-early product,
the CIII protein, is also thought to play a critical role in the lysis-lysogeny decision by
stabilizing CII [43].

1.1.3 Late stage
See Figure 1-1c,d; page 21
Cell fate selection, thought to occur predominantly during the delayed-early phase, is
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implemented during the late stage. In cells slated to become lysogens, CII coordinates
the repression of lytic functions and the establishment of lysogeny by binding to three
promoters: paQ, pRE and pI [69, 131]. CII reduces transcription of the lytic gene @ by
binding to paQ, thereby promoting transcription of a small RNA antisense to ) message
and leading to lowering of @ expression [71,161]. CII also leads to repression of lytic
functions indirectly, by driving expression of the lambda repressor (CI) [144]. In turn,
CI turns off lytic functions (as well as cII expression) by binding to its cognate operator
sites within pR and pL [118,121,122]. Moreover, by binding to the right and left operator
regions, CI can activate its own expression from the pRM promoter [122], thus ensuring
maintenance of lysogeny. Finally, CII drives expression of the lambda integrase by binding
to pl [130], ultimately leading to site-specific integration of lambda DNA into the host
chromosome [59,100,177].

For cells that select the lytic pathway, CII expression is presumably not high enough
to repress (), another phage-encoded antiterminator. Q, a phage-encoded antiterminator,
allows transcription from the constitutive pR’ promoter to extend past the tR’ terminator,
leading to expression of genes involved in capsid formation (e.g. D,J), DNA packaging
(e.g. A) and lysis of the host cell (R, S) [52,65,70,168]. A threshold requirement for
Q antitermination function has been posited to explain why there is a delay between the

accumulation of Q) protein and the observation of Q-mediated antitermination [89)].

1.2 Environmental regulation of the lysis-lysogeny

decision

1.2.1 Regulation of the lysis-lysogeny decision by the nutri-

tional conditions of the host cell

Growth condition of the host can directly impact the lambda lysis-lysogeny decision. For
example, cell fate statistics vary with the growth phase of the host cells at the time of
infection (Figure 1-3, page 23). Moreover, starvation of host cells prior to infection has
been shown to raise the probability of lysogeny [93,106]. How lambda infected cells sense

and respond to growth conditions remains poorly understood. In this section, I describe
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Figure 1-1: Stages of lambda gene expression during infection. a, immediate
early gene expression. b, delayed early gene expression c, late lysogenic gene expres-
sion d, late lytic gene expression. Arrows indicate positive interactions, bars indicate
negative interactions. Brown boxes indicate promoters, pink stop signals depict ter-
minators and yellow circles represent genes and corresponding gene products. Not all
interactions or components are depicted. A composite of subfigures a-d is shown in
Figure 1-2 (page 22). This figure was inspired in part by Figure 6 of ref [131].

21



B
|

paQ (PR’
R —®)

Lysogeny Lytic growth

Figure 1-2: Timing of lambda gene expression during infection. The color
of arrows and bars indicate the stage of lambda infection at which the interaction
is particularly significant: black corresponds to the immediate early stage; green,
delayed early stage; blue, late lytic or lysogenic stage. Other symbols are described
in the legend to Figure 1-1. Not all interactions or components are depicted. This
figure was inspired in part by Figure 6 of ref [131].
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Figure 1-3: Cell fate outcomes at different times during growth of a culture.
Aliquots from cultures of E. coli K12 were infected at an average of 2-4 phage per
cell. The proportion of each type of response was determined. The lytic and lysogenic
responses are described in the main text. In the lethal response, the cell dies but does
not produce viable phage particles. Refractory cells neither die nor become lysogens,
and might simply be uninfected; they produce daughter cells which, if infected, can
give rise to any of the responses described here. This image was modified from
reference [105]

how host-encoded factors may couple the growth rate (or nutritional status) of the host cell

to the lysis-lysogeny decision statistics.

RNaselll upregulates translation of lambda N and cIII, but represses

translation of clIl

RNasellI is a host-encoded, double-strand-specific ribonuclease. RNaselll expression ap-
pears to be controlled by cell growth rate, with higher growth rates giving higher levels of
RNaselII [180]. RNaselll regulates the expression of at least three lambda genes: N, cII
and clII (Figure 1-4, p.24). RNaselIl regulates N translation in three ways [179,180]. First,
RNaselll can cleave and thereby remove a large stem-loop structure at +76 to 4208 of the
N open reading frame. The hairpin is thought to sterically interfere with recognition of the
N mRNA Shine-Dalgarno sequence; higher RNaselll levels therefore lead to higher levels of
N expression. Second, RNaselll also upregulates N expression by preventing the formation

of a negative regulatory complex that represses translation of N. Cleavage of the N leader
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Figure 1-4: Host influences on phage lambda regulators of the lysis-lysogeny
decision. Arrows indicate positive interactions, bars indicate negative interactions.
Brown boxes indicate host factors and yellow circles represent lambda genes and
corresponding gene products. Not all interactions are depicted.

sequence by RNaselll can activate N expression ~200-fold under some conditions. Third,
cleavage by RNaselll upstream of N can reduce the half-life of the N message. Unlike the
first two mechanisms, higher RNaselll would, in this case, result in lower N expression.
However, given that the levels of N are higher in a wild-type cell than in a mutant that

cannot express RNaselll (rnc™), the net effect of RNaselll is the upregulation of N.

The levels of N may play a role in determining the outcome of the lambda lysis-lysogeny
decision. For example, infection of cells that constitutively overexpress N from a plasmid
results in clear plaques, a phenotype indicative of a lower probability of lysogeny [180].
Moreover, stabilization of N by infection of a lon™ mutant also results in clear plaques [60].
However, CII is destabilized in a lon background [60], so it is unclear whether lytic growth
is promoted due to the effect of lon on N, CII, or both. Nevertheless, the RNasellIl control

of N expression therefore provides a possible mechanism by which an infected cell could
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sense and respond to variation in growth rate. RNaselll promotes cIII translation, possibly
by binding and thereby stabilizing a conformation of the cIII mRNA that results in more
efficient translation [8,9,91]. Contrary to its effect on cIII, RNaselll represses cII translation
by cleaving the double-stranded RNA formed by cIIl mRNA and oop RNA, a short transcript
antisense to the 3’ end of the cII message [97].

In summary, RNaselll downregulates translation of cII, but upregulates translation
of lambda N and clIII. What is the net effect of RNaselll on the fate statistics of lambda
infected cells? Growth of lambda on rnc™ cells produces clear plaques; this phenotype can be
suppressed by mutations that increase translation of cIII [7—9]. These observations suggest
that upregulation of cIIl by RNaselll may be the dominant effect. However, the impact of
a quantitative reduction of RNaselll levels may be distinct from complete abolishment of

RNaselll activity (as in rnc™ cells) [180].

FtsH/HfIB degrades CII and CIII, but is inhibited by CIII

FtsH/HfIB is an essential ATP-dependent protease thought to play a key role in the lambda
lysis-lysogeny decision [17, 56, 76, 88,131, 132]. FtsH is located in the membrane [76]; it
associates with HIK and HflC, possibly assembling into a FtsHgHKCg holoenzyme, of
which there are less than 100 per cell [76]. HfIK and HfIC appear to act as functional
modulators of FtsH function [5,82-84].

FtsH is thought to impact the lysis-lysogeny decision by affecting the stability of lambda
CII and CIII ( [83,88], Figure 1.4). CII carries a flexible C-terminal domain of 16 amino
acids that is necessary and sufficient for FtsH-mediated degradation [36,87,88]. In vivo, CII
has a half-life of ~1-2 minutes [83,88]. Conditions or mutations that increase the stability
of CII typically result in a consequent increase in the frequency of lysogeny. For example,
mutations in ftsH, hfiK and hfiC' which increase the half-life of CII also promote lysogeny
[67,83]. Given that loss-of-function mutants of hflK and hfiC allow a higher frequency
of lysogeny, is it surprising that overexpression of HAKC also stabilizes CII and increases
the frequency of lysogeny [83]. Overexpression of FtsH and loss-of-function mutations of
CII have the more expected finding of promoting lytic growth: in these conditions, lambda
infection results in clear plaque formation [17,170]. Higher temperature results in higher
FtsH activity and lowered CII half-life [87]; however, higher temperature does not always

increase the frequency of lysogeny [67,87]. Finally, mutations in AfiD, a peripheral host
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membrane protein posited to recruit CII to the membrane for FtsH-mediated proteolysis,
also reduce CII stability and probability of lysogeny in vivo [85].

CIII, a small phage-encoded 54-residues peptide, inhibits FtsH-mediated degradation of
CII by acting as a competitive inhibitor [90]. CIII is itself degraded by FtsH, but with slower
kinetics (half-life of ~7 min) than CII [68]. CIII inhibits FtsH by binding to FtsH but not
to CII [63]. CIII can be associated with the membrane, either by a direct interaction with
the inner membrane, or by virtue of its association with FtsH [68]. CIII can dimerize [63]
or oligomerize [90], and the formation of higher-order structures may be critical for its
function [90]. Conditions that increase CIII expression increase the frequency of lysogeny,
while those which lower CIII levels favor lytic growth [9,17,44,74,86,92].

The evidence presented above is consistent with a model wherein stability of CII is
critical in regulating the lysis-lysogeny decision. However, deletion or mutation of the
signal which identified CII for FtsH-mediated degradation increases CII stability but does
not consistently result in higher frequencies of lysogeny [87]. Nevertheless, FtsH-mediated
degradation of CII appears to play an important role in the lysis-lysogeny decision.

How might FtsH sense nutritional conditions and respond by affecting fate outcomes of
lambda infected cells? It has been suggested that at higher levels of nutrition, FtsH-related
proteolytic activity is increased, leading to shorter CII and CIII half-lives [13]. However, to
my knowledge, this hypothesis has never been tested. One mechanism by which the activity
of FtsH may be modulated during growth phase involves the C-terminal self-processing by
FtsH in wvivo, which results in the removal of the last 7 C-terminal residues [4]. This
processing is affected by the growth phase of the cells, with increased processing observed
in stationary phase relative to exponential phase. However, both processed and unprocessed
forms of FtsH are able to degrade CII. Nevertheless, CII stability may be quantitatively
affected by the processing of FtsH. It is therefore not known whether C-terminal processing
of FtsH may be responsible for the increased frequencies of lysogeny observed as host cells

are growth to saturation.

Polyadenylated oop RNA downregulates cll expression

As discussed previously (see section 1.2.1 on p.23), oop RNA can lower translation of the
cIl message via a double-stranded association with cII mRNA, and subsequent cleavage of

double-stranded product by RNaselll. In bacteria, polyadenylated RNA molecules are typ-

26



ically degraded faster than non-modified transcripts [77]. Degradation of oop RNA appears
to be more efficient in slower growing cells due to higher levels of the RNA polyadenylation
enzyme PAP I [77]. For example, the half-life of the oop message is ~1.5 min in cells grown
in LB (doubling time = 34 min) but ~0.1 min in cells grown in a glycerol minimal medium
(doubling rate = 119 min). This finding suggests that CII expression may be greater in
slower growing cells due to lower expression of the oop transcript, presumably resulting
in higher frequencies of lysogeny. The regulation of oop degradation by growth conditions

is therefore a potential mechanism by which the environment may tune the frequency of

lysogeny.

Why does the frequency of lysogeny vary with growth rate?

The mechanisms by which the lambda regulatory network can sense and respond to variation
in environmental conditions is still not fully understood [38]. In this section, I have described
three possible mechanisms (RNaselll activity, FtsH activity, oop polyadenylation), which
may couple growth rate to cell fate statistics. Given the extensive interactions between the
bacterial host and lambda infection, there remains the possibility that other mechanisms

are at play too [33,53,88,114,134].

1.2.2 Regulation of the lysis-lysogeny decision by the multi-
plicity of infection

The frequency of lysogeny increases with the multiplicity of infection (MOI), the number
of lambda particles concurrently infecting a given cell ( [54, 86,93, 105]; Figure 1-5, page
28). Increased frequencies of lysogeny with higher MOI have also been observed for other
temperate phages, such as Ao [54] or P22 [24,101]. How lambda senses and responds
to MOI is not completely understood [131]. Which phage-encoded genes are involved in
the multiplicity dependent character of lysis-lysogeny decision? Increasing copy number of
cl [144,145], cII [43] and cIII [43,144,145] were all observed to promote CI synthesis, which
is typically considered to be a marker of lysogeny [9,65,86,145].

Kourilsky identified different determinants of the MOI response depending on the geno-
type of the phage used. When using @~ phage strains, he found that the copy number
of cII (and possibly of cIII), but not of cI, impacts the probability of lysogeny [94]. In
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Figure 1-5: Frequency of lysogeny as a function of the average phage input.
Exponentially growing cells were starved in 10 mM MgSO, and infected with different
phage:cell ratios (here termed “average phage input” or a.p.i.). The different symbols
represent different experiments where the frequency of lysogeny was calculated using
different protocols. Note that the frequency of lysogeny is represented here as the
percentage of all cells (infected or uninfected) which became lysogens. The frequency
of lysogeny as the percentage of infected cells which become lysogens also increases as
a function of a.p.i. (data not shown). This image is reproduced from reference: [92].
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replication-deficient phages (P~), however, cI, ¢II and cIIT all promoted lysogeny. The use
of P~ and ()~ phage strains complicates the interpretation of Kourilsky’s results for under-
standing the lysis-lysogeny decision with wild-type lambda, which is replication-competent
(P*) and able to activate late lytic functions (QT). Nevertheless, all the studies presented
in this section, considered together, identify cI, cII and cIII as candidate genes involved in
the MOI response. These results are consistent with other studies suggesting that CII and
CIII can be rate-limiting for lysogenization (e.g. [20,78]).

Several mechanistic models may explain the multiplicity dependent character of lysog-
enization [94]. Perhaps the most parsimonious is the “gene dosage” model, whereby addi-
tional copies of certain lambda pro-lysogeny genes may increase the overall rate of expression
of those genes [29,94]. However, higher MOI also increases lytic genes such as cro or @). Per-
haps lysogeny is comparatively favored at higher MOI because of the products of lysogenic
genes may require oligomerization for their activity, and exhibit a significant concentration
dependence for oligomerization [29]. Consistent with this hypothesis, tetramerization of
CII [36] and oligomerization of CI [39, 137, 139] appear to have functional consequences
on their activity. Nevertheless, further experimentation is needed to directly test whether

lambda responds to the MOI via its effect on the dosage of specific lambda regulator genes.

1.3 Genetically identical cells, infected by a sin-
gle phage, can produce different developmen-
tal outcomes

Across many conditions, genetically identical cells grown in the same environment and each
infected with a single lambda particle select different cell fates: some cells lyse while other
cells become lysogens [87, 105, 106]. This variability in cell fate is unlikely to be due to
genetic variation within the phage population or to an artifact of the experimental methods
used to grow infected cells or quantify developmental outcomes ( [105], Chapter 2). Given
this, how do genetically identical cells infected with the same number of phage particles
give rise to distinct cell fates?

In considering this question, cell fate selection during lambda infection has emerged

as a paradigm for how biochemical “noise” might account for differences in developmental
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outcomes [13, 115,166, 176]. In particular, Arkin and colleagues used a detailed stochas-
tic chemical kinetics model of lambda infection to analyze if the lysis-lysogeny decision
might be driven by spontaneous differences in the timing of individual biochemical reac-
tion events [13]. In the “Arkin model”, initially identical newly infected cells are expected
to spontaneously accumulate quantitative differences in the abundances of key regulatory
molecules, which then propagate through the lysis-lysogeny “decision circuitry” and result
in distinct cell fates (Figure 1-6a, p.31).

The Arkin model is important for at least two reasons. First, the model revitalized study
of how lambda infected cells produce distinct cell fates, recognizing that the existing detailed
descriptions of the individual molecular components of phage lambda are not sufficient to
explain such system-level behavior. Second, Arkin and colleagues mapped the process of cell
fate selection onto an explicit model of intracellular physics, which forces a recognition of the
fact that many systems in biology are comprised of components whose cellular abundances
are far below levels for which continuous approximations of chemical kinetics are valid [57],
and for which precision of behavior cannot be expected to emerge via the bulk averaging of
many individual reaction events [154].

The Arkin model also makes a strong claim — cell fate differences in lambda-infected E.
coli arise due to spontaneous biochemical noise during infection. However, to my knowledge,
no experiments have been carried out to test this hypothesis. Thus in framing my thesis
research, I considered an alternative model for lambda infection suggested by Lieb, Gros and
Kourilsky decades ago [92,95,105]. In the alternative model, variation in the lysis-lysogeny
decision may result from cell-cell variability present prior to infection (Figure 1-6b, p.31).

This PhD thesis describes my efforts to test and explore these models.

1.4 Thesis overview

Chapter 2* — Host volume is a predictor of the lambda lysis-lysogeny decision, population

measurements

I first explain why I selected cellular volume as a plausible predictor of cell fate. I then
describe how I developed and optimized methods to size-fractionate asynchronous
populations of cells via counterflow centrifugal elutriation. Results obtained with

cultures of stationary phase cells show that host volume can be used to predict the
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Figure 1-6: Alternative models for cell fate selection in a population of
genetically identical cells. a, Variation during infection (for example, spontaneous
chemical kinetic noise) leads to qualitative differences in cell fate. b, Variation in the
physical state of individual cells prior to infection predetermines cell fate.
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fate of lambda infected cells: smaller cells tend to become lysogens, while larger cells

tend to follow lytic growth.

Chapter 3* — Host volume is a predictor of the lambda lysis-lysogeny decision, single-cell

microscopy measurements

I present the development of a microscopy platform to study lambda infection in single
cells. Using this platform, I present results that further support the main conclusion
of Chapter 2: the lambda lysis-lysogeny decision is correlated with the volume of
individual, stationary phase cells. My single cell results show that while volume is a
strong predictor of cell fate, it does not fully account for the observed variability in

cell fate selection.

Chapter 4* — Identification of host-encoded determinants of lambda’s “volume sensor”

I describe efforts to understand whether lambda may be sensitive to a cellular pa-
rameter correlated with volume rather than volume more directly. I first show that
sensitivity to host volume is not specific to infection of stationary phase cells. I then
describe ongoing efforts to determine whether lambda may be sensitive to cell cycle

position rather than volume.

Chapter 5 — Identification of phage-encoded determinants of lambda’s “volume sensor”

I describe how characterization of the timing of the lysis-lysogeny decision can help
to identify phage-encoded components underlying lambda’s apparent sensitivity to
host volume. In particular, I discuss the construction of a fluorescent reporter of
CII activity. Preliminary results using this reporter suggest that the lysis-lysogeny

decision has been made before or at the level of CII activity.

Chapter 6 — Detection and enumeration of individual phage particles

I describe ongoing attempts to create a reporter of the multiplicity of infection (MOI),
and how such a reporter would enable the study of the decision in wild-type hosts
grown to exponential phase.

Chapter 7 — Summary

Here, I summarize the results from previous Chapters, highlight opportunities for

future research, and put my work in the larger context of research on cell fate selection.
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* Parts of Chapters 2, 3 and 4 are published in: F. St-Pierre and D. Endy. Determination
of cell fate selection during phage lambda infection. Proceedings of the National Academy

of Sciences of the United States of America, 105(52):20705-10, Dec 30 2008.
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Chapter 2

Host volume is a predictor of the
lambda lysis-lysogeny decision,

population measurements

2.1 Host volume is a plausible marker of cell fate

In Chapter 1, I briefly described an alternative model for lambda infection in which cell-cell
variability that exists prior to infection determines individual cell fates (Figure 1-6b). Given
the extent of interactions between host and phage (1; [53]), variability in a large number of
host functions could plausibly impact the lambda lysis-lysogeny decision.

To select a candidate predictor! of cell fate onto which to focus my initial efforts, I
considered past work showing that the frequency of lysogeny increases with the average
number of infecting phage per cell ( [93]; Chapter 1). To explain this observation, Kourilsky
proposed that lysogeny requires the concentrations of one or more phage-encoded factors
to exceed a critical threshold [94,96]. The amount of pro-lysogeny factors produced in an
infected cell may be greater when the levels of their corresponding genes are high, either

because many phage are simultaneously infecting the same cell [93], or because the infected

'For the purpose of this thesis, I define “predictor” as a cellular characteristic, measured prior
to (or immediately after the start of) infection by phage lambda, that correlates with the eventual
fate of the cell (lysis or lysogeny). Examples of such cellular characteristics may be morphological
parameters (volume, surface area, shape), or the abundance, activity or localization of a given
molecular species (e.g. a given protein or mRNA). A predictor implies correlation, not causality.
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cell is small (this work). For cells infected with the same number of phage, I might therefore
predict that, at least early during infection, smaller cells will have an increased concentration
of pro-lysogeny gene products and may tend to become lysogens; larger cells will have a
lower concentration of pro-lysogeny gene products and might favor lytic growth. Particularly
important examples of such pro-lysogeny factors are lambda CII and CIII, whose levels are
known to impact the lysis-lysogeny decision (see section: 1.2, p.20). However, the levels of
other phage-encoded gene products — for example, lambda N — may also play a role (also
discussed in section 1.2, p.20).

According to this “gene dosage” model, host volume may be a plausible marker of
lambda infected cells. Modeling of the lambda right operator region (oR), performed prior
to the start of my experimental work, also suggested that sensitivity to host volume can be
encoded in lambda regulatory circuit (see Chapter 5), further motivating the experimental
validation of volume as a marker of cell fate.

Note that the precise nature of a putative correlation between the volume and fate
of lambda infected cells is considered in Chapter 4. For example, lambda might be sen-
sitive to position within the cell division cycle rather than host volume. Thus, with the
understanding that volume may be a proxy for other cellular parameters, I next consid-
ered experiments to test whether host volume may be used to predict the outcome of the

lysis-lysogeny decision.

2.2 Macroscopic plate methods can be used to quan-

tify cell fate statistics

2.2.1 Preparation of stationary phase Escherichia coli MG1655

Before testing host volume as a candidate marker of the lambda lysis-lysogeny decision, I
evaluated and developed methods to quantify cell fate selection statistics. For my exper-
iments, I used the "wild-type" Escherichia coli K12 strain MG1655 (F~ lambda~ rph-1)
whose genome has been completely sequenced [22].

Because the multiplicity of infection (MOI) is known to impact cell fate selection (see
above and Chapter 1), I ensured that virtually all cells were infected at the same MOI

(MOI=1) by using a low phage-to-cell ratio (0.005 or otherwise noted). However, wild-
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Figure 2-1: Growth curves of FEscherichia coli MG1655 approaching sta-
tionary phase in tryptone broth at 37°C. I grew five cultures of FEscherichia
coli MG1655 from independent colonies as described in the main text. Aliquots from
each culture were diluted 3-fold into TB for OD600 measurement via a Shimatzu
UV160U spectrophotometer (Shimadzu Scientific Instruments, Columbia, MD, USA).
The time represents the number of hours following the 500-fold dilution in 0.5L TB
(see main text). I typically harvested cells for size-fractionation and/or infection 16
hours post-dilution. Dilution and time-independent measurement error was deter-
mined by comparing the OD600 readings of 10 separate 3-fold dilutions of stationary
phase cells. The coefficient of variation of those measurements was <1%.

type cells grown to exponential phase and infected with a single phage typically follow
the lytic pathway exclusively [93]. Thus, to raise the frequency of lysogeny to measurable
levels, I starved the cells by growing them to stationary phase, a growth phase reported to
produce high fractions of both lytic events and lysogens [93,105]. Specifically, I first grew
MG1655 cultures in tryptone broth (TB; [153]) at 37°C to an OD600 of 0.40, as measured
by a UV160U spectrophotometer (Shimadzu Scientific Instruments, Columbia, MD, USA).
I then diluted the culture 500-fold into 0.5L of TB in a 2.8 L baffled flask, and continued
growth with shaking (220rpm) and aeration for 16 hours at 37°C (see Figure 2-1 for growth

curves).

2.2.2 Quantification of cell fate outcomes

I measured developmental outcomes using A cI857 bor::KanR, a lambda strain constructed

by Lynn Thomason in the laboratory of Donald L. Court (NCI-Frederick, Frederick, MD,
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USA). This strain has two important characteristics. First, the phage produces only lytic
cells at temperatures above 40°C due to the temperature sensitive allele (cI857) of the
lambda repressor cl. Second, the phage contains a KanR cassette integrated into the lambda
genome as a partial replacement of the bor locus. This cassette permits selection of lysogens
as kanamycin-resistant colonies. Note that bor is not known to be involved in the lysis-
lysogeny decision. I confirmed that inactivation of bor does not impact lambda decision
by comparing population-average cell fate statistics in MG1655 cells infected with ¢I857
bor::KanR or with wild-type lambda (Figure 2-2, page 39).

To measure cell fate outcomes, I followed the procedure sketched in Figure 2-3 (p.40).
I first resuspended cells to 1E9 cells/ml in ice cold TB supplemented with 10 mM MgSOy.
I added phage at an average phage-to-cell ratio of 0.005 (A cI857 bor::KanR) or 0.05 (AT).
This phage-to-cell ratio was calculated by titering phage and cells using standard methods
[11]; because of unadsorbed phage, the actual (i.e. effective) phage-to-cell ratio was typically
40-60% lower (data not shown).

I incubated cell-phage mixtures at 4°C for 30 min to allow for adsorption. I removed
unadsorbed phage by centrifugation. I then diluted cells 10-fold in TB supplemented with
1mM MgSO, pre-warmed to 30°C. I incubated cells at 30°C with shaking and aeration
for 45 min, after which I placed cultures on ice; this incubation step is necessary to allow
newly lysogenic cells to develop kanamycin resistance (A ¢I857 bor:: KanR) or superinfection
homoimmunity (A1). I removed any remaining unadsorbed phage by a final centrifugation
step.

Iindependently measured lysis, lysogeny, and total infected cells. I measured the number
of lytic cells by using TB soft agar to disperse cells on TB agar plates containing ~6E7
plating cells, incubating at 30°C, and counting plaque forming units (PFU). Plating cells
are simply additional cells that are sensitive to lambda infection and allow propagation of
lambda infection, so that individual infected cells can produce clear areas (plaques) on a
lawn a bacterial cells. I made plating cells by growing MG1655 in TB supplemented with
0.2% maltose to exponential phase and resuspending the culture to ~6ES8 cells/ml in TB

supplemented with 10 mM MgSQOy.

For experiments using A cI857 bor:: KanR, I measured the number of lysogenic cells by
spreading cells on TB agar supplemented with 20 pg/ml kanamycin sulfate. When plating

uninfected cells on kanamycin agar, I usually obtained no false positives; in a few cases,
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Figure 2-2: Genetically identical cells, each infected with a single phage,
can produce distinct developmental outcomes. a, Four independent infected
cultures produce similar fractions of lytic and lysogenic outcomes, the sum of which
equals an independent measure of total infected cells. b, Population-wide cell fate
statistics are insensitive to the method of lysogeny quantitation. The error bars
represent the standard error of the mean of three infections made with independent
stocks of A ¢I857 bor::KanR. c, A culture of stationary phase cells was infected with
three independent stocks of A™ and three independent stocks of A cI857 bor:: KanR.
The percentage lysogeny is the number of lysogens over the total number of infected
cells (here calculated as the sum of lysogens and lytic events). The error bars represent
the standard error of the mean of infections made with three independent stocks of
A cI857 bor::KanR or AT,
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Figure 2-3: Macroscopic plate tests to quantify developmental outcome of
lambda infected cells, sketch of experimental procedure. The major steps of
the experimental protocols are shown above. The duration of the steps is indicated
where appropriate.

up to 0.001% of plated cells gave false positives (data not shown). For experiments using
AT, I selected lysogens as cells resistant to homoimmune superinfection. Specifically, I
spread infected cells on TB agar seeded with ~1E9 ¢I26, a lambda mutant that kills any
non-lysogenic lambda-sensitive cells. When plating uninfected cells on cI26-seeded agar,
~0.01% of cells produced colonies (false positives). For both AT and A\ cI857 bor::KanR,
I incubated plates at 30°C and scored lysogens by counting the number of colony forming
units (CFU).

For cells infected with A\ cI857 bor::KanR, I independently measured the total number
of infected cells by preparing plates as if to count lytic events, with the exception that the
plates were incubated at 42°C. At 42°C, the temperature-sensitive lambda repressor cI857

is inactive, so all infected cells select the lytic pathway and can be counted as PFU.

I found that stationary phase MG1655 produced 45-50% lysogeny (Figure 2-2a, p.39).
Across four replicate experiments, the sum of independent measurements of lysogens and
lytic centers was equivalent to my independent measurement of the total number of infected

cells. I saw no difference in the frequency of lysogenization whether I used kanamycin or
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resistance to homoimmune superinfection as a method to select lysogens (2-2b). Both A
cI857 bor::KanR and AT produced identical frequencies of lysogeny (Figure 2-2c, p.39),
suggesting that the cI857 and bor::KanR alleles do not interfere with the lambda lysis-
lysogeny decision in my experimental conditions. Because selection using kanamycin is
simpler and produces a lower false positive background, I used A cI857 bor::KanR for all

subsequent experiments in this Chapter, unless otherwise noted.

2.3 Counterflow centrifugal elutriation can produce
fractions of E. coli cells with different mean

cell volumes

2.3.1 Size fractionation of cultures of Escherichia coli

To test whether host size can be used to predict the fate of infected cells, I required a
method to obtain fractions of different mean cell volume from stationary phase cultures of

Escherichia coli. 1 present here two methods that were initially considered:

“Baby machine”

One method developed by Helmsletter and Cummings, the “baby machine”, involves the
collection of recently divided cells, which are typically the smallest cells of a culture [19,64].
Briefly, exponentially growing cells are attached to a nitrocellulose membrane, and growth
medium is flowed onto the cells. Newborn cells simply fall in a receptacle. Larger cells (cells
further into the cell division cycle) can be obtained by growing smaller cells in culture media
for a given amount of time. Unfortunately, this method can probably only be used with
exponentially growing cells, because growth media needed to allow cells to divide (to obtain
newborns) and to grow (to obtain larger cells) prevent cells from remaining in stationary

phase.

Flow cytometry

Forward angle light scatter (FALS) has been used to estimate bacterial cell size [23,149].

I therefore performed pilot studies using a MoFlo flow cytometer and cell sorter (Dako,
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Glostrup, Denmark) at the MIT Flow Cytometry Core Facility. I collected two cell frac-
tions, one for cells with the 10% smallest FALS signal, and one with cells with the 10%
largest FALS signal. However, volume measurements using a Coulter counter (see later this
Chapter) showed identical mean cell volumes for the two fractions. Discrepancy between
published data and the results from my pilot experiment might be due to instrumenta-
tion differences. I did not consider this method further, and concentrated on counterflow

centrifugal elutriation (next).

2.3.2 Development of counterflow centrifugal elutriation meth-

ods

Counterflow centrifugal elutriation (elutriation) fractionates cell based on differences in
terminal sedimentation velocity, which is correlated with cell size [51]. Elutriation has
previously been used to isolate fractions of small E. coli cells from asynchronous populations
[51]. Here, I developed protocols to obtain many fractions of E. coli cells across a range of
mean cell volumes (MCV). I used a JE5.0 counterflow centrifugal elutriation (elutriation)
system equipped with a single 40 ml chamber pre-cooled to 4°C (Beckman Coulter, Fullerton,
CA, USA). I controlled cell and medium flow rate via a peristaltic pump loaded with small
pump head cartridges and fitted with L/S14 silicon tubing (Cole-Parmer, Vernon Hills,
IL, USA). I increased fraction quality by using two anti-parallel pump heads and a pulse-
damping chamber to improve continuity of flow in the elutriation chamber; the damping
chamber also trapped small bubbles that otherwise would have disrupted flow within the
chamber or caused rotor vibration. I switched the pulse-damping chamber on-line after
cell loading by means of a three-way valve. Figure 2-4 (p.44) depicts the most important
features of my setup.

Note that I also designed an air purge system to remove air from the JE5.0 elutriation
rotor equipped with a large (40ml) elutriation chamber. The necessary flow rate to remove
air from my system is 200 ml/min (Ref. The JE5.0 Elutriation System, Instruction Manual,
© 2004). Unfortunately, the maximal flow rate of my system is only ~31 ml/min: at the
maximal pump drive speed of 100rpm, small cartridges equipped with L /S 14 tubing give an
output of ~15.6 ml/min per cartridge. I therefore had to use a second drive with the same

maximal speed of 100rpm, but equipped with an Easyload pump head loaded with L/S 17
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Part Part Number

Elutriation pump*
1. Masterflex L/S variable speed digital economy drive HV-07524-50
2. Masterflex L./S 2-channel, 6-roller pump head HV-07519-10
3. Masterflex L/S small cartridges HV-07519-85
Air purge pump*
1. Masterflex L/S variable speed digital economy drive HV-07524-50
2. Masterflex L/S Easy-Load pump head HV-07518-10
3. Masterflex L/S 17 tubing (6.4mm inside diameter), HV-96400-17
peroxide-cured
Masterflex pulse dampener* HV-07596-20
Masterflex L/S 14 tubing (0.6mm inside diameter), HV-96400-14
peroxide-cured”®
3-way valves i.e. 3-way stopcocks with Luer connections, HV-30600-02
male-lock*
JE5.0 elutriation system with large (40ml) chamber and Contact Beckman
pressure gauge** Coulter

*Cole-Parmer Instrument Company **Beckman-Coulter

Table 2.1: Elutriation system parts list. All equipment was from Cole-Parmer
Instrument (Vernon Hills, IL, USA, www.coleparmer.com), with the exception of
the JE5.0 elutriation system, which is from Beckman Coulter (Fullerton, CA, USA,
www.beckmancoulter.com). See Figure 2-4 (p.44) for a sketch of my elutriation sys-
tem.

tubing. This second drive was able to achieve flow rates of up to 280ml/min. A 3-way valve
was used to control whether the “air purge pump drive” or my normal “elutriation pump
drive” was switched on-line. Note that it may be possible to find a pump system (pump
drive, pump head and tubing) that could be used both to purge air out of the elutriation

system and to produce the flow rates used in my protocols.

I developed two elutriation protocols, optimized to isolate smaller and larger MG1655
cells, respectively. During an experiment, I carried out each protocol in parallel using two
independent elutriation systems. For both protocols, I first filled the system with an ice-cold
solution of M9 salts, purged any air from each elutriation system and brought the rotors
to 4800 RPM for at least 15 minutes before cell loading. 1 vortexed cells vigorously for 2
minutes prior to loading to reduce cell clumping in the elutriation chambers. I then loaded
each elutriation system with 120 ml of cells at a flow rate of 3 ml/min. To collect fractions of

small MG1655 cells, I kept the flow rate at 3 ml/min for 20 min to allow cells to equilibrate
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Figure 2-4: Schematic of counterflow centrifugal elutriation system. The
specific parts used in my system are listed in Table 2.1 (p.43). This setup was inspired
by [172] and the JE5.0 elutriation system instruction manual (©2004). As described
in the main text, I used two identically-configured elutriation systems in parallel for
most of my experiments.

in the chamber. I then increased the flow rate to 4, 5 and then 6 ml/min, collecting 0.5
L at each flow rate. I collected small cells from the 6 ml/min fraction, and discarded all
other fractions. To collect fractions of larger MG1655 cells, after loading the cells into the
elutriator, I slowly increased the flow rate to 7 ml/min. I then increased the flow rate from
7 to 13 ml/min in 1 ml/min steps, collecting 0.5 L at each flow rate. I collected increasing
volume cells from the 9, 10, 11, 12 and 13 ml/min fractions (I only collected 0.1 L at the
13 ml/min flow rate) (Table 2.2).

2.3.3 Elutriation does not grossly affect cell fate selection
statistics

I tested if elutriation may have affected cellular physiology in such a way that it grossly in-
fluenced the lysis/lysogeny decision. To do this, I performed elutriation using the described
methods except that elutriated cells were continuously pumped back into the system. Cells
that underwent elutriation in this way exhibited the same developmental statistics as cells
from the same culture that were not loaded into my elutriation systems (Figure 2-5).

I tested if subjecting cells to elutriation, and thus to centrifugal and counterflow forces,

can affect their physiology in such a way that it influenced the lysis-lysogeny decision fol-
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Flow rate at which Fraction vol- Approximate yield

the fraction was wume (L) (% of loaded cells col-
collected (ml/min) lected in the fraction)
6 0.5 1

9 0.5 )

10 0.5 6

11 0.5 6.5

12 0.5 6.5

13 0.1 1

Table 2.2: Yield of fractions collected by counterflow centrifugal elutria-
tion. Fractions produced by elutriation were concentrated ~100-fold in 1x M9 by
centrifugation. Cells from the asynchronous population used to load the elutriation
system were resuspended in the same medium (1x M9). The OD600 of the result-
ing cell suspensions was measured using an ND-1000 spectrophotometer (NanoDrop,
Wilmington, DE, USA). Assuming 1E9 colony forming units (CFUs) per OD600 per
ml for all fractions independently of mean cell volume, I calculated an estimate of
the number of cells collected in each fraction. The numbers shown above represent
the average of measurements made on elutriated fractions from three independent
stationary phase cell cultures. Note that yields do not sum up to 100% of loaded
cells, because only collected fractions were included in this analysis.

lowing infection by phage lamdba. To do this, I performed elutriation for the same duration
(~6.5 hours) as for the elutriation experiments presented in the next sections of this Chap-
ter. Moreover, to increase the probability of observing an impact of elutriation on the
lysis-lysogeny decision, fractionated cells — that is, cells which left the elutriation system —
were continously reintroduced into the elutriation apparatus. Cells that underwent elutria-
tion in this way exhibited the same developmental statistics as cells from the same culture
that were not loaded into my elutriation systems (Figure 2-5, 46). This result suggests
that the process of elutriation, performed as described earlier, does not cause a measurable

impact on the lambda lysis-lysogeny decision.

2.3.4 Electronic and microscopy measurements of cell size

I measured the volumes of individual cells in each fraction by two methods: light microscopy
and electronic volume. For microscopy measurements, I spread cells on 0.85% NaCl agarose
pads and took pictures using a TE2000-E inverted microscope equipped with a 60x DM
phase contrast objective, 1.5x intermediate magnification (Nikon USA, Melville, NY, USA)
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Figure 2-5: Counterflow centrifugal elutriation does not result in qualitative
changes in developmental outcome statistics of lambda-infected cells. Elu-
triation was performed as described in Section 2.3.2 (p.42). However, as explained
in the text, I continously reintroduced fractionated cells back into the elutriation
system. To do this, I made two changes to the setup depicted in Figure 2-4 (44).
First, the sample reservoir was the only reservoir used. The outflow of the system,
including fractionated cells, was collected into the sample reservoir so that it could
then be pumped back into the system. Second, the pulse dampener was not used
to avoid cells accumulating in its chamber. This setup was used for both elutriation
systems, and the two protocols described earlier (Section 2.3.2, p.42) were followed
in parallel. At the end of the procedure, cells were collected into separate containers
by using a high flow rate (>20 ml/min) to wash out the cells, and manual removal of
the cell pellet which usually forms at the distal end of the elutriation chamber. Cells
loaded in the two elutriation systems, as well as cells from the same population but
which were not loaded in either of the elutriation systems, were infected with phage
lambda and their developmental outcomes quantified. The error bars represent the
Poisson error of plating.
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and an ORCA-AG CCD camera (Hamamatsu Photonics K.K., Japan) controlled by IPLab
v3.9 software (BD Biosciences, Rockville, MD, USA). I manually measured the long axis
of more than 500 cells per fraction. I converted cell length measurements (pixels) to ab-
solute length (microns) using a calibration slide (AppliedPrecision, Issaquah, WA, USA).
I converted measured cell lengths to cell volumes by modeling cells as hemisphere-capped
cylinders: cell volume = 4/37r3 + (L —2r)7r?, where 'L’ is the cell length and 'r’ is the half
the cell diameter 'r’ was assumed to be identical (0.44 pm) for all cells. I chose this value
of '’ by measuring the mean cell diameter of over 500 cells from an asynchronous MG1655
population grown as described above.

To obtain electronic volume measurements, I used an NPE Cell Quanta Hg /488 equipped
with 25 pm flow chamber (NPE Systems, Pembroke Pines, FL, USA)(106). To better
separate cell volume measurements from electronic noise, I stained cells Syto-9 (Invitrogen,
Carlsbad, CA, USA) and triggered on fluorescence rather than volume. For staining, I
first diluted cells to ~1E6 cells/ml in NPE isodiluent (NPE Systems, Pembroke Pines,
FL, USA) and incubated with 2 uM Syto-9 for 30 min at 4°C in the dark. I calibrated
my electronic volume measurements by spiking cell suspensions with 1.51 pum yellow-green
fluorescent polystyrene beads (Excitation: 425 nm, Emission: 480 nm; Catalog No. FS04F,
Bangs Labs, Fishers, IN, USA). Cells and beads were excited with a 488 nm laser and their
emission monitored using a 525/30 nm emission filter. Electronic volume (gain setting=10)
and fluorescence were recorded for more than 10,000 cells and 5,000 beads per fraction.
Electronic and microscopy measurements of fraction mean cell volumes gave similar values
(Figure 2-6, p.48), and confirmed that elutriation can be used to produce fractions with

different mean cell volumes (Figure 2-7,p.49).

Volume measurements of septating cells

Many cells in fractions of larger cells appear to be septating (see Figure 2-7, p.49). T assumed
that both “halves” of septating cells can freely exchange molecules during phage infection, so
that size measurements should include the entire cell. This assumption is further supported
by time-lapse movies of individual cells infected by a phage strain constitutively expressing
GFP (see Chapter 3, p.61). In these movies, GFP is seen to fill up the entire cell, rather
than only half of the cell (data not shown). However, I cannot exclude the possibility that

certain macromolecules, such as phage DNA, cannot cross partially formed septa.
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Figure 2-6: Comparison of mean cell volume obtained by electronic and
microscopic measurements. Mean cell volume for the 21 fractions included in 2-11
(p.53) was obtained by microscopic and electronic measurements as described earlier.
The equation of the linear trendline is y = 0.0069x + 0.4668, and the correlation
coefficient (r?) is 0.823.

The volume of a septating cell was calculated identically to the volume of a non-septating
cell with the same length. My microscopy measurements therefore overestimate the volume
of septating cells. However, this overestimation may be slight, as electronic and microscopy

measurement gave similar results (Figure 2-6, p.48).

2.4 Host volume is a marker of cell fate

Having established methods to segregate cells based on size, measure cell volumes and
quantify cell fate outcomes, I next set out to test the hypothesis that host volume can
be used to predict the fate of lambda infected cells. I grew three independent cultures of
MG1655 as described earlier and collected cell fractions with mean cell volumes (MCV)
between 0.82 and 1.33 um?, giving a MCV ratio of ~1.6 between the largest and smallest
fractions (Figure 2-11, p.53; Figure 2-8, p.50; Figure 2-9, p.51; Figure 2-10, p.52).

I infected each cell fraction and quantified developmental outcome. Across the ~1.6-fold
range of MCV fractions, I observed a ~3-fold difference in the percentage lysogeny (Figure

I also tested whether my results might be due to differences in the number of dead or
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Figure 2-7: Genetically identical cells can be separated into many fractions
with different mean cell volumes. Asynchronous cultures of stationary phase F.
coli MG1655 were sorted using counterflow centrifugal elutriation (Methods). The
distribution of cell volumes obtained by microscopy (n > 500) and electronic (n >
10,000) measurements are shown for representative small (a) and large (c) fractions,
as well as for the starting asynchronous population (e). Representative phase contrast
pictures (b, d, f) are shown to the right of the corresponding volume distributions.
The black bar at the bottom right corner of each image represents a length of 5 pm.
MCV = mean cell volume; CoV = coefficient of variation.
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Figure 2-11: Physical variation can be used to predict the lysis-lysogeny
decision (population measurements of stationary phase MG1655 cells). In-
dependent measurements of the fraction of lytic events and lysogeny as a function of
the mean cell volume for different cell fractions. Developmental outcome is expressed
as a percentage of an independent measure of the total number of infected cells for
each fraction. Circles, triangles, and squares depict fractions collected from inde-
pendent experiments. The three starting asynchronous (unfractionated) cultures are
also shown (arrows). Error bars depict the Poisson standard error of the mean from
plating. Dashed lines depict linear regression lines for percentage lysis and lysogeny,
and the sum of lytic events and lysogens.
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Figure 2-12: Comparison of developmental statistics of fractions of smaller
and larger infected cells. From the fractions illustrated in Figure 2.9, I further
analyzed three small MCV fractions and three large MCV fractions. Each group was
composed of fractions obtained from independent cultures. The small MCV fractions
gave an average of 66.8% lysogeny, over 3 times the percentage lysogeny observed in
the large MCV fractions, 22.0% (p=0.002, 2-tail paired t-test). The same fractions
gave a corresponding change in frequency of lytic events: I observed 27.3% lytic events
in the small MCV fractions compared to 80.3% in the large MCV fractions (p=0.003,
2-tail paired t-test). The error bars represent the standard error of the mean of three
independent fractions.

non-growing cells across the different fractions used. To do this, I followed via microscopy
over 250 cells from both a low MCV fraction (0.83 um? MCV; 71.5% lysogeny) and a high
MCYV fraction (1.26 ym? MCV; 24.9% lysogeny). In both cases more than 98% of observed

cells grew and divided.

Since cells were incubated for 45 min at 30°C in liquid medium between phage adsorption
and plating (above), cell division or lysis could have occurred during this period, potentially
skewing the developmental outcome statistics. However, I found no increase in colony or
plaque counts during this incubation period for uninfected or infected fractions at both high
and low MCV, respectively (Figure 2-13, p.56; Figure 2-14, p.57). I confirmed the absence
of cell division using time-lapse microscopy (data not shown). This lag in cell division may

result from my use of stationary phase cells.

Finally, my experiment used unpurified stocks of phage lambda. However, I confirmed
that a correlation between volume and fate of infected cells is also observed with purified

phage stocks (See section 3.2, p.64).

My initial results therefore strongly suggested that host volume immediately prior to
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infection can be used to predict the fate of lambda infected cells: larger cells tend to lyse,

while smaller cells tend to become lytic.

2.5 Critical volume analysis

No cell fraction obtained via the elutriator and plating method produced 100% lysogens
or 100% lytic events (Figure 2.9). However, each elutriated fraction was comprised of cells
spanning a range of volumes (Figure 2-7,49; Figure 2.8). Thus, I was unsure if the occurrence
of both lysis and lysogeny in each fraction might be due to stochastic processes intrinsic
to infection within individual cells, or to remaining pre-existing extrinsic differences in cell
volume (or another variable) that were beyond the segregation capabilities of my elutriation
method.

Given the observed sensitivity to pre-existing differences in cell volume, I was partic-
ularly curious if volume at the time of infection might entirely account for the eventual
fate of infected cells. To quickly consider this possibility I used a single parameter abstract
“all-or-none” model to posit that any cells smaller than a “critical volume” might produce
a lysogen, while any larger cell would undergo lysis (Figure 2.13a). I then used this critical
volume model to analyze data obtained by elutriation and plating. Specifically, I compared
the observed frequency of lysogeny to the frequency of lysogeny that would be predicted
using the all-or-none model, fitting for the best critical volume across all cell fractions. The
best-fit critical volume model (1.04 m3) is a good predictor (r?=0.93, p < 1E-04) of observed
cell fate (Figure 2.13b).

For comparison, I also calculated a critical volume for each fraction independently by
determining the volume at which the percentage of cells of lesser volume is equal to the
observed probability of lysogeny in that fraction. For example, the observed percentage
lysogeny for the indicated fraction (Figure 2.13c, arrow) is 17.7%, and the critical volume
for this fraction is determined as the volume for which 17.7% of the cells are of lesser volume
(1.02 ym?®). From this complementary analysis I observed that the critical volumes across
all MCV fractions were concentrated within a range of cell volumes that are much narrower
than the volume distribution of the starting asynchronous population.

To be clear, my mathematical analysis does not conclusively establish a critical volume

all-or-none model, nor reveal anything about molecular mechanisms that would underlie
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Figure 2-13: The total number of cells does not increase during the 45-
minute incubation step between adsorption and plating. I grew and size-
fractionated three independent cultures of bacterial cells. For each culture, I selected
the fraction with the smallest mean cell volume (MCV) and the fraction with the
largest MCV. To replicate experimental conditions of my usual infection protocol
(except for the addition of phages), I resuspended cells in TB supplemented with
10 mM MgSO,, incubated them at 4°C for 30 minutes and diluted them in TB pre-
warmed to 30°C. Cells were then plated on TB agar either immediately following
dilution, or after a 45-minute incubation at 30°C with aeration in a roller drum.
Plates were incubated at 30°C for ~18 hours and scored for colony forming units
(CFUs). For each experiment and each fraction, the number of CFUs obtained after
the 45 min incubation period was normalized to the value obtained when cells were
plated before incubation. The error bars represent the standard error of the mean
of those three independent experiments. The values given for the mean cell volume
represent the mean of the MCV of three fractions.
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Figure 2-14: The total number of infected cells does not change during
the 45-minute incubation step between adsorption and plating. I grew and
size-fractionated a culture of bacterial cells. The fraction with the largest mean cell
volume (MCV) and the fraction with the smallest MCV were infected with A cI857
bor:: KanR. After the usual adsorption step (30 min, 4°C), cells from each fraction were
split into three treatment groups. Some cells were submitted to a 5-min pulse at 37°C
and plated either immediately (Condition A), or after the usual 45-min incubation
at 30°C (Condition B). The 37°C pulse was performed to ensure phage DNA ejection
prior to plating [?], thus avoiding potential effects of plating conditions on DNA
entry probability. Cell treated exactly as described in Supplementary Methods (i.e.
45 min incubation at 30 C but no 5-min pulse at 37°C) were also plated (Condition C).
Infected cells were scored as plaque forming units (PFUs) on plates incubated at 42°C.
The error bars represent the standard error of the mean of three replicate experiments
performed using cells from the same fraction. For each replicate experiment, the
number of PFUs obtained in Conditions A and B was normalized to the number of
PFUs obtained from Condition C.
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Figure 2-15: “Critical volume” analysis. a, Cartoon representation of my con-
cept of “critical volume”. In this simple hypothesis, all cells greater than this critical
volume become lytic, while all cells smaller than the critical volume become lysogens.
b, Correlation between the observed frequency of lysogeny obtained by experimenta-
tion, and the percentage lysogeny predicted by my critical volume model. Each data
point represents one of the 21 fractions analyzed in Figure 2.9. c, Fraction-specific
“critical volumes”. The horizontal bar: the center dash represents the mean, 10% of
the population fall within the inner dashes, and 90% within the outer dashes. Most
critical volume points fall within the inner dashes.
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such behavior. However, it suggests that my cell fraction data is not grossly or obviously
inconsistent with an all-or-none deterministic model for lambda infection (Figure 1.6b) in
which cells smaller than a putative critical volume (~1 pm3) will become lysogens. My
analysis also highlighted the need to develop experimental methods for directly exploring
the correlation between host volume and ensuing cell fate at the single cell level, the topic

of the next Chapter.

2.6 Chapter summary

Re-interpretation of experiments by Lieb, Kourilsky and others [54, 86,93, 105] motivated
the selection of cellular volume as a possible predictor of cell fate. I developed and optimized
methods of counterflow centrifugal elutriation to size-fractionate asynchronous populations
of E. coli cells. Results obtained with cultures of stationary phase cells show that physical
variation present prior to infection can control the fate of lambda infected cells: smaller

cells tend to become lysogens, while larger cells tend to follow lytic growth.
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Chapter 3

Host volume is a predictor of the
lambda lysis-lysogeny decision,
single-cell microscopy

measurements

In Chapter 2, I demonstrated that host volume can be used to predict the fate of lambda
infected cells. In this Chapter, I present the development and utilization of a microscopy
platform to study lambda infection at the single cell level. I wished to develop this platform
for two primary reasons. First, I wanted to confirm the results of Chapter 2 using a different
method to observe cells of different volume and determine cell fate selection statistics.
Second, to quantify, at the single cell level, the extent to which host volume is correlated

with the fate of lambda infected cells.
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3.1 Design and construction of A\ Aam19 b::GFP
cI857

3.1.1 Designing a phage strain for single-cell microscopy

Detecting all infected cells using a phage-encoded GFP cassette

I first set out to replicate the experimental conditions described in the previous Chapter,
namely infection of MG1655 grown to stationary phase in tryptone broth (TB). As in
Chapter 2, I controlled the multiplicity of infection (MOI) by using a low average number
(0.03) of phage per cell. Lytic events can be simply detected using brightfield microscopy
due to cell lysis. However, I needed a method to distinguish lysogens from uninfected
cells. To detect all infected cells, including lysogens, I integrated into the lambda genome
a cassette that results in the constitutive expression of the green fluorescent protein. The
cassette was inserted in the “b” region of phage lambda [30], a region not thought to play
a role in the lambda lysis-lysogeny decision. I considered alternative methods of detection
such as those further described in Chapter 6. However, I chose the phage-encoded GFP
cassette method because it is relatively simple and less likely to significantly perturb lambda

regulatory network.

Using an amber mutation in gene A to prevent re-infection of lambda

infected cells

I wished to avoid complications arising from re-infection of infected cells by the progeny
of neighboring cells which underwent lysis. To this end, I introduced an amber mutation
in gene A (Aaml9 allele) into A b::GFP. The A gene encodes an essential phage DNA
packaging enzyme [48] not thought to be involved in the cell fate selection process. Strains
which do not suppress the amber mutations, such as those used in my experiments, can still
lyse because the phage-encoded holin-endolysin system for host cell lysis (genes R and S)
remains intact. Importantly, lysed cells only release empty (uninfectious) lambda particles,
thus preventing re-infection.

To allow a simpler detection of Aam19 mutants, I engineered a ¢cI857 mutation onto

A b::GFP prior to engineering the Aam19 mutation (see construction section below). The
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cI857 allele results in fully active CI repressor at temperatures of < ~32°C, but non-
functional CI at temperatures > ~40°C [165].

At 40°C-42°C, A Aam19 cI857 mutants produce clear plaques when plated on an amber-
suppressor strain (e.g. C600) but cannot be propagated on non-suppressor strains(e.g.
MG1655). They are thus easily distinguished from the A* cI857 parental strain which
forms clear plaques when plated on either strain [132]. The details of the construction of A

Aaml9 b::GFP cI857 are presented below:

3.1.2 Construction of A\ Aam19 b:: GFP cI857

Recombineering of a GFP cassette onto lambda genome

I first selected a GFP cassette from pSB3K3-120115 [1], a plasmid constructed by Heather
Thompson and Matt Gethers in my laboratory. When using the primers described below

for PCR amplification, the resulting GFP cassette contained the following critical elements:

1. BBa_E0040 [1], a BioBrick?™ version of the bright GFP variant gfpmut3b, with a
strong ribosome binding site (RBS) from phage T7 gene 2.0. BBa_ E0040 was driven
by a strong, Lacl-repressible promoter BBa_R0011 [1]. In the presence of IPTG
or in a Alacl strain, this cassette produces GFP constitutively, as desired for my

application.

2. The kanamycin resistance marker from the plasmid, to allow selection for phage

carrying the GFP cassette.

3. Two terminators, BBa_ B0015 and the E. coli his operon terminator, separating gfp

from the kanamycin marker.

I first PCR-amplified the above mentioned GFP cassette using primers containing 20 bp
of homology to the GFP cassette and 48-50 bp of homology to lambda b region:

e Forward primer:
5’-aggcagcaaaatcatcagaaacgaacgcatcatcaagtgeeggtegtgca-

aactttatccgectecatee-3’

o Reverse primer:

5’-ccgtatecttcacccaggetgtgecgttecacttctgatatteeectece-
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cgtgaagaaggtgttgctga-3’

I used ethanol purification to desalt and concentrate my PCR product, and performed
membrane dialysis for further desalting. I performed recombineering on an infectious
lambda wild-type particle using the recombineering strain DY380 and published meth-
ods [169]. To select for recombinants, I infected MG1655 cells grown to stationary phase
with the recombineering lysate and plated on LB supplemented with 20 pg/ml kanamycin.
Putative A b:: GFP lysogens were confirmed by PCR and fluorescence microscopy. Stocks
of A\ b:: GFP were derived from these lysogens using standard methods [65].

The resulting phage contained the 2,662 nt GFP cassette integrated into the b region [30]
of the phage genome, replacing the wild-type lambda sequence between lambda coordinates
20430-22278 and producing a phage whose genome is only slightly longer (813 nt or 1.7%)
than wild-type A. The added sequence is well within the range giving efficient DNA packag-
ing [49]. I reconfirmed the presence of the cassette on the phage by fluorescence microscopy

and by DNA sequencing.

Recombineering cI857 and Aam19 onto \ b:: GFP

I next engineered the Aam19 (C—T at lambda coordinate 1917) and ¢I857 (C—T at lambda
coordinate 37742) mutations onto A b:: GFP using published methods of recombineering
using single stranded oligonucleotides [132,169]. I identified recombinants by plaque mor-
phology and confirmed the presence of the mutations by DNA sequencing and fluorescence

microscopy.

3.2 Host volume is a predictor of the fate of single

lambda infected cells

The newly constructed phage strain, A Aam19 b:: GFP ¢I857, produces bright fluorescence
upon infection, allowing easy detection of infected cells. I performed single cell experiments
using the same bacterial strain and culture conditions as previously used in the elutriation
and plating experiments (wild-type E. coli grown to stationary phase in TB). I infected
cells at low multiplicity (average phage:cell ratio of ~0.03) and recorded time-lapse movies

via automated fluorescence and brightfield microscopy. For all single cell experiments men-
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tioned in this thesis, the phage:cell ratio was determined directly by counting the number
of infected (i.e. GFP expressing) cells and the total number of cells. The phage:cell ratio
was approximately what was expected given the number of phage added, and the number
of unadsorbed phage which I removed by centrifugation prior to imaging (data not shown).

I determined the cell size of infected cells by direct manual measurement of cell length
of the first frame of each time-lapse movie. Cell size could also have been measured using
the movie frame where GFP fluorescence is first detected. However, such a method would

result in measurement bias if either:

1. fluorescence is detected at different times in cells fated to become lysogens compared

to cells fated to produce lytic events, or:

2. the lysogeny and the lytic pathway differentially impact cell growth prior to appear-
ance of GFP. If true, differences in volumes between cells fated to become lytics and
cells fated to become lysogens may be caused by the chosen pathway, rather than

being a true predictor of cell fate.

Measurements of cell lengths were converted into measurements of cell volume as described
in Section 2.3.4 (p.45).

I established cell fates as described in Figure 3-1 (p.66). Briefly, I scored an infection as a
lytic event when a GFP-expressing cell or both of its daughters lysed. I did not observe any
instance of lysis in cells that did not previously express GFP. An infected cell was presumed
to be a lysogen when it survived the infection, producing two daughters which also divided.
Stable lysogeny requires integration of lambda DNA into the host chromosome [131]. While
my system did not allow me to determine whether integration took place, the overall cell
fate selection statistics from my microscopy experiments were equivalent to those obtained
via my elutriation and plating method (see later).

In a minority of cases, I observed an infected cell giving rise to two daughters, one
which lysed and one which survived and divided; such events were scored as 'mixed fate’.
In some 'mixed fate’ events, fluorescence appeared to decrease as the surviving cell grew
and divided. Perhaps such loss of fluorescence is due to changes in growth conditions as the
agarose pad became crowded and cells presumably left exponential phase. Increased number
of cells may also reduce accessibility of IPTG, which is required to induce expression from

the GFP cassette (see 3.1.2, p.63). An alternative possibility is that the surviving cell and
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Cell fates
Daughters of infected cell
g Classificati % of total
Infected assification (counts)
cell Daughter A | Daughter B
Lyses n/a n/a Lytic event 55.6 (175)
Lyses Lyses Lytic event 0.3 (1)
Divides Lyses Divides Mixed fate 5.1 (16)
Divides Divides Lysogeny 39.0 (123)
100 (315)

Figure 3-1: Cell fate selection statistics via time-lapse microscopy, station-
ary phase MG1655 cells. Cultures of MG1655 were grown to stationary phase in
tryptone broth and infected at low API (phage:cell, ~1:30) with A Aam19 b:GFP
cI857. The developmental outcome of infected (GFP-expressing) cells and, if applica-
ble, their daughter cells, was monitored by time-lapse microscopy. The “classification”
column outlines my mapping of developmental outcomes (lysis or division) of infected
cells to overall cell fate outcomes. In some cases, the fate of an infected cell or one
or both of its daughters could not be determined either because (1) the cell moved
out of the field of view or became obscured by neighboring cells, (2) the cell did not
divide or lyse before the end of the time-lapse movie. Such ambiguous cases were not
included in this table or in any analyses.

its progeny somehow remained uninfected. A direct reporter of lysogeny, such as a reporter

of integration, would help distinguish between these hypotheses.

The percentage lysogeny from my microscopy experiments (41.1%) closely matched
that obtained via my elutriation and plating method (44.2+4.0% S.E.M). The majority of
infected cells which divided produced lysogens (123 of 140). Interestingly, a minority of
infected, dividing cells (16 of 140) produced offspring that obtained distinct cell fates - one
daughter cell lysed while the other formed an lysogen or continued to grow and divide. I
also observed one case in which a cell appeared to have divided, giving rise to daughters

that both gave a lytic response.

I estimated the initial size of each infected cell by measuring cell length immediately
following infection. I combined the initial cell size and cell fate data in order to determine

to what extent the size of individual cells predetermines cell fates. Consistent with my
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Figure 3-2: Physical variation can be used to predict the lysis-lysogeny deci-
sion (single cell measurements of stationary phase MG1655 cells). Probabil-
ity of lysogeny as a function of the length of individual MG1655 grown to stationary
phase. The numbers in parentheses represent the number of lysogens over the total
number of infected cells within each volume bin. The dashed lines correspond to the
average percentage lysogeny.

elutriation-based results, I observed that in individual stationary phase cells the probability
of lysogeny is greatest in the smallest cells (p=0.61) and decreases with increasing cell size
(p=0.12) (Figure 3-2, p.67). While volume was a predictor of cell fate, I did not find a
“critical volume” below which all cells became lysogens, and above which all cells produced

lytic events.

Phage stocks used in my microscopy and elutriation experiments were unpurified; my
results might therefore be an artifact of some component present in my phage stocks. To test
this possibility, I purified a stock of A Aam19 b::GFP cI857 by differential sedimentation
and isopycnic centrifugation in CsCl gradients, using standard protocols [11]. Using this
purified phage stock, I infected one culture of MG1655 grown to stationary phase in TB,
and found that volume remained a predictor of cell fate. For example, the average volume
of lysogens (count=22 cells) was 0.84 um?, while the average volume of lytics (count=89
cells) was 1.16 pum3. For comparison, in the experiments shown in Figure 3-2 (p.67), the
average volume of lysogens was 0.92 um? (count=123 cells) while the average volume of

lytics was 1.11 ym?® (count=176 cells). For all data points presented above, the standard

67



error of the mean is <0.03 pm?. This control experiment suggests that the presence of a
correlation between the volume and fate of infected cells is not due to a component present
in my phage stocks. However, purification of phage stocks might affect the strength of the
correlation; additional experiments would be needed to determine whether this may be the

case.

3.3 Chapter summary

I constructed a specialized phage strain to observe lambda development at the single cell
level. This strain produces GFP during infection, thereby identifying infected cells. More-
over, it is unable to produce infectious virion progeny, avoiding complications from rein-
fection of the initially infected cells. Results obtained with cultures of stationary phase
cells confirm the main result of Chapter 2: following infection, smaller cells tend to become
lysogens, while larger cells tend to follow lytic growth. Cell volume has thus been shown to
be a marker of cell fate using two different methods of observing cells of different volumes
and quantifying cell fate statistics (Chapter 2 and this Chapter). Volume does not appear
to be a perfect predictor of cell fate. Other variation, arising before or during infection,

must therefore play a role in regulating the lambda lysis-lysogeny decision.

3.4 Chapter acknowledgments

Felix Moser (Endy lab) introduced the cI857 marker into A b:: GFP by recombineering with

single-stranded oligos (Section 3.1.2; p.64).
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Chapter 4

Identification of host-encoded
determinants of lambda’s “volume

sensor”’

In Chapters 2 and 3, I presented experimental support to the hypothesis that the volume of
stationary phase cells can be used to predict their fates following lambda infection: larger
cells tend follow the lytic pathway, while smaller cells tend to become lysogens. How might
the lambda regulatory network sense host volume (or a correlated cell parameter)? The the
lambda lysis-lysogeny decision circuit includes both phage- and host-encoded components
[53, 65, 131]. I now describe ongoing efforts to identify host (this Chapter) and phage
(Chapter 5) determinants of lambda’s apparent volume sensitivity. More specifically, in
this Chapter, I first demonstrate that host volume can be a marker of cell fate for both
stationary and exponentially growing cells. Lambda is thus unlikely to “sense” volume via
a host factor present exclusively during stationary phase. I then consider whether lambda
might be responsive to cell cycle position rather than host volume, and describe how these

two host parameters may be decoupled.
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4.1 Is lambda’s sensitivity to host volume specific
to stationary phase?

Stationary phase cultures are known to be particularly heterogeneous. For example, dilution
of late stationary phase cultures into fresh medium can produce a subpopulation of cells
which start dividing, and another subpopulation with cells which do not [151]. Heterogeneity
in stationary phase is also observed when cells remain in the same medium. For example,
Makinoshima and colleagues were able to fractionate stationary phase cultures into more
than 10 subpopulations based on their buoyant densities and expression of stationary phase
promoters [117].

Lambda may be responsive to heterogeneity within a population of stationary phase
cells given its strong sensitivity to the physiological condition of the host cell (see Section
1.2, p.20). For example, Pearl et al. recently investigated whether persister bacterial cells
are protected from phage infection and induction [135]. Persisters are cells that can survive
a temporary antibiotic exposure; unlike antibiotic resistant cells, their progeny are sensitive
to antibiotics. Type I persistent bacteria, which can arise during stationary phase [16] to
form ~1% of the population [81], were found to be protected from prophage induction.
However, persisters were not protected from infection. The authors did not investigate
whether the persistence state impacts the lysis-lysogeny decision, and whether there is a
correlation between the size of a cell and its ability to persist. Nevertheless, the results of
Pearl and colleagues suggest that lambda can be sensitive to phenotypic variability arising
during stationary phase.

Given that cells become smaller as they approach and advance within stationary phase
[3], smaller cells within a culture may tend to be those which have progressed further
within stationary phase and may be phenotypically different from larger cells. Lambda
may sense and respond to such variability by producing different outcome statistics that
are correlated with such cell-cell physical variation. This “starvation stress” model leads to
a strong, testable claim - lambda sensitivity to host volume is specific to stationary phase.

Using two approaches, I collected evidence inconsistent with the “stationary stress model”:

e I show direct evidence that host volume can be a predictor of the fate of exponentially

growing cells (section 4.1.1, p.71)
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o I describe the development of a single-cell reporter of stationary phase stress. I found

no correlation between cell size and the signal from this reporter (section 4.1.2, p.75)

4.1.1 Variation in the volume of exponentially growing cells

is correlated with lambda developmental outcome

Raising the frequency of lysogenization of exponentially growing cells

To directly test the starvation stress model, I set out to consider whether host volume is a
marker of cell fate not only in conditions of starvation, but also in conditions where cells are
growing exponentially. Unfortunately, and as stated previously, cells in early exponential
phase and infected at MOI=1 typically only adopt the lytic pathway.

To raise the frequency of lysogeny to observable levels, I considered three approaches.
First, because lambda developmental outcome statistics are sensitive to nutritional condi-
tions [93,96,105], I tried to raise the frequency of lysogeny by using a poor medium: I grew
MG1655 cells to low density (OD600~0.07, Shimadzu UV160U) in M9 medium [153] sup-
plemented with 0.5% acetate as the sole carbon source. In these conditions, MG1655 grows
with the very slow doubling rate of 4.5-5 hrs at 30°C. I determined the frequency of lysogeny
as described previously (see Section 2.2.2 on p.37), except that the recovery was performed
in M9 acetate for 1 hour. From this single pilot experiment, I obtained a frequency of
lysogeny of 3.5%. I also measured cell fate statistics by single cell microscopy at low MOI
(~0.03) with A Aam19 b:: GFP ¢I857. I removed free phage and performed time-lapse mi-
croscopy as described in Chapter 3, except that I used 2% LMP agarose supplemented
in M9 acetate (rather than TB). All ~50 cells observed lysed, suggesting a frequency of
lysogeny of < 2%. Given the low number of cells observed in this experiment, this result is
not grossly inconsistent with the frequency of lysogeny obtained using the plating method
(3.5%).

A frequency of lysogeny of ~3.5% (and possibly lower) was determined too low to do
microscopy experiments. As explained in previous Chapters, I wanted to keep the frequency
of cells infected at MOI > 2 small compared compared to the frequency of lysogeny. For
example, and assuming a Poisson distribution of phage onto cells [37], an infection at a
phage:cell ratio of ~1:143 would result in ~0.35% of infected cells being infected at MOI

> 2, which is small (10-fold lower) than the overall frequency of lysogeny. However, this
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would result in only one lysogen every 4086 cells (infected or not), making it very difficult
to obtain sufficient data by microscopy to generate statistically significant results.

I also considered increasing the frequency of lysogeny by infecting cells at a higher
multiplicity of infection (MOI). However, given that cell fate statistics are sensitive to MOI,
this strategy requires a reporter of MOI so that only cells infected by the same number of
phage can be compared. Because of the potential importance of a system to count phage
particles, and because of the large number of techniques tested or considered, ongoing efforts
to develop a reporter of MOI are discussed separately (Chapter 6).

Because of the difficulty in developing conditions or technology to obtain a high fraction
of lysogeny in wild-type strains, I next considered E. coli mutants giving the high frequency
of lysogeny (hfl) phenotype. Certain mutants, such as MA150 (hflA150) [74], resulted in
abnormal morphology upon infection with lambda (data not shown); other mutants resulted
in significant decreases in cell growth rate (e.g. hfiB and hfiD mutants). hfIK::kanR,
hflC::kanR and hlfX::kanR mutants from the Keio collection [15] grew at rates similar to
the parental wild-type strains and did not produce aberrant morphology during lambda
infection (e.g. Figure 4-1, p.73). HIfK and HfIC are membrane proteins that regulate the
activity of FtsH/HIfB, the main protease degrading lambda CII (Chapter 1). Deletion of
these loci is therefore expected to stabilize CII, but not to change the dynamics of lambda
gene expression during infection. Because the role of HIfX is not known, I was hesitant to
select hfiX::kanR as host strain. The remaining two strains from the Keio collection were
equally suitable; I chose strain JW4132 (Coli Genetic Stock Center # 10975, genotype: F~
lambda™ rph-1 A(araD-araB)567 lacZ::rrnB-3 A(rhaD-rhaB)568 hfiK::kanR) for further

experimentation.

Preexisting variation in the volume of exponentially growing cells corre-

lates with cell fate outcomes

I diluted overnight cultures of JW4132 in M9GIyM + 10 pg/ml kanamycin and grew them
at 30°C with vigorous shaking to OD600 ~ 0.07 (UV160U spectrophotometer, see above).
MOGIyM is M9 [153] supplemented with 0.4% glycerol, 0.2% maltose, 2 mM MgSO,4 and
0.1 mM CaCls. I diluted the culture 1000-fold in fresh M9GlyM supplemented with 1 mM
IPTG (to induce GFP expression following infection with A Aam19 b:: GFP ¢I857) and grew
the culture back to OD600 ~ 0.07.
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Figure 4-1: Filmstrips of phage infection of single hfiK~ cells. Images
from time-lapse movies of exponentially growing JW4132 (hfiK~) cells infected at
a phage:cell ratio of ~1:30 with a lambda strain carrying a fluorescent reporter ex-
pression cassette. Numbers indicate the number of minutes at which the images were
taken after the start of each movie. Top row: two neighboring cells are infected, each
presumably at a multiplicity of one, and both cells turn green over time. The upper-
right infected cell is larger and near the end of its cell division cycle, as indicated by
the presence of a membrane invagination (developing septum) at mid-cell. This cell
lyses between t=132 and t=177. The lower-left infected cell, which is presumably the
product of a recent cell division event and is relatively small, continues to progress
through a typical cell division cycle. The infected cell was presumably lysogenized
by lambda as it survives the infection, producing viable progeny which also divide
between t=461min and t=520min. Bottom row: an infected cell produces daugh-
ter cells with apparently distinct fates: the rightmost daughter lyses between t=527
and t=559min, while the leftmost daughter divides around t=372, producing progeny
which themselves divide around t=714 min.

I concentrated cells 10-fold in TM (10 mM Tris-Cl, pH 7.5, 10 mM MgSO,) and infected
cells with A Aam19 b::GFP cI857 at a phage:cell ratio of ~1:30. After 30 min at 4°C for
adsorption of phage onto cells, I removed unadsorbed phage by centrifugation and spread
cells on MIGIyM + 1 mM IPTG + 2% LMP agarose pads. I incubated the cells in a
microscope heating chamber set to 30°C, taking phase contrast and GFP fluorescence images
(75 ms) every ~ 15 minutes for at least 11 hours at 60-100x magnification.

Most infected cells lysed (382 of 449), with the majority of the remaining cells producing
lysogens (54 of 67). Figure 4-1 (p.73; top filmstrip) presents an example filmstrip showing
two infected cells: one cell produces a lytic response while the other cell survives the infection
as a presumed lysogen. As with the stationary phase conditions (Chapter 3), I again
observed a small number of infected, dividing cells whose offspring obtained distinct cell
fates (7 of 82; and see Figure 4-1, p.73, bottom filmstrip). Complete cell fate selection
statistics are provided (Figure 4-2, p.74).

As in Chapter 3, I estimated the initial size of each infected cell by measuring cell
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Cell fates
Daughters of infected cell
9 Classificati % of total
Infected assification (counts)
cell Daughter A | Daughter B
Lyses n/a n/a Lytic event 85.1 (382)
Lyses Lyses Lytic event 1.3 (6)
Divides Lyses Divides Mixed fate 1.6 (7)
Divides Divides Lysogeny 12.0 (54)
100 (449)

Figure 4-2: Cell fate selection statistics via time-lapse microscopy (single
cell measurements of exponentially growing hfiK— cells). Cultures of JW4132
were grown to stationary phase in tryptone broth and infected at low API (phage:cell,
~1:30) with A Aam19 b:: GFP ¢I857. The developmental outcome of infected (GFP-
expressing) cells and, if applicable, their daughter cells, was monitored by time-lapse
microscopy. The “classification” column outlines my mapping of developmental out-
comes (lysis or division) of infected cells to overall cell fate outcomes. In some cases,
the fate of an infected cell or one or both of its daughters could not be determined
either because (1) the cell moved out of the field of view or became obscured by
neighboring cells, (2) the cell did not divide or lyse before the end of the time-lapse
movie. Such ambiguous cases were not included in this table or in any analyses.
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Figure 4-3: Physical variation can be used to predict the lysis-lysogeny
decision (single cell measurements of exponentially growing hfiK~ cells).
Probability of lysogeny as a function of the length of individual JW4132 (AflK™)
grown to exponential phase. The numbers in parentheses represent the number of
lysogens over the total number of infected cells within each volume bin (excluding
“mixed fate” cells).. The dashed line corresponds to the average percentage lysogeny.

length immediately following infection. I combined the initial cell size and cell fate data
in order to determine to what extent the size of individual cells predetermines cell fates.
The probability of lysogeny is greatest in the smallest cells (p=0.25) and decreases with
increasing size (p=0.06) (Figure 4-3, p.75). While volume was strongly correlated with cell
fate, once again I did not find a “critical volume” below which all cells became lysogens,

and above which all cells produced lytic events.

4.1.2 No correlation is observed between cell size and fluo-

rescence from a reporter of stationary phase stress

The experiments described in the first section of this Chapter were started at approximately
the same time as those discussed in Chapter 3. At that time, I did not know whether I
would be able to develop a platform to directly test whether host variation in the volume of
exponentially growing cells impacts the lambda lysis-lysogeny decision (Section 4.1.1, p.71).

I therefore decided to find a second method to investigate whether the apparent sensitivity
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to host volume was specific to stationary phase. In particular, I tried to find a correlation

between cell size and a marker of stationary phase, as described next.

Selection and construction of a reporter of stationary phase

Stationary phase is often accompanied and defined by large-scale changes in gene expression
[128]. In narrowing the field for potential physiological variables that may impact lambda
development, I considered that the stationary stress response is highly dependent on the
alternative RNA polymerase sigma factor o4 [55, 66,128, 158]. Moreover, o, amount and
activity is promoted by the “alarmone” ppGpp [128]. ppGpp is reported to impact the
lambda pR promoter, thereby modulating the frequency of lysogeny [138,160]. o5 activity
may therefore be a plausible marker of lambda developmental outcome.

I decided to test whether o, activity, as a prototypical marker of stationary phase stress,
might be correlated with cell volume. I used the BioBrick” device BBa__ J45995 encoding
GFP under the control of the os-controlled promoter pOsmY [116,117]. To minimize the
impact of the reporter on host physiology, BBa__ J45995 was ported from a high-copy copy
plasmid (pSB1AT3, pMT1 origin of replication) to a low-copy plasmid (pSB4K5 [157]). As a
control, I used BBa_ 17100, where GFP is driven by the constitutive promoter BBa_ R0040.
BBa_ 17100 was also ported to pSB4K5. I transformed both plasmids — pSB4K5-J45995
and pSB4K5-17100 — into MG1655, the same strain used in the experiments described in
Chapters 2 and 3. BBa_ J45995, BBa_ 17100, pSB1AT3 and pSB4K5 where all obtained
from the Registry of Standard Biological Parts [1].

pSB4K5-J45995 is a reporter of stationary phase

I grew three independent cultures of MG1655 carrying pSB4K5-J45995 in TB to stationary
phase as described in Chapter 2. At different points during growth, I spread cells on M9
agarose (2%) pads and imaged at least 300 cells per culture using phase contrast and fluores-
cence (50 ms exposure) microscopy. Cell size (as area on the still pictures) and fluorescence
were extracted by custom Matlab (Mathworks, Natick, USA) scripts. Fluorescence per

pm? increases with OD600, as expected for a reporter of stationary phase (Figure 4-4). On

Following the example of Shetty et al. [157], 1 represented BioBricks parts cloned within a
BioBrick plasmids by writing the BioBricks vector name, followed by a dash, and the BioBricks part
number, without the use of italics.
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Figure 4-4: Plasmid pSB4K5-J45995 is a reporter of stationary phase.
MG1655/pSB4K5-J45995 was grown in tryptone broth (TB) and aliquots removed
at various time during growth to stationary phase. GFP signal of at least 300 cells
per time point was measured by fluorescence microscopy. Fluorescence is low during
exponential phase (first 2-3 points), but increase rapidly as cells approach stationary
phase.

the other hand, pSB4K5-17100 was brightly fluorescent in both exponential and stationary

phase (data not shown).

The reporter of stationary phase stress does not significantly impact growth

kinetics or cell fate decision statistics

I grew three independent cultures of (1) MG1655 carrying pSB4K5-J45995 and (2) MG1655
carrying pSB4K5-17100 in TB to stationary phase, as described in Chapter 2. Aliquots
from each culture were diluted 3-fold into TB for OD600 measurement via a Shimatzu
UV160U spectrophotometer (Shimadzu Scientific Instruments, Columbia, MD, USA). The
sampling time represents the number of hours following the 500-fold dilution in 0.5L TB
(see Chapter 2). All cultures reached a plateau in OD600 at ~16 hours after the start
of the culture (Figure 4-5, p.78, as was obtained with plasmid-free MG1655 (Chapter 2).
pSB4K5-J45995 also did not affect cell fate decision statistics: infection of stationary phase
MG1655 cells carrying pSB4K5-J45995 gave 50.84+1.0% (n=3, S.E.M.) lysogeny, compared
with 48.9£2.6% (n=3, S.E.M.) for plasmid-free MG1655.
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Figure 4-5: Growth curves of 3 independent cultures of MG1655/pSB4K5-
J45995 and MG1655/pSB4K5-17100. Both strains reach a plateau in OD600 at
t ~16 hours (dotted line), as observed with MG1655 without plasmid (Chapter 2,
Figure 2-1, p.37)

No correlation is observed between cell size and fluorescence from my

reporter of stationary phase stress

Three independent cultures of MG1655/pSB4K5-J45995 and MG1655/pSB4K5-17100 were
grown to stationary phase, imaged and analyzed as described above. I plotted the fluorescent
per area (um?) as a function of cell size for MG1655/pSB4K5-J45995 (Figure 4-6a, p.79)
and MG1655/pSB4K5-17100 (Figure 4-6b, p.79).

For each strain, I divided cells into 6 bins of cell size. I then normalized the val-
ues obtained with the stationary phase reporter (J45995) with those obtained using the
constitutive reporter (I7100). This normalization was necessary to remove variations in flu-
orescence between cells of different size that were not specific to variation in the expression
of the pOsmY promoter.

My results are depicted in Figure 4-7 (p.80), and show no correlation between cell size
and fluorescence from my stationary phase reporter. It is possible that such a correlation
exists, but is either too small to detect or is masked by other sources of variation, such

as cell-cell differences in plasmid copy number or gene expression capacity. Moreover, my

78



Q

20 4

18

16

14 -

12

10

Fluorescence per um? (a.u.)

10 15 20 25 30 35 40
Cell size (um?2)

b
16
=§14—
&
~ 12 4
g .
= 10 A
2
o 87
e
o 6 4
(8]
(7]
=
[
O T T T T T 1

1.0 1.5 2.0 2.5 3.0 3.5 4.0

Cell size (um?2)

Figure 4-6: Fluorescence per area as a function of cell size for stationary
phase cultures of (a) MG1655/pSB4K5-J45995 and (b) MG1655/pSB4K5-
17100. Cell size is given as the area (in pum?) covered by each cell on my 2D im-
ages. Each dot represent a single cell (n>1000 for each plot), with each color repre-
sent cells from independent cultures (n>300 per culture). Exposure time was 50 ms
(MG1655/pSB4K5-J45995), or 10 ms (MG1655/pSB4K5-17100).
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Figure 4-7: Cell size is not correlated with signal from the stationary phase
reporter (pSB4K5-J45995). MG1655/pSB4K5-J45995 cells divided into bins, and
their fluorescence per area normalized as described in the main text. FError bars
represent the standard error of the mean.

reporter used GFP with a wild-type terminus, resulting in a very stable protein. The use of
GFP variants with shorter half-lives may have more easily captured more transient changes
in gene expression [102,171]. Finally, I might not have used the best promoter to report
on cell-cell differences during stationary phase that impact lambda developmental outcome.
However, given success in developing tools and conditions to study lambda infection in
exponential phase directly (see section 4.1.1, page 71), this line of investigation was not

pursued further.

4.2 Is lambda sensitive to pre-existing variation in

cell cycle position?

4.2.1 Consideration of cell cycle position as a determinant of
the lambda lysis-lysogeny decision

The results described above show that sensitivity to host volume (or a correlated variable)
can also be observed when cells are grown to exponential phase. With the caveat that these

experiments were done using an hfl mutant rather the wild type, sensitivity to host volume
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(or a correlated variable) are likely to be a more general feature of the lambda regulatory
circuit rather than a property specific to stationary phase.

What aspects of host physiology, correlated with volume, might impact lambda devel-
opment? In Chapter 2, I briefly described a “gene dosage” model wherein variation in host
volume results in variation in the concentration of phage-encoded genes during infections
at constant MOI. In an alternative model, considered here, the lambda lysis-lysogeny de-
cision may be sensitive to the cell cycle position of its host cells, a parameter that is well
correlated with cell volume [19]. In particular, cell cycle position may specify the amount,
localization or activity of host-encoded regulators of the lambda regulatory circuit. For
example, the localization of FtsH in Bacillus subtilis appears to vary throughout the cell
cycle, accumulating at the septum during cell division [175].

Another possible coupling between the E. coli cell cycle and lambda development was
posited by Kourilsky and Gros more than 30 years ago [95]. In their model, cells in which
replication is not proceeding actively are more readily lysogenized. Because the ability of
cells to replicate lambda DNA may be related to their ability to replicate their own genome,
the position of the host cell with respect to its replication cycle may affect the lambda lysis-
lysogeny decision. For example, cells which tend to be lysogenized may be those which have
finished a DNA replication cycle and have not yet started a new round of replication. A
possible molecular mechanism which could underlie this model might include the two main
regulators of chromosome replication initiation in F. coli, DnaA and SeqA, which are also
regulators of lambda’s pR promoter [58,77]. Activity of pR plays an important role in the
regulation of lambda DNA replication [58,77] and the lysis-lysogeny decision [131].

4.2.2 Selection of a bacterial strain to decouple cell cycle

position from cell volume

I next set out to test whether lambda may be sensitive to cell cycle position, regardless of
the specific mechanism that may underlie such a behavior. An obstacle to testing the “cell
cycle” model of lambda infection is the high degree of correlation between cell volume and
cell cycle position in wild-type Escherichia coli cells [19]. To decouple cell volume and cell
position, I considered bacterial mutants for which cell division is controlled by temperature

or by the addition of an exogenous inducer such as IPTG or arabinose. While inhibition of
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Figure 4-8: Temperature control of septation using JW4132 ftsA12. FSP-
B207 (JW4132 ftsA12) was grown in LB to late log, diluted 10-fold in fresh LB and
incubated at 30°C (a) or 40°C (b) for one hour. Cells were then placed on 2% LMP
agarose pads supplemented with TB and imaged with a 60X phase contrast objective.

DNA replication results in inhibition of septation [75], inhibition of cell division typically
does not affect progression through the cell cycle. Continued ability of filamenting cells to
progress through the cell cycle is evidenced by their ability to replicate DNA and segregate
bacterial chromosomes (e.g. [6,21,147]).

I transduced ftsA12 leu::Tnl0 [34], a temperature-sensitive allele of the cell division
gene ftsA [34,40,108] linked to a leu::Tnl0 marker, from W3110 ftsA12 leu::Tn10 into
the hfiK::kanR strain JW4132 described in the previous section. The resulting strain, FSP-
B207, was shown to elongate at high temperatures (e.g. > 40°C) but to be of near wild-type
lengths at 30°C (Figure 4-8, p.82).

Using FSP-B207, I can use temperature to decouple cell size from cell cycle position.
The cell cycle model predicts that the frequency of lysogeny should be largely independent of
cell size. On the other hand, the gene dosage model predicts that the frequency of lysogeny

will decrease as cells elongate. Experiments are underway to test those predictions.

4.3 Chapter summary

I obtained evidence that lambda’s apparent sensitivity to host volume is not specific to
stationary phase. First, using an FE. coli mutant strain producing a high frequency of
lysogeny (hflK ™), I found that host volume can be a predictor of the fate of cells grown to

exponential phase. Second, I found no correlation between the size of a cell and the signal
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from a plasmid-based reporter of stationary phase. Apparent sensitivity to host volume may
thus be a general property of the lambda decision circuit. As with stationary phase cells,
the volume of exponentially growing cells is not a perfect predictor of cell fate. Experiments
are underway to determine whether lambda may be directly sensitive to cell cycle position

rather than volume.

4.4 Chapter acknowledgments

o Mingjie Li (Endy lab) collected much of the data for the experiments with the reporter
of stationary phase (Section 4.1.2, p.75) and constructed JW4132 ftsA12 (Section
4.2.2, p.81).

o Felix Moser (Endy lab) ported (1) the GFP reporter of stationary phase (BBa__J45995)
and (2) the cassette expressing GFP constitutively (BBa_17100) into the low-copy
plasmid pSB4K5 (Section 4.1.2, p.76).
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Chapter 5

Identification of phage-encoded
determinants of lambda’s “volume

sensor”’

The lambda regulatory network consists of both host-encoded regulators (e.g. FtsH, RNaselll)
and phage-encoded factors (e.g. CII, CIII). In the previous Chapter, I presented efforts to
uncover what aspect of host physiology, volume or a correlated parameter, impact the
lambda lysis-lysogeny decision. In particular, I found that this “volume sensor” is unlikely
to rely on stationary phase factors, given that host volume is a predictor of cell fate for
both stationary and exponential phase cells. In this Chapter, I describe efforts to identify

phage-encoded determinants of the volume sensor.

5.1 Timing of the lambda lysis-lysogeny decision

To narrow the list of candidate lambda factors critical for lambda sensitivity to host volume,
I first considered the use of known lambda mutant strains. Using either the elutriation or
microscopy platforms, I could directly test whether certain genes are critical for the volume
effect. Unfortunately, most of lambda regulators are thought to be critical for lambda’s
ability to lysogenize (e.g., CI, CII), to lyse (e.g., Q, Cro) or both (e.g., N). The use of
most loss-of-function alleles would therefore be expected to reduce the frequency of lysis or

lysogeny to undetectable levels, to significantly affect the dynamics of the lambda decision

85



circuit, or both.

I detail here a different strategy to identify plausible phage factors which participate in
sensing volume (or a correlated variable). In this method, I aim to find when the lambda
lysogeny decision is set. Variation in host volume must impact phage-encoded factors acting
upstream of the decision point. As an initial test, I decided to consider whether the decision
is set at the level of CII activity. While the precise timing of the lambda lysis-lysogeny
decision is not known [131,140], CII is often thought as the master regulator of the decision
(see Chapter 1). According to this model, events downstream of CII are involved in the
implementation of the lysis/lysogeny decision, rather than the making of the decision itself.
For example, the lambda repressor (CI) or the lytic antitermination factor Q, would simply
execute the decision made at the level of CII activity.

However, it is not known whether events downstream of CII may play a part in de-
termining cell fate. Indeed, some researchers have questioned the role of CII as the sole
master regulator of the lysis-lysogeny decision [38]. In another example, my advisor Drew
Endy made a computational model of lambda right operator region (oR) which suggests
that asymmetry of cooperativity of CI and Cro at the oR may sense variations in host
volume, resulting in different transcription rates of promoters pR and pRM (D.Endy, un-
published). In his model, events largely downstream of CII, such as activation of pRM and
repression of pR by CI, play a role in the decision. Knowing whether and to what extent
the lysis-lysogeny decision is set at the level of CII would allow us to refine my list of plau-
sible phage-encoded factors responsible for the decision and, plausibly, lambda’s apparent

sensitivity to host volume.

5.2 Construction of a CII activity reporter

To construct a reporter of CII activity, I cloned the lambda pRE promoter upstream of
BBa 70301 [1], an E. coli codon-optimized version of Venus YFP. pRE is a Cll-activated
promoter which exhibits little transcription in the absence of CII [50]. I chose Venus
YFP due to its brightness and fast (~15 min) maturation rate, and because of the low
amount of autofluorescence in the yellow part of the spectrum [124]. Moreover, YFP, unlike
GFP, allows the use of CFP (cyan fluorescent protein) in the same system with mini-

mal spectral overlap [155]. Venus was cloned with a strong RBS from phage T7 gene 5
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(5’-aatcaataggagaaatcaat-3’) upstream of the ATG site, with no BioBrick scar, into the
BioBrick vector pSB1IAK3. pRE (lambda coordinates 5-38635 and 38336-3’, [89] and venus
then were cloned into BioBrick vectors using standard BioBrick cloning techniques [1,157].

In choosing suitable BioBrick vectors to clone my pRE-venus construct, I considered
the following criteria. To start, I wanted to minimize copy number to avoid perturbing
the lambda regulatory network via titration of too many CII molecules. Yet, I wanted
the signal to be strong enough for detection. I initially tried pSB4C5, a low-copy (~5-12
copies/cell, [14,109,153]), chloramphenicol-resistant BioBrick vector with pSC101 origin of
replication [157]. However, very little fluorescence was detected when JW4132/pSB4C5-
pRE-Z0301 was grown to exponential phase in M9GlyM (Chapter 4) and infected at low
multiplicity. I obtained similar results when using pSB4A5 [157], which is identical to
pSB4C5 except for the resistance marker (ampR rather than camR), or pSB3C5 [157] which
has the higher-copy p15A origin of replication (~15-30 copies/cell, [14,109,153]). I obtained
significantly stronger signal using pSB4A3, another low-copy vector with ampicillin resis-
tance and pSC101 origin of replication. Additionally, BBa_ 1739204 a kanamycin-resistant,
pPACYC177-derived BioBrick vector with p15A origin gave us particularly strong signal. I
do not know why pSB4A3 and BBa__ 1739204 gave us stronger signal than pSB4A5, pSB4C5
and pSB3C5.

I next transformed BBa_ 1739204-pRE-Venus and pSB4A3-pRE-Venus into JW4132,
the AfiK::kanR strain described in the previous Chapter. However, because BBa_ 1739204
is resistant to kanamycin, I first removed the FRT-flanked kanR marker from JW4132 using
the flippase from plasmid pCP20 [35], resulting in a partial deletion of the hfiK locus. The
resulting strain, FSP-B208, was transformed with each of the two plasmids using published
methods [153].

5.3 Construction of A\ Aam19 b:: RFP cI857

My reporter of CII activity and A Aam19 b:: GFP cI857 employ fluorescent proteins whose
spectra overlap (YFP and GFP, respectively), motivating the construction of a different
lambda strain for detection of infected cells. I decided to use a cassette expressing a red flu-
orescent protein (RFP) because RFP spectra shows minimal overlap with the YFP spectra,

and many RFP variants have maturation times significantly faster than the latent period
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of phage lambda in M9GlyM [155].

I first tested a version of the GFP cassette identical to that described in Chapter 3, with
the exception that the RFP variant mCherry replaces GFP. I performed recombineering on
phage lambda as described before, using the same primers as those described in Chapter
3, resulting in A b::mCherry. Unfortunately, the RFP signal from A b::mCherry was weak
when monitoring infection by time-lapse microscopy, even when using exposure times of 0.5-
1 second and 2x2 binning (data not shown). To obtain stronger signal, I used a different RFP
cassette, BBa_ FE13521. When using the primers described below for PCR amplification,

the resulting RFP cassette contained the following critical elements:

« BBa_ FE1010 encoding the red fluorescent protein mRFP1, with the strong ribosome
binding site BBa_ B0034. BBa_ E1010 is driven by a strong, TetR-repressible pro-
moter BBa_ R0040. In the absence of TetR, BBa_ R0040 is constitutive, as desired for
my application. Two terminators, BBa_ B0010 and BBa B0012 are downstream of

mRFP1, to stop transcription from BBa_ R0040 past the boundaries of the cassette.

o The ampicillin resistance marker from the plasmid harboring the cassette (pSB1A2),

to allow selection for phage carrying the RFP cassette.

I first PCR-amplified the above-mentioned RFP cassette using primers containing 20-22 bp
of homology to the GFP cassette and 49-50 bp of homology to lambda b region. The se-
quences homologous to the lambda genome are the same as those described in Chapter

3.

o Forward primer (72 bp):
5’-Aggcagcaaaatcatcagaaacgaacgcatcatcaagtgecggtegtgca

ggatcttcacctagatcctttt

o Reverse primer (69 bp):
5’-Ccgtatccttcacccaggetgtgecgttecacttetgatattecectec

gagtcagtgagecgaggaage

I used ethanol purification to desalt and concentrate my PCR product, and performed
membrane dialysis for further desalting. I performed recombineering on an infectious

lambda ¢I857 particle using the recombineering strain DY380 and published methods [169].
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To select for recombinants, I infected MG1655 cells grown to stationary phase with the re-
combineering lysate and plated on LB supplemented with 20 pug/ml carbenicillin. Putative
A b::RFP cI857 lysogens were confirmed by PCR and fluorescence microscopy. Stocks of A
b::RFP cI857 were derived from these lysogens using standard methods [65].

The resulting phage contained my 2,247 nt GFP cassette into the b region [30] of the
phage genome, replacing sequence between lambda coordinates 20430-22278 and producing
a phage only slightly longer (398 nt or ~0.8%) longer than wild-type A. The added sequence
is well within the range giving efficient DNA packaging [49]. I reconfirmed the presence of
the cassette on the phage by fluorescence microscopy and by sequencing. The mRFP1
cassette showed significantly stronger fluorescence than the mCherry cassette, albeit less
than the GFP cassette. Maturation of mRFP1 (and mCherry) also appeared ~3 times
slower than the maturation of GFPmut3, the GFP variant used in my GFP cassette. 1
crossed A Aam19 mutation with A\ b::RFP ¢I857 using standard procedures [65], resulting
in A Aam19 b::RFP ¢I857, and confirmed the presence of the amber mutation by plating

on suppressor and non-suppressor strains, and by fluorescence microscopy.

5.4 CII is an almost perfect predictor of cell fate

I grew FSP-B208 harboring the low-copy CII reporter pSB4A3-pRE-venus in M9GlyM
as described in the previous Chapter. For pilot experiments, I infected cells at an API
(phage:cell ratio) of ~1.5, removed free phage by centrifugation, spread cells on M9GlyM
agarose pads and recorded phase contrast and fluorescence (YFP, RFP) images every
~15minutes (see Figure 5-1, p.90, for example filmstrips).

I followed 63 infected (RFP-expressing) cells, 24 that adopted lytic growth and 39 that
became lysogens. YFP signal was first detected ~30 min, and peaked ~75 min after the
start of infection. All 39 cells which became lysogens expressed significant YFP signal. 23 of
the 24 cells which became lytic expressed no or little YFP signal. One cell that became lytic
expressed more YFP fluorescence than some cells that became lytic. CII activity was thus
a marker of cell fate for 62 of the 63 cells analyzed in this pilot experiment, suggesting CII
is an almost (98%) perfect predictor of cell fate. Preliminary results with the medium-copy
BBa_ 1739204-pRE-venus vector were qualitatively similar (data not shown). These results

are qualitatively consistent with past work suggesting that CII is a critical regulator of the
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Reporter Reporter
of infection  of Cll activity

Figure 5-1: Filmstrips of infection of single hfiK~ cells harboring a reporter
of CII activity. Images from time-lapse movies of exponentially growing FSP-
B208 (AhfIK) harboring the plasmid-based, CII activity reporter pSB4A3-pRE-venus.
Cells were grown to exponential phase in M9GlyM and resuspended in TM as pre-
viously described. I infected cells at an API (phage:cell ratio) of ~1.5, removed free
phage by centrifugation, spread cells on M9GlyM agarose pads and recorded phase
contrast and fluorescence (YFP, RFP) images every ~15 minutes. Numbers indicate
the number of minutes at which the images were taken after the start of each movie.
The left column pictures are overlays of phase contrast and red fluorescence images.
The top cell and the bottom right cell show red fluorescence, indicative of infection
with A\ Aam19 b:: RFP cI857. The bottom left cell is not infected. The right column
pictures are overlays of phase contrast and yellow fluorescence (depicted green for
visualization purposes). The top cell does not produce visible fluorescence and lyses
between t=184 and t=214 min. The bottom right cell produces significant fluorescent
signal and survives the infection, presumzl(a)ly as a lysogen.



lysis-lysogeny decision (Chapter 1).

The experiments presented above merit repetition, ideally at low MOI for comparison
with results presented in Chapter 4. Nevertheless, my preliminary findings suggest that
events largely downstream of CII — such as activation of pRM and repression of pR by CI
— play a minor role in deciding between lysis and lysogeny. However, such events are likely
to be important in implementing the lysis-lysogeny decision. If my preliminary results hold
up to further experimentation, next steps should involve exploring events upstream of CII

activity.

5.5 Chapter summary

I obtained preliminary results suggesting that CII activity is a near-perfect predictor of the
lambda lysis-lysogeny decision. Lambda’s “volume sensor” is therefore more likely to involve
factors acting upstream of (or at the level of) CII, rather than factors acting downstream

of CII.

5.6 Chapter acknowledgments

o Arun Devabhaktuni (Endy lab) tested the fluorescent reporters of CII activity (Sec-
tion 5.4, p.89) and constructed strain A b::RFP ¢I857 (Section 5.3, p.87).

o Mingjie Li (Endy lab) introduced the Aam19 mutation into A b:: RFP cI857 (Section
5.3, p.87).

o Felix Moser (Endy lab) constructed the fluorescent reporters of CII activity (Section
5.4, p.89).
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Chapter 6

Detection and enumeration of

individual phage particles

In Chapter 4 (section 4.1.1, p.71), I described how I used an AfiIK~ mutant to raise the
frequency of lysogeny to levels observable by single-cell analysis of lambda infection. Because
I am interested in studying the lambda regulatory network in wild-type conditions, I also
set out to raise the frequency of lysogeny by infecting wild-type cells at a higher multiplicity
of infection (see Chapter 1). Such conditions require the design of a reporter of multiplicity
of infection (MOI), so that only cells infected with the same number of phage are compared.
To develop a reporter of MOI, I followed two approaches in parallel. In the first (section
6.1, this page), I explored methods to determine the MOI by counting the number of phage
capsids adsorbed onto a given cell. In the second method (section 6.2, page 97), I tested

technology to enumerate single phage DNA particles inside host cells.

6.1 Quantification of the MOI by labeling phage
capsid

I set out to develop a system to quantify the MOI by labeling phage capsids adsorbed
onto cells. The MOI could then be determined by counting the number of fluorescent foci
detected on a given cell surface. Labeling capsids should have the advantage of minimal (if

any) perturbation of the lambda lysis-lysogeny decision. However, such a system also has
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possible drawbacks. First, phage capsids may be empty (Ian Molineux, pers.comm.); empty
capsids would therefore need to be removed by phage purification prior to labeling [65].
Second, not all phage bound to cells eject their DNA [113]. For maximum accuracy in
determining MOI, a system based on enumerating capsid would need to be used alongside
a system to detect phage DNA ejection. Third, it is unclear whether two phage particles
bound near one another could be reliably resolved, especially if the individual particles do

not change relative position on the cell surface over time.

6.1.1 Labeling phage capsids with Quantum Dots

I initially considered labeling phage capsids using quantum dots (Qdots), which are fluo-
rescent semiconductor nanocrystals [123]. Methods to bind Qdots to bind to phage have
been published [45,46]. However, the authors were only able to label ~80% of phage [46],

making this method unsuitable for accurate determination of MOI.

6.1.2 Labeling phage capsids with fluorescent proteins

I tested the lambda strain A D-eyfp cI857 SamT7 constructed in the laboratory of Phillippe
Thomen [10]. In this strain, the enhanced yellow fluorescent protein (EYFP) is attached to
the C terminus of the minor lambda capsid protein D via a GL(GSGG)3TA linker. There
are typically 405-420 D proteins per capsid [65]. The GL(GSGG)3TA linker has been used
by other researchers for fusing D to different proteins, and was found not to interfere with
binding of D to the lambda capsid [181].

I grew host cells to exponential phase in MIGlyMMC (M9 [153] supplemented with 0.4%
glycerol, 0.4% maltose, 10mM MgSO4 and 0.1% casamino acids). Cells were resuspended
in TM [65] and infected with A\ D-eyfp cI857. Infected cells were placed on 2% agarose
pads supplemented with M9GIlyMMC. I made time-lapse movies of infection, taking phase
contrast and YFP fluorescence pictures every ~15min.

Infected cells which became lytic were easily detected by fluorescence microscopy due to
the production of D-EYFP during the late lytic stage of infection. However, I did not detect
yellow fluorescent foci on the surface of the majority of infected cells (see Figure 6-1, bottom
filmstrip for an example). The absence of fluorescent foci at the beginning of infection was

not due to a mutation in eyfp, because infected cells produced fluorescence (presumably
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Figure 6-1: Infection of MG1655 with A\ D-eyfp cI857 Sam7. MG1655 was
grown in M9GIlyM and infected at an average API of ~0.5 with AD-eyfp cI857 Sam7.
Time-lapse movies were made as described earlier. The top filmstrip shows a bacterial
cell apparently infected (fluorescent focus at one pole). A second fluorescent focus
is also seen in the top right corner of each image, but does not seem to be attached
to the cell. Fluorescence is observed inside the cell from t=33 min, presumably from
production of D-EYFP protein. The cell lyses between t=57 and t=59 min. The
bottom filmstrip shows a cell which initially does not appear infected (no fluorescent
focus seen near the cell). However, from t=35 min, fluorescence is produced from
t=35 min and the cell ultimately lysis between t=73 and t=75 min.

from D-EYFP) prior to lysis. To test if the absence of foci may be due to poor maturation
of the EYFP in my conditions, I incubated my phage stock at room temperature with
aeration for several hours prior to infection. However, this procedure did not qualitatively

increase the number of infected cells detected using the D-EYFP fusion.

My results suggest the presence in my phage stocks of a large number of non-fluorescent
phage capsids, perhaps because they contained fewer D proteins than wild-type phage, or
because the linker between D and EYFP was cleaved during capsid formation. Cleavage
of different linkers between D capsid and fusion proteins has been reported for fusions
between D and other proteins [182], and is thus a plausible explanation. This issue cannot
be remedied by creating fusions to D without the use of linkers, because both termini of
protein D are located in the interface between D and the rest of the capsid [181]; linkers are
therefore necessary to allow the fused portion to reach the outside of the capsid. Linkers
known to better resist proteolytic cleavage — for example, PT linkers [80] — are less flexible
and therefore likely to perturb the interface between D and the rest of the capsid, thereby
interfering with capsid formation. Fusions to other phage capsid proteins might work but

were not attempted.
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Figure 6-2: Cy3-labed phage lambda particles. Purified phage lambda particles
were purified and labeled using the cyanide-based dye Cy3 as described [61], with the
exception that I used Cy3 instead of Cy5. Labeled phage were placed on 2% agarose
pads in TM [65], and imaged using a GFP filter set and a ~200ms exposure time.
Individual foci may be single phage particles.

6.1.3 Labeling phage capsid with chemical dyes

An alternative to using genetic fusions of fluorescent proteins to capsid proteins is to stain
capsid proteins using chemicals. For example, CyDyes NHS Esters (GE Healthcare) have
been previously used by the Phillips lab at Caltech to stain lambda capsid proteins [61].
These fluorescent dyes of the cyanine family react with exposed amine, forming covalent

adducts.

I purified, stained and visualized stocks of wild-type lambda particles as described pre-
viously [61]. While staining resulted in reasonably fluorescent particles (Figure 6-2, p.96),
I was unable to find fluorescent foci adsorbed onto cells, and time-lapse movies of infection
showed no infection. Possibly CyDye formed adducts with the J protein of the lambda tail,
thereby interfering with binding of lambda onto its cognate receptor, LamB [141,167]. To
test this hypothesis, I divided a common phage stock into two fractions which were treated
identically, with the exception that one fraction was labeled in Cy3 and another was not
labeled. I found that Cy3 labeling resulted in a > 500-fold reduction of in titer, presumably

by interfering with adsorption, so I abandoned this line of work.
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6.2 Quantification of the MOI by labeling phage
DINA

A different set of methods to determine the multiplicity of infection (MOI) could rely on the
detection and enumeration of phage genomes following their entry into host cells. Unlike the
methods presented in the previous section, direct detection of phage DNA is not complicated
by the possible presence of empty phage capsids and of phage which did not eject their DNA.
However, the systems describe below have a greater probability of interfering with phage

development (e.g. replication, transcription). I considered the following two methods:

1. Labeling phage DNA using fluorescent repressor-operator systems (FROS) (see sec-
tion 6.2.1 below)

2. Labeling phage DNA using ParB-parS systems (see section 6.2.2, p.99)

6.2.1 Labeling phage DNA using the FROS system

I tested the use of fluorescent repressor operator systems (FROS). In these systems, a DNA
segment — typically containing 64-240 lac or tet operators (lacO, tetO) — is introduced in
the desired DNA locus. When in the presence of fusions of the operators’ cognate binding
proteins fused to GFP (i.e. LacI-GFP or TetR-GFP), a fluorescent focus can be seen using
a fluorescent microscope [98,146]. I introduced a cassette of (a) 120 lac operators and a
kanamycin marker or (b) 120 tet operators and a gentamycin marker into the b region of a
wild-type phage lambda using recombineering [169]. A [lacO]120-kanR array (5313bp) was
PCR~amplified from pLau43 [98] using the following primers:

e Forward primer:
5’-acggcatccacgaaggegacagaggcetgegggaagtgeggtatcageate
CTATGACCATGATTACGAATTC-3’

o Reverse primer:
5-gtggcgtacagtcatagatggtcggtgggagetggtacaaattctetcat
CTATGACCATGATTACGAATTC-3’

Sequences in capital letters are those homologous to the plasmid containing the ar-

ray, while those in small letters are homologous to lambda’s b region, replacing sequences
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between lambda coordinates 20620 and 24268. The [tetO]1a0-gentR array (4931bp) was

PCR~amplified from pLau44 [98] using the following primers:

e Forward primer:
5’-acggcatccacgaaggegacagaggctgegggaagtgeggtatcageate
CTAGATTAGGTGGCGGTACTTGGG-3’

e Reverse primer:
5’-gtggcgtacagtcatagatggtcggtggeaggtggtacaaattetetecat
CTATGACCATGATTACGAATTC-3’

Recombinants A b::[lacO]190-kanR or X\ b::[tetO]120-gentR were selected as described in
Chapter 2 (for the TetO arrays, I used 15ug/ml gentamycin), and confirmed by PCR. A
b::[lacO]120-kanR and X b::[tetO]120-gentR strains have genomes 3% and 2.2% greater than
wild-type, respectively. Genome length no greater than ~5% of wild-type length can be
efficiently packaged [49].

I transformed MG1655 with plasmids expressing Lacl and/or TetR fused to fluorescent

proteins, under the control of a weak constitutive promoter [173,174]:
e pWX6 expresses Lacl-CFP and TetR-YFP;
e pWX18 expresses Lacl-CFP

I resuspended the resulting cells to OD600~2.0 in TM [65], added phage at average MOI
of ~2 and incubated at 4°C for 30 min for adsorption to occur. Free phage were removed
by centrifugation and infected cells were placed on a 2% LMP agarose supplemented with
TM. Infected cells were then imaged by fluorescent microscopy.

Only a few weak fluorescent foci were visible following infection with A\ b::[lacO]120-kanR
(Figure 6-3b,c; p.99), while foci from A b::[tetO]120-gentR were easily visible (Figure 6-3a).
Using PCR, I found this was because the lacO array of most phage of my various stocks of
A b::[lacO]120-kanR had shrunk drastically, thereby reducing the number of binding sites for
Lacl-GFP (data not shown). This result was unexpected, because the Lacl binding sites in
these arrays were separated by random sequences to minimize recombination and thereby
shrinking/expansion of the arrays [98]. Array size modifications were found to occur while
amplifying phage to make phage stocks. Using a recA™ strain as host for making phage

stocks did not eliminate the problem (data not shown).
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Figure 6-3: Infection of MG1655 with \ b::[lacO]is0-kanR and \ b::[tetO];o0-
gentR. a, MG1655/pWXG6 infected with A b::[tetO]i90-gentR. b, MG1655/pWX6
infected with A b::[lacO]i90-kanR ¢, MG1655/pWX18 infected with A b::[lacO]190-
kanR

Shrinking of tetO arrays was also observed, but to a lesser extent (data not shown).
However, I found that the tetO array appeared to block normal replication of the phage
(6-4, first two columns). Wang and colleagues had observed some block of replication
when lacO or tetO arrays were used on the chromosome, and found that addition of low
concentrations of the cognate inducer (IPTG for lacO arrays; anhydrotetracycline (aTc)
for tetO arrays) eliminated replication blocks [174]. Unfortunately, addition of aTc at the
suggested concentration (40 ng/ml) also elimininated foci formation (Figure 6-5,p.101). In

light of these problems, I shifted my research focus to ParB/parS systems (next).

6.2.2 Labeling phage DNA using ParB/parS systems

Another system to label DNA loci is based on the partition protein ParB, which can spread
along the DNA from a nucleation site, the ~25bp parS DNA sequence [150]. When fusions
of ParB and GFP are expressed in a cell containing a parS sequence, GFP fluorescent foci
can be observed in the location of the parS sequence [103,104]. Because of a deletion of 30
amino acids, the ParB proteins using in these systems cannot function as partition proteins,
but they are still able to bind to their cognate parS (and subsequently spread to neighboring
sequences) [103]. There exist ParB/parS of different specificities, one from phage P1 and
one from plasmid pMT1. ParB proteins of the opposite specificities do not cross react with
parS sequences of the opposite specificity [127].

I set out to test whether the ParB/parS system can be used to count individual phage

genomes in infected cells. I introduced the P1parS-kanR cassette into the b region of a wild-
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Figure 6-4: tetO arrays may interfere with phage DNA replication.
MG1655/pWX6 was infected with A b::[tetO]190-gentR at a population-average MOI
of ~2. Infected cells were placed on 2% LMP agarose pads supplemented with
MIGIyMMC. Growth at 30°C was monitored, taking both phase contrast and fluores-
cent pictures. a, An infected cells displays two fluorescent foci, perhaps corresponding
to two individual phage particles. Lambda may have chosen the lysogeny pathway in
this cell, given that the cell survives and divides. However, even after a few rounds
of division, no increases in the number of fluorescent foci are seen (compare with c).
b, One fluorescent focus is seen in the infected cell in the middle of the field. The
putative phage particle does not appear to replicate (no additional foci are observed)
prior to lysis on the fourth frame. c, A cell displays two foci which replicate, giving
rise to at least 8 foci on the last frame. I do not know why replication was observed
in some cells (filmstrip ¢) but not others (filmstrips a,b)
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Figure 6-5: Effect of anhydrotetracycline (aTc) on fluorescent foci formation
following infection of MG1655 with X\ b::[tetO]2-gentR. MG1655/pWX6 was
infected with and was grown on M9GlyMMC alone (a) or supplemented with 40ng/ml
aTc (b).

type phage lambda. T first amplified the cassette from pALA1073 [103] using the following

primers:

e Forward primer:
5’- aggcagcaaaatcatcagaaacgaacgcatcatcaagtgeeggtegtgea

CACAGCTTTAGAGCGTTTTGCGAT -3’

e Reverse primer:
5'- cegtatecttecacccaggetgtgeegttecacttetgatatteecectee
CGATAAAAAGCCGAAGCCTTAAAC -3

Sequences in capital letters are those homologous to the plasmid containing the cassette,
while those in small letters are homologous to lambda’s b region. The resulting phage, A
b::PlparS-kanR, has the 1,563 nt P1parS-kanR cassette replacing lambda coordinates 20430
and 22278. The newly constructed phage has 286 nt (~0.6%) fewer nucleotides than wild-
type lambda, and should therefore show no decrease in packaging efficiency [49]. Aam19
and cI857 alleles were introduced by recombineering as described in Chapter 3.

I used the resulting phage, A Aam19 b::P1parS-kanR cI857, to infect MG1655 expressing
ParB-GFP from pALA2705 [103]. Fluorescent foci could be detected (Figure 6-6, 102).
Experiments are underway to determine to what extent the ParB/parS system can be used

as reporter of MOI.
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Figure 6-6: Infection of MG1655 with A\ b::Pl1parS-kanR. MG1655 harboring
a P1ParB-GFP expression plasmid (pALA2075, [103]) was grown in M9GlyMMC
+ 50ug/ml carbenicillin. The culture was grown at 30°C with vigorous agitation
to OD600~0.05. IPTG (100uM) was added to the medium and cells grown for an
additional hour. Cells were infected with A b::P1lparS-kanR at a population-average
MOI of ~2. Cells were placed on 2% LMP agarose supplemented with M9GIlyMMC.
Phase contrast and fluorescent images were taken periodically at 30°C. For both cells,
fluorescence appears to spread over a larger area over time, possibly corresponding
to replication of the phage DNA.

6.3 Chapter summary

I tested several systems as potential reporters of the multiplicity of infection (MOI). Labeling
phage capsid using fluorescent proteins resulted in a large fraction of phage not exhibiting
detectable fluorescence, possibly because of cleavage of the linker separating the capsid
protein (D) from the fluorescent protein (EYFP). Labeling phage capsid with chemical dyes
resulted in inactivation of lambda particles, possibly because the dyes interfered with the
binding of lambda onto its receptor (LamB). Labeling of phage DNA using the FROS system
appeared to interfere with phage replication. Also, the tetO and lacO arrays were found to
shrink during formation of my phage stocks, resulting in lambda particles exhibiting little
or no fluorescence. Labeling of the phage DNA using the ParB/parS system is currently

under evaluation.

6.4 Chapter acknowledgments

e Arun Devabhaktuni (Endy lab) tested A\ D-eyfp cI857 Sam7 (Section 6.1.2, p.94) as a
reporter of MOI and constructed A\ Aam19 b::P1lparS-kanR cI857 (see Section 6.2.2,
99).

o Tony Kuzhippala (Endy lab) performed the experiments with chemical labeling of the
phage capsid (Section 6.1.3, p.96), and initial attempts at recombineering the tetO

and lacO arrays onto phage lambda (Section 6.2.1, p.97).
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Chapter 7

Conclusion

It has been known for over 55 years that apparently homogeneous cultures of Fscherichia
coli cells can bifurcate into two populations following infection by phage lambda: some cells
become lytic, while others survive as lysogens [105]. Lieb, Gros and Kourilsky suggested
that variation in the lysis-lysogeny decision may result from cell-cell variability present prior
to infection [95,105]. More recently, Arkin, Ross, and McAdams proposed an alternative
explanation whereby spontaneous chemical "noise" in lambda gene expression creates vari-
ability in the fate of infected cells [13]. In this thesis, my primary aim has been to determine
whether and to what extent variation in cell fate selection results from pre-existing phe-
notypic cell-cell differences (1-6b, p.31), rather than chance events during infection (1-6a,
p.31).

In considering possible deterministic influences on the lambda lysis-lysogeny decision, 1
selected host volume as a possible marker of cell fate (Section 2.1, p.35). My results show
that the fate of individual lambda-infected cells is strongly correlated with pre-existing
variation in host volume. For example, a ~2-fold increase in the size of stationary phase
cells led to a ~5-fold decrease (61% to 12.2%) in frequency of lysogeny (Figure 3-2,p.67). I
initially observed that lambda was sensitive to host volume using elutriation as a method
for segregating larger and smaller cells, and macroscopic plate tests (plaques, colonies) for
determining cell fate (Figure 2-11, p.53). My initial finding was confirmed at the single-cell
level using time-lapse fluorescent microscopy. I observed that the frequency of lysogeny
decreased with increased cell size in two conditions, which differed from one another with

respect to strain genotypes, culture medium and growth phase (Figure 3-2, p.67 and Figure
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4-3, p.75). T also found no correlation between cell volume and the activity of a represen-
tative endogenous stationary phase promoter, as expected if the sensitivity to cell volume
is not specific to stationary phase (Section 4.1.2, p.75). Sensitivity to pre-existing variation
in host volume may thus be a general feature of the lysis-lysogeny regulatory network of
phage lambda.

My findings challenge the view that differences in lambda cell fate outcomes are solely
driven by intrinsic noise during infection. The lambda regulatory network is not only
composed of phage-encoded components; rather, it operates within a bacterial environment
that can also exhibit variation. Future biophysical models of lambda cell fate selection
might do well to represent such variation.

The correlation between the size and fate of lambda-infected cells is particularly strong
considering the limitations of the methods I used to observe and analyze the lysis-lysogeny
decision. For instance, the size measurements of individual cells of Figure 3-2 (p.67) and
Figure 4-3 (p.75) were made manually, considered variation in cell length only, and repre-
sented the size of cells at the start of imaging rather than at some critical time window

during infection when the lysis-lysogeny decision is being set.

7.1 How does host volume impact lambda devel-
opment?

Preliminary evidence presented in Section 5.4 (p.89) suggests that host volume (or a corre-
lated variable) is likely to impact the lambda regulatory circuit upstream of (or at the level
of) CII activity. However, there are still many known molecular mechanisms that could
point towards a model for explaining how preexisting variation in cell volume set the level
and activity of CII.

One such model is the “gene dosage” model introduced in Section 2.1 (p.35). In the
conditions used for my experiments, ~2-fold differences in volume produced 4-5 fold change
in the frequency of lysogeny. One prediction of the gene dosage model is therefore that
lambda decision circuit should be sensitive to relatively small (~2 fold) variation in the con-
centration of one or more phage-encoded genes. I could test this prediction by determining

whether and to what extent phage with different mutations can stimulate lysogenization by
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a wild-type lambda particle. For example, I would infect cells with two phage strains at

relatively low phage:cell ratio:

e X\ Aaml9 b::GFP cI857

o A Aaml9 b:RFP cI857 with either no additional mutations (“wild-type”), or with

mutations in key regulators of the lysis-lysogeny decision (e.g. cII™, cIII7).

Let’s assume the expression level of a given gene — cIII for the purpose of this example
— is limiting for lysogeny. If true, I would expect that coinfection with A Aam19 b:: GFP
cI857 and A Aaml19 b::RFP cI857 should result in higher frequencies of lysogeny than
coinfection with A Aam19 b:: GFP cI857 and A Aam19 b:: RFP cI857 cIII~. These proposed
experiments are the single-cell equivalent of experiments performed by Kourilsky, Kaiser
and Reichardt [94, 144, 145].

There are other models than “gene dosage” that might account for the observed cor-
relation between host volume and cell fate. For example, this correlation could also be
due to physiological differences between smaller and larger cells, possibly because of their
presumably distinct positions within the cell cycle. As a result, variation in volume may
correlate with differences in the amount, localization or activity of host-encoded regulators
of lambda development such as HfIB/FtsH or RNaselII [69,88,90,140,175,180]. Efforts are
underway to use septation mutants to decouple cell cycle position from cell volume (Section

4.2, p.80)

7.2 Isthe lambda lysis-lysogeny decision completely
deterministic?

While host size prior to infection is a strong predictor of cell fate, it appears that the lambda
cell fate selection process may still be sensitive, in part, to other types of variation, including
variation during infection. For example, Figure 3-2 (p.67) and Figure 4-3 (p.75) show that
there is no “critical” volume above or below which all infected cells produce an identical
developmental response.

In addition, a small number of infected cells (1.6-5.1%) divide and give rise to two

daughters who obtain disparate cell fates, one that undergoes lysis and another that con-
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tinues to grow and divide (Figure 3-1, p.66; Figure 4-2, p.74). If host size immediately prior
to infection completely determined cell fate, I would expect the developmental response of
daughter cells to be identical. Thus, mixed fate outcomes might represent an ideal case of
intrinsic noise in gene expression or in partitioning of molecules (protein, DNA, mRNA)
between daughter cells during cell division. Alternatively, mixed fate outcomes may still
represent a deterministic process: for instance, the “age” of the poles (and other differences)
of the two daughter cells might differ and affect cell fate selection following division of the
originally infected cell [129]. It will be exciting to explore further if the lysis-lysogeny de-
cision is absolutely determined by cell-cell variation present prior to infection (1-6b, p.31),
or if lambda might “play dice” to some degree or on rare occasions (1-6a, p.31). It would
also be interesting to find out whether the lysis-lysogeny decision of other temperate phage

is similarly affected by pre-existing cellular phenotypic variation.

7.3 Why might lambda developmental outcome be

correlated with host volume?

More generally, the sensitivity of lambda infection to preexisting physical variation high-
lights an opportunity to study how evolution shapes or delimits the molecular mechanisms
underlying the behavior of biological systems. One possibility is that cell-cell variation in
volume reflects physiological differences that lambda must sample to make optimal devel-
opmental decisions at the single cell level. For example, the lytic response may be preferred
in infected cells capable of producing a large burst of progeny phage. Because larger cells
presumably contain more material (amino acids, nucleotides, etc.) than smaller cells, they
may produce greater bursts of phage particles. Alternatively, the response to pre-existing
variation in host size may be an artifact of circuitry selected to be responsive to other, more
dominant factors. For example, lambda’s regulatory network may be tuned to respond to
the MOI by measuring the concentration (rather than the absolute number per se) of phage
infecting a given cell. If true, lambda would not be able to distinguish between variations

in phage concentration due to differences in MOI or in host volume.
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7.4 Cell fate selections in other biological model
systems

Regardless of the molecular mechanism through which the lambda cell fate selection process
responds to extrinsic variation, it is interesting to consider the extent to which other cell
fate decisions may be predetermined. In particular, the lysis-lysogeny regulatory network
of other temperate bacteriophage — such as P22, P2, HK022 and TP901-1 — are known
to exhibit similarities to lambda’s decision circuitry [25,42,65,136]. The Salmonella ty-
phimurium P22 is also known to respond to some of the same environmental parameters
as lambda: for example, higher numbers of phage per cell enhances lysogenization [24,101].
It would be valuable to determine whether a correlation between host volume and cell fate
is also present in P22 and other temperate phage. The observation of such a correlation
would suggest that cell size (or a correlated variable) is not simply an idiosyncrasy preserved
during evolution by the particular ecology of lambda’s natural habitat. If not all temperate
phage exhibit an apparent sensitivity to host volume, an important challenge would be to
understand why such a sensitivity has been selected during the evolution of only certain
phage. In either case, comparing the regulatory networks of lambda and other temperate
phage may help unraveling the molecular mechanism by which lambda appears to sense and
respond to cell-cell variation in volume.

Another cell fate decision which has attracted renewed attention in recent years is the
reversible entry into a state of competence for DNA uptake by a fraction of Bacillus subtilis
cells following entry into stationary phase. Evidence is accumulating that noise intrinsic to
the expression of ComK, a transcription factor necessary and sufficient for for differentiation
into competence, may explain why not all cells become competent [112,162,163]. Indeed,
reduction of comK gene expression noise by two different methods resulted in a lowered
frequency of entry into competence [112,163]. Variability in cell size does not appear to
impact entry into competence (G. Suel, pers. comm.). Nevertheless, entry into competence
might still determined, in part, by pre-existing cell-cell differences which have not been
investigated so far. Deterministic parameters might impact the fate of B. subtilis by tuning
the amount of noise in individual cells. However, such putative cell-cell differences would
not be heritable, as sister cells are no were more or less likely to become competent if their

sister became competent [162]. It will be exciting to find out whether the impact of pre-
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existing variation on cell fate selection might depend on whether the resulting differentiation
is transient (e.g. entry of B. subtilis cells into a state of competence) or largely permanent
(e.g. the lambda lysis-lysogeny decision).

Consideration of deterministic and stochastic influences on differentiation is also impor-
tant in understanding eukaryotic cell fate decisions, such as differentiation of stem cells. In
particular, differentiation of haematopoietic stem cells is a well-studied paradigm for lineage
commitment [47]. In a deterministic or “instructive” model, external factors controll cell
fate choices, while in stochastic or “selective” models, external factors simply allow growth
and survival of cells which, by chance, were already committed to a specific lineage. Un-
covering deterministic cues are clearly important for medical applications, for example by
allowing control over lineage commitment. Some evidence suggests that apparently stochas-
tic variation in expression of lineage-specific transcription factors can prime haematopoietic
stem cells for different fates [26,47,119]. However, it is unclear whether such spontaneous
variation plays a major role in lineage commitment of stem cells in their natural context
i.e. within individual animals.

Since the publication of the Arkin model [13], several hundred reports have discussed the
importance of stochastic variation in gene expression and other cellular processes (e.g., [27,
143,159]). It will be interesting to find out whether stochastic variation during development
actually impacts the outcome of many cell fate decisions. For comparison, development
can often be predictable: for example, the patterns of programmed death and terminal
differentiation during embryonic development of Caenorhabditis elegans are nearly invariant
from one individual to the next [164]. Understanding how and the extent to which natural
biological systems tolerate, buffer or correct for spontaneous molecular variation during
development in order to produce deterministic behavior deserves more attention [12,72,73,

115,126, 142].
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