OPTICS AND Optical Instrumentation

Optical imaging is the manipulation of light to elucidate the structures of objects

History of Optics

Optical Instrumentation — light sources
Optical Instrumentation — detectors

Physical Optics

Optical Instrumentation — intermediate optics



A Historical Snap Shot of Optical Study

The study of light has a long history dating back to far antiquity. Optical
microscope was first invited in the 16 century. However, we will focus on
the beginning of 20" century where there are two class of thoughts about
the physical properties of light.

Wave Nature of Light -- Huygen Particle Nature of Light -- Newton




History of Optical Studies

The advent of quantum mechanics allows us to understand that light has both
wave and particular properties

Planck — quantization of black Bohr — Resolve wave-particle duality
body radiation of light
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A typical biomedical optics experiment
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Physical Principle of High Sensitivity Optical Detectors

High sensitivity photodetectors today are mainly based on two physical processes:
(1) Photoelectric effect

(2) Photovoltic effect

One can detect light by other processes such as heating.
Power meter for laser light is called a thermopile and is based
on heating by light — not very sensitive



Photoelectric Effect

First observed by Becquerel in 1839, he observed current in conductive
solutions as electrode is exposed to light

Theoretically explained by Einstein: An electron knocks out of a material
by a photon. It is one of the major evidence in the quantization of light.

hn =f +E,

f is the work function characterizing the barrier in the material for electron
Ejection. E, is the kinetic energy of the ejected electron.

The kinetic energy depends only on the color (energy) of the photon
but not light intensity (number of photons)

The number of electrons ejected is proportional to the number of photons



Photovoltic Effect

QM predicts that the electrons in a periodic lattice occupy energy bands
that has gaps.
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Photovoltic Effect Il
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Signal and Noise in Optical Detection

Signal — the amount of light incident upon the detector per unit time

N is the number of photons detected per unit time

Dt is the data acquisition time

| L <| >=anq/Dt
S L o
n | q is the electron charge= 1.6" 107~ C
SR{(V) (1A = 1C/sec)
I

— a is a gain factor of the detector

Noise — the “disturbance” on the signal level that hinders an accurate measurement




Signal-to-Noise Ratio and Noise Equivalent Power

2
Signal: S=<]| > R
SNR: Signal power/Noise power = S/N

NEP: Signal power at which SNR = 1



Source of Noise in Optical Detectors

(1) Optical shot noise (N,) —
inherent noise in counting a finite number of photons per unit time

(2) Dark current noise (N,) —
thermally induced “firing” of the detector

(3) Johnson noise (N,) —

thermally induced current fluctuation in the load resistor

Since the noises are uncorrelated, the different sources of noise add in quadrature

N%p NE+ NS+ N3



Optical Shot Noise

Photon arrival at detector are statistically independent, “uncorrelated”, events

What do we meant by uncorrelated?

Lim= Tén(t+t) M)(n(t) - ))* =<DN(t +t )D* () >=0 t 1 0

-T/2

(* denotes complex conjugate)

Although the mean number of photons arriving per unit time, | , is constant on average,
at each measurement time interval, the number of detected photons can vary.

The statistical fluctuation of these un-correlated random events are characterized
by Poisson statistics.



Poisson Statistics

If the mean number of photon detected is ] , the probability of
observing n photons in time interval t is:

=N
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Spectrum of Possion Noise |
O ()= z‘P' e @tqe where DI (t) =gDf (n(t) - )
Assume _p¥hoton number is Poisson distributed
Power spectral density: ﬁ( f ) — RDfDr* ( f )Dr( f )
Noise power: N~(f ,Df ) = Is(f)Df

The power spectral density can be evaluated in a slightly round about way by
considering the autocorrelation function:

¥
Autocorrelation function: 9(t ) = RDf C‘PI (t +t )DI (t)*dt
- ¥
Because the event of Poisson process is completely independent of each other

g(t)=Rs Zd(t )/ Df



Spectrum of Poisson Noise ||

d(t ) is the Dirac-Delta function with the following properties:

It has the unit of frequency

d(0)=¥:d(t)=0 fort* 0

cd(t)dt=1; ¢ f()d(t-t)dt=f(t) 0 t
From Poisson process: S |2 = Zanf <| >
Factor of 2 account for positive and negative frequency bands

The autocorelation function of Poisson noise is:

gt)=2Raqg<I| >d()



Spectrum of Poisson Noise Il

Wiener-Khintchine Theorem: P(f) = Oy(t )e' P gt

Let’s why Wiener-Khintchine theorem is true:
¥ ¥ ¥

Og(t )e Pt = RDF () (I (t+t )DI (t)dt]e " dit

-¥ -¥
¥ ¥

=RDf (Y (P! (t+t )" dt DI (t)dt

-¥ -¥
¥ ¥

=RDf ¢y (P (t )e'*" dt "1™ D (t)dt
-¥ -¥
t '—t+t dt '=dt

= RDf [ (P' t e "t dt [ (P' (t)e ®Mdt]

—RDfDI(f)DI (f)*

Fourier transform of the autocorrelation function is the power spectral density



Spectrum of Possion Noise IV

¥

P(f)= ¢pRag<I >d(t)e ' " df =2Raq<1 >
- ¥

| A

Poisson noise has a “white” spectrum

Noise in a given spectral band:

N(f,Df)=2Raq<] > Df



Photon Shot Noise

The origin of the photon shot noise comes from the Poisson statistics of
the incoming photons itself

The shot noise power is:

~ N
N.(f,Df) =2Raq<| > Df Log(SRY 5=1

The signal power is: S =<| > R

R = <|> _agn/Dt :ZaqﬁDf

= = =N
ZaqbDf  2aqgDf 2aqDf

logS
Used sampling theorem: 1/ Dt = 2Df

A detector is consider to be “ideal” if it is dominated by just shot noise.



