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BACKGROUND. Multiple DNA sequence variants in the form of single-nucleotide poly-
morphisms (SNPs) have been found to be reproducibly associated with prostate cancer (PCa)
risk.
METHODS. Absolute risk for PCa among men with various numbers of inherited risk alleles
and family history of PCa was estimated in a population-based case–control study in Sweden
(2,893 cases and 1,781 controls), and a nested case–control study from the Prostate, Lung, Colon
and Ovarian (PLCO) Cancer Screening Trial in the U.S. (1,172 cases and 1,157 controls).
RESULTS. Increased number of risk alleles and positive family history were independently
associated with PCa risk. Considering men with 11 risk alleles (mode) and negative family
history as having baseline risk, men who had �14 risk alleles and positive family history had an
odds ratio (OR) of 4.92 [95% confidence interval (CI): 3.64–6.64] in the Swedish study. These
associations were confirmed in the U.S. population. Once a man’s SNP genotypes and family
history are known, his absolute risk for PCa can be readily calculated and easily interpreted. For
example, 55-year-old men with a family history and �14 risk alleles have a 52% and 41% risk of
being diagnosed with PCa in the next 20 years in the Swedish and U.S. populations, respectively.
In comparison, without knowledge of genotype and family history, these men had an average
population absolute risk of 13%.
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CONCLUSION. This risk prediction model may be used to identify men at considerably
elevated PCa risk who may be selected for chemoprevention. Prostate 69: 1565–1572, 2009.
# 2009 Wiley-Liss, Inc.

KEY WORDS: SNPs; association; early detection; chemoprevention

INTRODUCTION

Genetic susceptibility to prostate cancer (PCa) is
well documented [1]. Recent genome-wide association
studies (GWASs) have identified more than a dozen
genetic variants that are associated with PCa risk [2–9],
supporting the hypothesis of a polygenic inheritance
for the disease. Although each of these variants is only
moderately associated with PCa risk, collectively, they
have a stronger, dose-dependent association with PCa
risk as demonstrated in a 5-single-nucleotide poly-
morphism (SNP) model [10,11]. However, the associ-
ations, measured by odds ratio (OR) only, are of limited
clinical utility due in part to the need for a comparison
group for interpretation [12,13]. Absolute risk, a
measurement of probability to develop a disease at a
specific age, can be calculated based on an individual’s
own information and is easier to interpret. Herein, we
report a prediction model of absolute risk for PCa using
14 SNPs and family history.

METHODS

Study Population

A large population-based PCa case–control study
in Sweden named CAncer of the Prostate in Sweden
(CAPS) was used to develop a risk prediction model.
CAPS has been described in detail elsewhere and
includes 2,899 PCa patients and 1,722 control subjects
[10]. Positive family history was defined as any first-
or second-degree relatives with a diagnosis of PCa.
PCa patients who met any of the following criteria
were classified as aggressive disease: T3/4, Nþ, Mþ,
Gleason score sum �8, or PSA >50 ng/ml; otherwise,
they were classified as non-aggressive disease. An
independent study population in the U.S., which
includes 1,172 PCa patients and 1,157 control subjects
nested in the Prostate, Lung, Colon and Ovarian
(PLCO) Cancer Screening Trial, was used for con-
firmation [8]. The study was approved by the research
ethics committees of each involved institute.

Selection of SNPs

We selected 14 SNPs discovered in four PCa GWASs
and follow-up fine mapping studies [2–9,14,15]. These
included three SNPs at 8q24, two at 17q12, and one each
at 3p12, 7p15, 7q21, 9q33, 10q11, 11q13, 17q24, 22q13,

and Xp11. The SNP rs2735839 in the KLK3 gene at 19q13
was not included because of a concern with possible
PSA detection bias [16]. These 14 SNPs were genotyped
in CAPS using a MassARRAY QGE iPLEX system
(Sequenom, Inc., San Diego, CA). Two duplicate test
samples and two blinded water samples were included
in each 96-well plate. The genotype call rate was 98.3%
and the concordance rate was 99.8%. For PLCO,
13 SNPs were genotyped and 1 SNP was imputed
(rs16901979 at 8q24, call rate¼ 100%) [17], from the
GWAS described elsewhere [8].

Statistical Analyses

Tests for Hardy–Weinberg equilibrium were per-
formed for each SNP among control subjects in each
study using Fisher’s exact test. The number of risk
alleles of the 14 SNPs, determined from published
studies, was counted for each subject. Men were
classified into eight approximately equal sized groups
based on number of risk alleles (�7, 8, 9, 10, 11, 12, 13,
and �14). Association of number of risk alleles and
family history (yes or no) with PCa risk was tested
using a logistic regression model and adjusted for age
and geographic region (for CAPS only). Number of risk
alleles was modeled as a categorical variable with men
who had 11 risk alleles (mode) serving as the baseline
group. Multiplicative interaction of number of risk
alleles and family history on PCa risk was tested by
including additional interaction terms (product of
family history and number of risk alleles). ORs for
PCa for men with various combinations of number of
risk alleles and family history were estimated from
regression coefficients of these variables in the logistic
regression model. Absolute risk was then estimated
based on the OR, calibrated incidence rate of PCa for
men with the most common number of risk alleles and
negative family history, and mortality rate for all causes
excluding PCa in Sweden and the U.S., respectively
[18]. The calibrated incidence rates were calculated
based on joint attributable risk of number of risk alleles
and family history estimated from the data and
population incidence rates in Sweden and the U.S.
(2006 data) [19,20], as described by Chen et al. [21].

Role of the Sponsor

The funding organizations had no role in the design
and conduct of the study; collection, management,
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analysis, and interpretation of the data; and prepara-
tion or approval of the manuscript. Drs. Grönberg and
Xu had full access to the CAPS study and take
responsibility for the integrity of the data and the
accuracy of data analysis. Drs. Chanock, Hayes,
Hunter, Kraft, and Thomas provided PLCO data.

RESULTS

The possible number of inherited risk alleles of these
14 SNPs range between 0 and 27 because one of the risk
SNPs is on the X chromosome. The observed range was
between 0 and 21, with the most common number of

risk alleles (mode) being 11 among control subjects of
CAPS in Sweden. An increased number of risk alleles
of these 14 SNPs and positive family history were
independently associated with increased PCa risk
in CAPS (P¼ 5.9� 10�19 and 1.1� 10�15, respectively).
Considering men with 11 risk alleles and negative
family history as having baseline risk (OR¼ 1), men
with <11 risk alleles and negative family history had
OR <1, while men who had 11 or more and positive
family history had OR >1 (Table I, top section). Men
who had �14 risk alleles and positive family history,
found in 4% of cases and 1% of controls, had the highest
risk for PCa, with an OR of 4.92 (95% CI: 3.64–6.64). No
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TABLE I. Association of Prostate Cancer Risk With Number of Risk Alleles of 14 Risk SNPs and Family History in CAPS
and PLCO

# of risk
alleles

Family
history

Number (%) of risk alleles

OR (95% Cl)aControls Cases

CAPS
0–7 No 171 (9.94) 164 (5.66) 0.71 (0.55–0.91)
8 No 167 (9.70) 174 (6.00) 0.78 (0.61–1.01)
9 No 191 (11.10) 250 (8.63) 0.95 (0.76–1.21)
10 No 251 (14.58) 334 (11.53) 0.99 (0.80–1.24)
11 No 259 (15.05) 346 (11.94) 1.00 (baseline)
12 No 223 (12.96) 353 (12.18) 1.13 (0.91–1.41)
13 No 147 (8.54) 281 (9.70) 1.41 (1.10–1.79)
�14 No 149 (8.66) 446 (15.39) 2.26 (1.79–2.86)
0–7 Yes 17 (0.99) 30 (1.04) 1.54 (1.12–2.12)
8 Yes 16 (0.93) 37 (1.28) 1.70 (1.24–2.33)
9 Yes 23 (1.34) 57 (1.97) 2.07 (1.54–2.80)
10 Yes 19 (1.10) 65 (2.24) 2.16 (1.61–2.89)
11 Yes 26 (1.51) 71 (2.45) 2.17 (1.80–2.63)
12 Yes 31 (1.80) 88 (3.04) 2.45 (1.84–3.27)
13 Yes 16 (0.93) 82 (2.83) 3.06 (2.25–4.15)
�14 Yes 15 (0.87) 120 (4.14) 4.92 (3.64–6.64)

PLCO
0–7 No 111 (10.08) 53 (4.51) 0.56 (0.38–0.81)
8 No 111 (10.08) 78 (6.63) 0.76 (0.54–1.07)
9 No 146 (13.26) 94 (7.99) 0.73 (0.53–1.00)
10 No 181 (16.44) 155 (13.18) 0.93 (0.69–1.24)
11 No 185 (16.80) 163 (13.86) 1.00 (baseline)
12 No 121 (10.99) 180 (15.31) 1.63 (1.21–2.20)
13 No 82 (7.45) 150 (12.76) 1.98 (1.42–2.74)
�14 No 97 (8.81) 167 (14.2) 2.02 (1.48–2.78)
0–7 Yes 5 (0.45) 8 (0.68) 1.07 (0.74–1.55)
8 Yes 9 (0.82) 9 (0.77) 1.46 (1.03–2.06)
9 Yes 7 (0.64) 10 (0.85) 1.39 (1.01–1.92)
10 Yes 14 (1.27) 16 (1.36) 1.78 (1.33–2.37)
11 Yes 8 (0.73) 18 (1.53) 1.92 (1.41–2.62)
12 Yes 12 (1.09) 28 (2.38) 3.13 (2.32–4.22)
13 Yes 8 (0.73) 20 (1.70) 3.79 (2.73–5.26)
�14 Yes 4 (0.36) 27 (2.30) 3.88 (2.83–5.33)

CAPS, CAncer of the Prostate in Sweden; PLCO, Prostate, Lung, Colon and Ovarian (PLCO) Cancer Screening Trial.
aOdds ratio (OR) was adjusted for age and geographic region (CAPS only).

Risk for PCaUsing SNPs and FamilyHistory 1567



evidence of a multiplicative interaction effect on PCa
risk between number of risk alleles and family history
was found (P¼ 0.89, degrees of freedom¼ 7). The OR of
each increasing number of risk alleles on aggressive
and non-aggressive was 1.11 (95% CI: 1.09–1.15) and
1.16 (95% CI: 1.13–1.20), respectively. The difference
was not statistically significant between these two
types of PCa, P¼ 0.82. Men with higher numbers of
inherited risk alleles of these 14 SNPs and positive
family history had similar OR estimates for aggressive
and non-aggressive PCa. For example, men who had
�14 risk alleles and positive family history were found
in 3.52% and 4.62% of aggressive and non-aggressive
PCa. Compared with men who had 11 risk alleles and
negative family history, men who had �14 risk alleles
and positive family history had an OR of 4.77 (95% CI:
3.41–6.69) and 5.05 (95% CI: 3.66–6.96) for aggressive
and non-aggressive PCa, respectively.

We performed a confirmation study of these 14 SNPs
and family history on PCa risk in the U.S. PLCO
population. The most common number of risk alleles of
these 14 SNPs was also 11 in control subjects of PLCO.
We confirmed that the increased number of risk alleles
of these 14 SNPs and positive family history were
independently associated with increased PCa risk in
PLCO (P¼ 1.3� 10�18 and 4.2� 10�5, respectively).
Considering men with 11 risk alleles and negative
family history as having baseline risk (OR¼ 1), men
with <11 risk alleles and negative family history had
OR <1, while men who had 11 or more and positive
family history had OR >1 (Table I, bottom section). For
example, men who had �14 risk alleles and positive
family history also had the highest risk for PCa;
OR¼ 3.88 (95% CI: 2.83–5.33).

Absolute risk for PCa at a specific age conditional on
survival to that age can be estimated based on the OR
estimates described above (Table II). Assuming men
with 11 risk alleles and negative family history to be at a
baseline risk, men who have a higher number of risk
alleles and/or positive family history had an elevated
absolute risk. For example, 55-year-old men with a
family history and �14 risk alleles have a 52% and 41%
risk of being diagnosed with PCa in the next 20 years in
Sweden and the U.S., respectively. In contrast, their risk
is 8% and 6% risk, respectively, in Sweden and in the
U.S. if they have 0–7 risk alleles and do not have family
history. Without knowledge of these SNPs and family
history, these men would have an absolute risk of 13%
due to their general population risk.

DISCUSSION

We found that the number of risk alleles of the
14 SNPs and family history were independently asso-
ciated with PCa risk in a Swedish population and

confirmed these findings in a U.S. population. We
further developed a risk prediction model, measured
by absolute risk, based on genotypes at 14 SNPs and
family history. This risk prediction model is simple to
use and easy to interpret. The number of risk alleles of
these SNPs can be accurately measured from blood or
saliva specimens in a single assay. The absolute risk
for PCa measures the likelihood of an individual’s risk
to develop PCa at a specific age and can be easily
estimated once his number of risk alleles and family
history are known. The result of absolute risk is specific
for men who have the same characteristics in terms of
number of risk alleles and family history, and can be
easily interpreted by physicians and patients without
a need for a reference group. Another major feature
of this risk prediction model is the fact that it is
informative across a range of risk strata. It can
distinguish the absolute risk of an individual from as
low as 6–8% to as high as 41–52% in the next 20 years
for 55-year-old men in these two populations.

There are several major limitations of this risk
prediction model. First, it is recognized that the vast
majority of men will fall into risk categories that are at
or close to average. This limitation reflects the under-
lying complexity of this disease where multiple genes
and environmental exposures may contribute to its
development. A risk prediction model that consider-
ably separates risk to PCa for all men in the population
requires predictors that have extraordinarily high OR
for the disease (greater than 350), and is unlikely to be
found for PCa [22]. However, it is important to note that
the primary utility of this risk prediction model is not to
assess PCa risk for all men but to identify a small subset
of men at highest risk for PCa. For this reason, we did
not provide an estimate of area under curve (AUC) of
the receiver operating characteristic of this prediction
model which is an indication of its usefulness for the
former purpose. It is striking to note that this model
identifies about 0.5–1% of men (those having �14 risk
alleles and a positive family history) at greatest risk
(41% and 52% risk) for developing PCa between ages
55 and 74 years in the U.S. and Sweden, respectively.
This frequency and magnitude of risk are comparable
to breast cancer among women who have BRCA1 and
BRCA2 mutations in the general population [23].

Information on PCa risk has clinical and public
health relevance. Men with a higher likelihood of
PCa may choose to begin PSA-based PCa screening at
an earlier age. Men with greater risk may also pursue
preventative measures, including diet/lifestyle inter-
vention and chemoprevention. It is particularly impor-
tant to note its potential utility in identifying a subset
of men who are at greatest risk for PCa for targeted
chemoprevention. For example, finasteride is a chemo-
preventive agent for PCa which has been shown to
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reduce PCa risk by 25% [24]. However, targeting all
men of age 55 and older is not cost-effective for society,
and is estimated to yield a gain of 6 life-years per 1,000
men treated at a cost of �1,660,000 per life-year gained
[25]. An alternative strategy is to target those men
who are at elevated risk for PCa for chemoprevention.
The preventive effect of chemoprevention might be
stronger among men at higher risk under a polygenic
model [26]. Even if the chemoprevention effect is the
same for men with higher or lower absolute risk for
PCa, the net gain would be larger for men at higher risk.

For example, assuming a 25% reduction of PCa using
finasteride, men at 13% absolute risk (average risk to
develop PCa at age 55–74 years in the U.S. and Sweden)
would decrease risk by 3% while men at 41–52% risk
would decrease risk by 10–13%. Furthermore, men at
elevated risk may be more likely to choose and adhere
to a chemoprevention regimen. The potential clinical
utility of this approach remains to be tested in a clinical
trial.

The second major limitation is that this risk pre-
diction model does not distinguish risk of aggressive
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TABLE II. EstimatesofAbsoluteRisk for ProstateCancerBasedonNumberof RiskAlleles and FamilyHistoryinCAPS and
PLCO

# of risk alleles Family history

Absolute risk at specific age (year)a

55–59 60–64 65–69 70–74 55–74

CAPS
0–7 No 0.01 0.02 0.02 0.03 0.08
8 No 0.01 0.02 0.03 0.03 0.08
9 No 0.01 0.02 0.03 0.04 0.10
10 No 0.01 0.02 0.03 0.04 0.11
11 No, baseline 0.01 0.02 0.03 0.04 0.11
12 No 0.01 0.03 0.04 0.04 0.12
13 No 0.02 0.03 0.05 0.05 0.15
�14 No 0.03 0.05 0.07 0.09 0.24
0–7 Yes 0.02 0.04 0.05 0.06 0.17
8 Yes 0.02 0.04 0.06 0.07 0.18
9 Yes 0.02 0.05 0.07 0.08 0.22
10 Yes 0.03 0.05 0.07 0.08 0.23
11 Yes 0.03 0.05 0.07 0.08 0.23
12 Yes 0.03 0.06 0.08 0.09 0.26
13 Yes 0.04 0.07 0.10 0.12 0.32
�14 Yes 0.06 0.11 0.16 0.18 0.52

PLCO
0–7 No 0.01 0.01 0.02 0.02 0.06
8 No 0.01 0.02 0.03 0.03 0.08
9 No 0.01 0.02 0.02 0.03 0.08
10 No 0.01 0.02 0.03 0.04 0.10
11 No, baseline 0.01 0.02 0.03 0.04 0.11
12 No 0.02 0.04 0.06 0.06 0.18
13 No 0.03 0.04 0.07 0.08 0.21
�14 No 0.03 0.05 0.07 0.08 0.22
0–7 Yes 0.01 0.02 0.04 0.04 0.12
8 Yes 0.02 0.03 0.05 0.06 0.16
9 Yes 0.02 0.03 0.05 0.05 0.15
10 Yes 0.02 0.04 0.06 0.07 0.19
11 Yes 0.02 0.04 0.07 0.07 0.21
12 Yes 0.04 0.07 0.11 0.12 0.34
13 Yes 0.05 0.09 0.13 0.14 0.40
�14 Yes 0.05 0.09 0.13 0.15 0.41

CAPS, CAncer of the Prostate in Sweden; PLCO, Prostate, Lung, Colon and Ovarian (PLCO) Cancer Screening Trial.
aAbsolute risk was estimated based on OR, calibrated incidence of prostate cancer for men without family history, and mortality rate for
all causes excluding prostate cancer in Sweden and the U.S., respectively [19,20]. Calibrated incidence rates were calculated based on joint
attributable risk of number of risk alleles and family history and incidence rates in general populations of Sweden and the U.S., as
described by Chen et al. [21].
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from non-aggressive PCa, and therefore may exacer-
bate the potential problem of over-diagnosis and over-
treatment of PCa. This limitation is primarily due to
the drawback that these PCa risk-associated SNPs
were identified by comparing both types of PCa with
unaffected controls using GWAS. A recent large study
comparing these risk-associated SNPs among 1,253
aggressive and 4,233 non-aggressive PCa cases using
a case–case study design found that none of these
14 SNPs had significant differences in allele and
genotype frequencies between the two types of PCa
[27]. While this concern needs to be addressed by
including yet to be discovered genetic markers that
distinguish aggressive from non-aggressive PCa, this
risk prediction model, when combined with its utility
in promoting chemoprevention among men at elevated
risk, may reduce PCa incidence. Despite the inability of
this approach to discern aggressive or non-aggressive
PCa, if chemoprevention could decrease the number of
men developing any PCa, such men would be spared
the decisions which burden men diagnosed with PCa.
Again, the benefits and risks of this type of risk
prediction modeling need to be further evaluated.

There are three additional methodological consid-
erations related to this study. Rather than give each
of these SNPs the same weight in assessing their
cumulative effect on PCa risk by counting number of
risk alleles, an alternative approach is to give different
weights for these SNPs based on their OR. Although
we believe that this alternative method may provide
a slightly better prediction model within any single
study where the model is developed, it may be difficult
to generalize the results to other studies because an
accurate OR estimate of each SNP requires large sample
sizes and the point estimate of each SNP may vary
by study populations. Furthermore, our approach, by
counting number of risk alleles, is less cumbersome
for clinicians and patients alike.

The absolute risk in CAPS may be overestimated
because ORs from the case–control study were used to
approximate relative risk (RR) in CAPS. It is known that
ORs tend to overestimate RRs when a disease incidence
is high, especially when the ORs are farther away from
the null (OR¼ 1). Estimates of absolute risk in PLCO are
more reliable because the ORs are equivalent to RR due
to the use of an incidence density sampling method for
case/control selection. Differences in designs between
the two studies may account for the slightly lower
estimates of absolute risk in the U.S. population.

Finally, although we did not include the SNP
rs2735839 in KLK3 gene at 19q13 because of a concern
with possible PSA detection bias [16], several of the
14 SNPs we did include may also be susceptible to this
bias because they are associated with PSA levels among
men without PCa [28]. If men inherit alleles that are

associated with higher PSA levels, they will be more
likely to have higher PSA levels, thus increasing the
frequency of biopsy for PCa, which in turn increases
the chance of being diagnosed with PCa. The potential
bias of these SNPs in PCa risk prediction models should
be tested in studies, such as Prostate Cancer Prevention
Trial [24], where all men are biopsied for PCa
regardless of PSA levels.

The current risk prediction model was based on
14 risk SNPs that were discovered in the past 2 years
[2–9,14,15]. More risk SNPs will most likely be
discovered from ongoing and combined GWASs
because these 14 risk SNPs account for less than 6% of
genetic variation in PCa risk in this Swedish population
[14]. The ability to differentiate men’s risk to PCa may
be further improved using additional risk SNPs for this
polygenic disease [29], although diminishing returns in
prediction may be encountered [13]. However, it is
important to stress that the potential benefit of using
risk SNPs in predicting disease risk may be stronger in
PCa than other diseases because only three risk factors
(age, race, and family history) have been consistently
shown to be associated with PCa [1].

In conclusion, genetic markers have the potential
to identify men at greater risk for PCa. Larger cohort
studies are warranted to obtain more accurate esti-
mates of absolute risk. Geneticists, epidemiologists,
clinicians, and genetic counselors need to work
together to continue to improve the performance and
implementation of these markers, and assess the risks
and benefits of this information, to further improve the
care of men at risk for PCa.
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