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Abstract

Diatoms are unicellular photosynthetic algae with intricately
ornamented species-specific silica cell walls. To elucidate
unknown, but speculated, proteins required for diatom cell
wall biosynthesis, we aim to apply proximity-based proteomic
mapping to the model diatom species Thalassiosira
pseudonana using the engineered ascorbate peroxidase APEX2.
Advancing our understanding of how naturally occurring
silica-based materials such as diatom cell walls are constructed
could inform future biotechnological and biomimetic
strategies to produce self-assembled nanomaterials.

Diatoms

Importance

*Biomonitoring tool for aquatic environments.
*Source of ice nuclei in the atmosphere.

* Produce about 20% of the oxygen we breathe.
*Crucial for C, N and Si biogeochemical cycles.

Model organisms

*Evolution (secondary endosymbiosis).
*Photosynthesis (pyrenoid biology).
*Diatom-bacteria interactions and signaling.

* Extracellular matrix (underwater adhesives).
*Silica (510,) biomineralization.

Figure 1 | Morphological diversity of diatoms. It is estimated that there
are approximately 100,000 extant diatom species each encasing itself in a
unique glassy shell (Kroger, 2007).
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Figure 2 | Biosilicification in diatoms. (A) Diatom cell wall is synthesized
inside an acidic compartment called the silica deposition vesicle (SDV).
(B) It is hypothesized that the interaction of silaffins with long-chain
polyamines (LCPA) inside the SDV leads to the formation of an organic
matrix, the structure of which is controlled by the silaffins (Kroger, 2007;
Kroger & Poulsen, 2008).
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Spatial Proteomics In Thalassiosira pseudonana

Thalassiosira pseudonana

* Marine centric diatom.
*1st sequenced diatom species (~11,800 genes).

Figure 3 | Thalassiosira pseudonana. (A) Fluorescence
microscopy image of T. pseudonana (red, plastids). (B) SEM
image of T. pseudonana (courtesy: Nils Kroger).

Overview of the Approach

Figure 6 | Spatial proteomics in Thalassiosira pseudonana.
(A) T. pseudonana strain expressing a TpSil3p-APEX2 protein.
(B) Synchronized T. pseudonana strain is supplemented with
biotin-phenol and (C) hydrogen peroxide to initiate biotin
labeling (red, biotin). (D) Cell lysate is enriched for
biotinylated proteins followed by their identification with
mass spectrometry. Some expected hits: silatfin-modifying
enzymes, SDV-associated receptors and proteins involved in
vesicle transport and interactions with cytoskeleton, Si(OH),-
interacting proteins, and lysyl oxidases.
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Figure 7 | Conjugation of T. pseudonana. (A) Engineered T.
pseudonana cells appear on agar plates supplemented with
100 ng/uL nourseothricin after ~10 days. (B) Transgenic cells
(right) growing in the presence of antibiotic. Wild type
control (left). (C) Transgene-specific PCR run on engineered
T. pseudonana cells (left) and on DNA purified from them
(right) yields the expected 0.8 kb product. Black and red
arrows: ladder bands at 0.85 and 0.65 kb, respectively.

Ongoing Work

Silaffin TpSil3

*Silica precipitating, cell wall associated protein.
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Figure 4 | Silaffin TpSil3. (A) TpSil3, the mature form of the
precursor protein TpSil3p, precipitates silica in vitro (Poulsen
& Kroger, 2004) and (B) its fusion with GFP localizes to the
silica cell wall (Poulsen et al., 2007).
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Figure 8 | E. coli donor for spatial proteomics. (A) Diatom
artificial chromosome expressing TpSil3p-APEX2. Green
arrows and red circles: constitutive promoters and associated
terminators, respectively. (B) Digestion of the constructed
chromosome yields the expected 7.78, 1.72 and 1.26 kb
fragments. (C) Diagnostic PCR on a doubly transformed E.
coli strain confirms the presence of the mobilization plasmid
and the TpSil3p-APEX2 encoding diatom artificial
chromosome. Arrows: 6 kb (black), 1.65 kb (grey), 1 kb (red).

*Optimizing conjugation conditions using TpSil3p-APEX2 E. coli donor strain.
*Designing and building alternative diatom artificial chromosomes for spatial proteomics.

- BirA- and HRP- tagged TpSil3p

*Streptavidin pull-down and identification of endogenous biotinylated proteins in T. pseudonana.
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Figure 5 | “Molecular painting” with APEX2. APEX2 can be
genetically targeted to a cellular compartment where it
catalyzes attachment of biotin to proximal endogenous
proteins. Labelled proteins can be harvested and identified
with mass spectrometry (adapted from Marx, 2015).
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Proximity-based
proteomic mapping.

Mass spectrometry and
proteogenomic analysis.
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Endogenous Protein Biotinylation in T. pseudonana
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Figure 9 | Endogenous biotinylation state in T. pseudonana.
(A) SDS-PAGE gel stained with Coomassie Fluor Orange
(CFO). (B) Streptavidin blot with HRP-conjugated
streptavidin. Details: MQ: MQ water; D, A: lysis buffers; O},
Dl A1 T. pseudonana lysates using three different lysis
protocols; BP: 0.4 pg biotinylated BSA (~66.5 kDa); Ec: E. coli
(NEBb«) lysate; S. cerevisiae (BY4743) lysate. E. coli contains 1
trimeric biotinylated protein complex, S. cerevisiae 5
biotinylated proteins whereas at least 4 proteins in T.

pseudonana that are predicted to contain biotin are yet to be
characterized.
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