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Abstract

-

evolving engineered biological systems.

~

To date, engineered biological systems have been constructed via a variety of
ad hoc approaches. The resulting systems should be thought of as pieces of
art. We are interested in exploring how existing forward engineering
approaches might be best combined with directed evolution to make routine
the construction of engineered biological systems. We have specified a
procedure for construction of biological systems via screening of
subcomponent libraries and rational re-assembly. We have begun
development of tools to enable this approach, including a FACS-based
screening system to rapidly measure the input/output function of a genetic
circuit. Additionally, we have designed a microfluidic system that enables
more sophisticated screening and selection functions. Specifically, a
microfluidic chemostat integrated with a cell sorter (i.e., a sort-o-stat). This
microscope-based system will enable us to evaluate whether or not more
complicated screens and selections will be of practical use in service of
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Biological Systems

-Danny Hillis

Evolution

It works. Biology is good at
generating large amounts of
functional diversity

*Slow & unpredictable, limited by the
complexity of screens/selections.

be encoded genetically.
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“There are only two ways we know of to make extremely complicated things.
One is by engineering, and the other is evolution.”

*It scales. No limit on system

complexity.

*Requires functional composition

of standard components

DNA is genetic material.

...AATGCGTAGCAA...

Type: Terminator

Parts are basic biological functions that can

Devices are combinations parts that encode
human-defined functions.
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Type: Bi-stable Switch

Inverter Inverters: Q04400, Q04740
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Device-level Screening

Q04400, Q04740,
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Systems are combinations devices that
encode human-defined functions.
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/Screening Plasmid Design & Testing

~

( A) Tunable INPUT OUTPUT (B) P
INPUT Measurement Measurement ar?EAD -_ BioBricks
4 A Cloning Site A
-@.} Part/Device -@.} . .
Insertion Site RNAseE site RNAseE site
— \_

(A) Schematic of the components of the Screening Plasmid. The input and output of a genetic device can be measured in
response to a range of inputs. (B) Current implementation of the screening plasmid. We are using the Pbad arabinose-
inducible induction system [2] as a tunable input. GFP is a measure of input and RFP is a measure of output. A Biobricks
cloning site enables easy insertion of any Biobricks part. RNase E sites create independence between the mRNA stability of the
device being screened and the mRNA stability of the fluorescent proteins. In particular, we suspect mMRFP1 contains internal
RNaseE cut sites and have added a hairpin 5’ of the coding region to slow degradation by RNase E. [3]
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Characterization of 6 terminators from the Registry of
Standard Biological Parts inserted into the Screening

plasmid, and serves as a standard for 0% termination
efficiency. Functional terminators should lie below the line,
note that BO025 (red) is sometimes acting as a promoter.

Q04740: Penl-based inverter
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Characterization of Q04740. Dot plot of one replicate is
shown in upper right. Mean RFP expression for 3
replicates is plotted against GFP showing characteristic
inverter transfer curve.
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Conducted 2 rounds of screening — {LOW input, HIGH
ouput} and {HIGH input, LOW output}. Upper dot plots
Kare libraries, lower dot plots are original Q04400 under

same arabinose conditions as the libraries.
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(A) Response of Screening Plasmid to varied arabinose concentrations. Cells were grown for 14 hours in the presence of
8 different arabinose concentrations. Data shown is the mean expression level of GFP (green) and RFP (red) based on
measurement in a flow cytometer. Note the histogram shows a single population. (B) Same data as in A, plotted RFP vs.
GFP. Note that the relationship between GFP and RFP remains constant across all arabinose concentrations. Dot plot is the
concatenation of the 8 dot plots (e.g. all arabinose concentrations). (C) Comparison of monocistronic and polycistronic
constructs. The similarity in the expression levels suggests that the RNAse E sites are working effectively.
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Histogram of calculated termination
efficiencies for each terminator. Note

that BO025 is mostly off scale.
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Q04400: tetR-based inverter
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Characterization of Q04400. In this case the inverter
appears to be “stuck” in the LOW output state, and as a

result seemed to be a good candidate for library generation

and device screening. (next section)
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Characterization of Q04400 mutant. We
were able to isolate a properly functioning
inverter following 2 rounds of screening.

RBS mutation: AAAGAGG<A_ G>GAAA

RBS mutation

" Sortostat

A microfluidic chemostat integrated with a cell sorter, which we call a "sort-o-stat", will enable
more complicated selections to be applied to a population of cells in continuous culture. In
particular, time varying selective pressures as well as very specific selection strengths can be
applied. We will evaluate whether or not these more sophisticated selective pressures will be of
practical use in service of evolving engineered biological systems. Selection can be based on
any characteristic that can be reliably measured via microscopy.
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 Total Reactor Volume = 16nL
 Sorting chamber = 1/50%" of total reactor volume

» Modification and extension of design by Balagadde et al. [4]

Normal Chemostat Operation

a0 Experimental Distribution vs. Theoretical Binamial Distribution
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Sortostat was run with no selective pressure after Analysis of steady state region (>6hrs)
being inoculated with cells growing in log phase suggests that the %CFP cells found in the
from a batch culture. sorting chamber is binomially distributed

selective pressure.

Future Work

 Further characterization and specification of device performance
 Tuning of oscillation frequency by selective pressure

 Selection for reduction in noise in gene expression across population
» Selection for a specific expression level of a fluorescent protein.
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Sortostat was run with selective pressure, sorting against Graph depicts the performance limits of the
cells expressing YFP. Based on the rate of sorting device based on a mathematical model at the
events (1/3 min-') and initial cell counts, the mathematical maximum screening rate for populations 500-
model predicted the effect of sorting on the population 10e4 cells / reactor. Smaller populations have
relatively well. wider distribution and thus will face a greater
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\- Other ideas?
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