MOD1 - DNA ENGINEERING

Engelward, Fall 2009

Day 6

Lecture 1: Intro to importance of HR Polymerases & PCR

Lecture 2: How HR works
Overview of experiments & discussion of controls (single digests)

Lecture 3: Why understanding matters: HR & BRCA2
Overview; Running an agarose gel; Purification from a gel; Discussion of controls

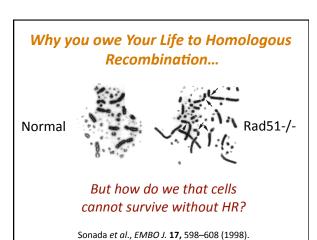
Lecture 4: Exploiting Scientific Understanding for Engineering:
Achilles heel/Parp Inhibitors & Drug delivery
Ligase and transformation & Data discussion (purified fragments)

Lecture 5: DNA Engineering in Mammals: Gene Targeting & Transgenics (Sonoda prep) Overview & Strategies for DNA analysis

Lecture 6: DNA Engineering in Mammals: Knock Outs & Conditional Expression (Sonoda Prep)
Mammalian Cell Culture

Lecture 7: DNA Engineering Reveals HR Function: Discussion of Sonoda

Lecture 8: Flow Cytometry: How it works and how to do it

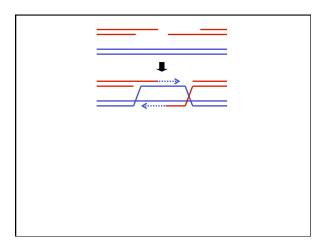

Going from Understanding to Engineered Solutions

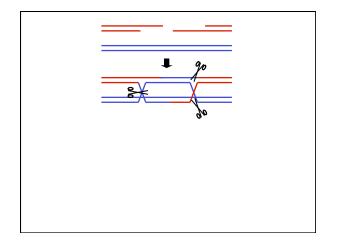
-Exploiting Understanding of HR for genetic engineering

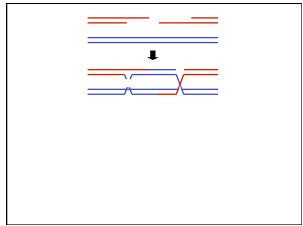
-Conditional Expression

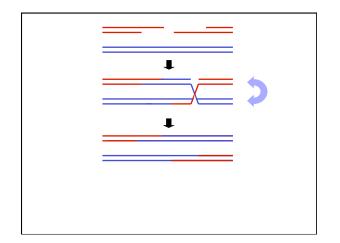
Mammalian Cell Culture: Methods and Logic

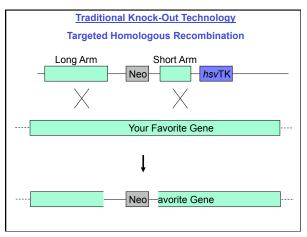
-Fundamentals & How To

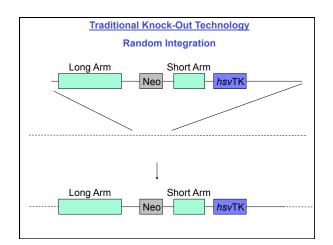

To understand how the experiments were done to show that HR is essential, you need to understand:

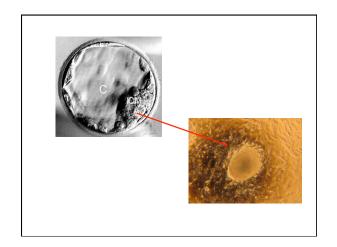

- a) Gene Targeting
- b) Conditional Expression
- c) Cell Cycle Analysis by Flow Cytometry

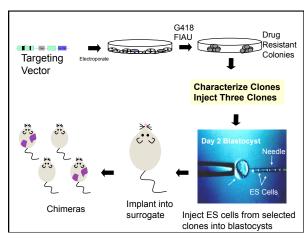

Gene Targeting

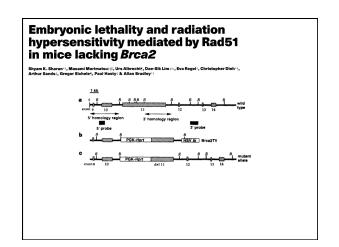

Gene Targeting is all about exchanging DNA...

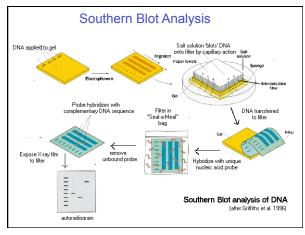

But how do we swap one piece for another?

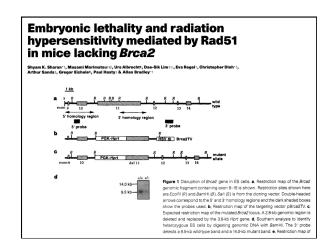


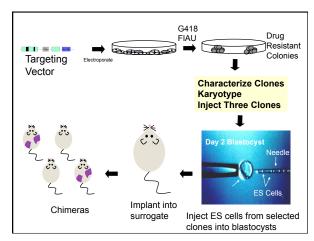


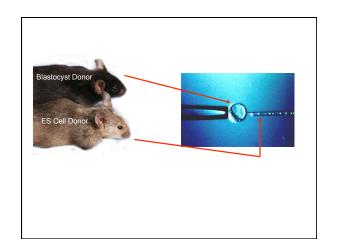


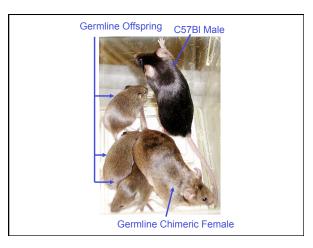


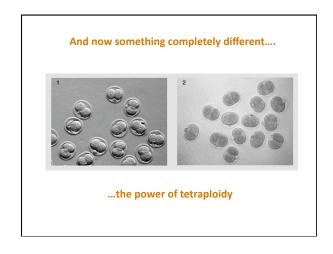

Genetic Engineering in Mice:


- 1) Gene Targeting (exploiting HR)
- 2) Transgenics
- 3) Modern Genetic Engineering: Conditional Expression





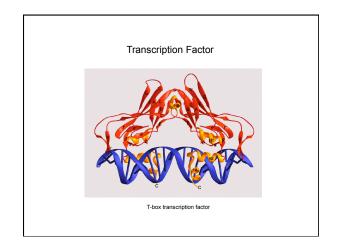


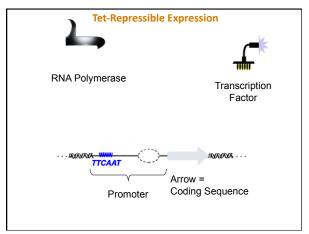


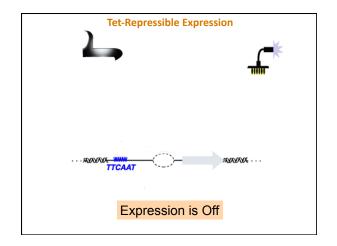
DNA integrates into the genome of the mouse at a random location.

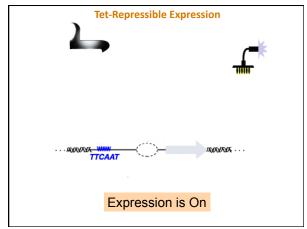
Usually multiple copies of the transgene are integrated.

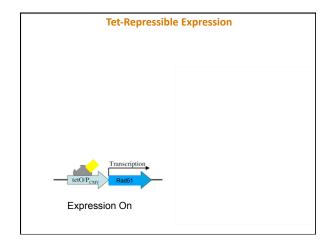
Expression patterns depend on the locus of integration.

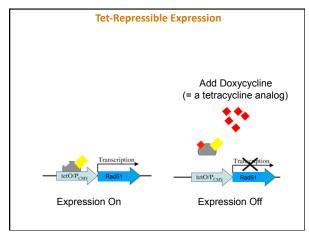


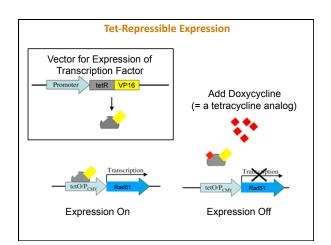


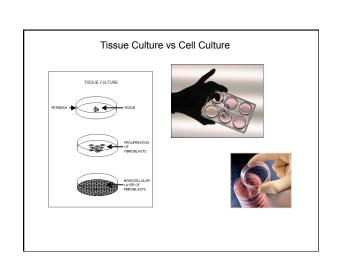

Okabe et al.


Conditional Expression:


Tet-Repressible Expression







Genetic Engineering in Mice:

- 1) Gene Targeting (exploiting HR)
- 2) Transgenics
- 3) Modern Genetic Engineering: Conditional Expression

Culturing Mammalian Cells

Where do you get mammalian cells?

What do cells need to grow in culture?

Correct Temperature

Salts

Correct pH

Growth Factors

Correct Osmolality

(Antibiotics)

Amino Acids
Glutamine (used for energy)

Lipids (usually in serum)

Vitamins

Minerals

Glucose

Serum: Calf, Fetal, Horse, Bovine...

Typical media...

82 ml DMEM

15 ml Calf Serum

1.5 ml Glutamine

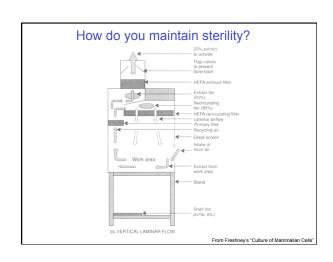
1.5 ml Penn/Strep

		What is in	DMEM?	Vitamins
		D 0422	VITAMINS	1
		[1X]	Choline Bitartrate	
	COMPONENT	g/L	Choline Chloride	0.004
Salts			Felic Acid	0.004
	INORGANIC SALTS		myo-Inositol	0.0072
	CaCl ₂ •2H ₂ O	0.265	Nizcinamide	0.004
	Fe(NO ₃) ₃ •9H ₂ O	0.0001	D-Pantothenic Acid-%Ca	0.004
	MgSO ₄	0.09767	Pyridoxal*HCl	_
	KCl	0.4	Pyridoxine*HC1	0.004
	NaHCO ₃	3.7	Riboflavin	0.0004
	NaCl	6.4	Thisming-HC1	0.004
	NaH ₃ PO ₄	0.109	OTHER	
	Succinic Acid		D-Gincose	4.5
	Sedium Succinate		HEPES	_
Amino	AMINO ACIDS		Phonol Red+Na	0.0159
, ,,,,,,,	L-Arginine-HCl	0.084	Pyruvic Acid•Na	0.11
Acids	L-Cystine-2HCl			
	L-Ghtamine	_	ADD	
	Glycine	0.03	Ghicose	
	L-Histidine-HCl-H ₂ O	0.042	L-Ghtamine	0.584
	L-Isoleucine	0.105		
	L-Leucine	0.105	L-Cystine 2HC1	-
	L-Lysine•HCl	0.146	L-Leucine	_
	L-Methionine		L-Lysine HCl	_
	L-Phenylalanine	0.066	L-Methionine	_
	L-Serine	0.042	NaHCO ₃	
	L-Threcuine	0.095	NaH ₃ PO ₄	_
	L-Tryptophan	0.016	Phenol Red Na	_
	L-Tyrosine (free base)	-	Pyruvic Acid•Na	
	L-Tyrosine*2Na*2H ₂ O	0.10379		
	L-Valine	0.094	Grams of powder required to prepare 1 I	N/A

How do you maintain a neutral pH?

Blood pH is 7.4

The most important buffer in extracellular fluids is a mixture of carbon dioxide (CO_2) and bicarbonate anion (HCO_3^-) .

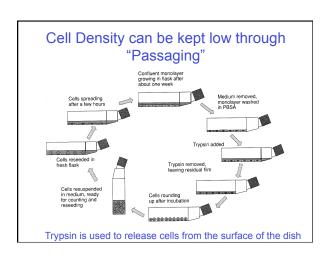


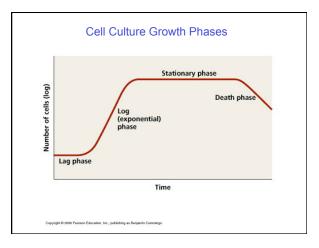
$$H_2O + CO_2 \leftrightarrow H_2CO_3 \leftrightarrow H^+ + HCO_3^-$$

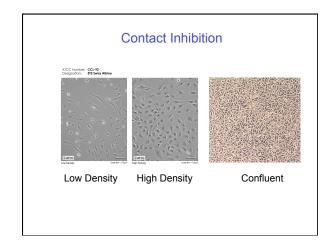
The pH is determined by the concentration of ${\rm CO_2}$ and bicarbonate.

Why is sterility important?

Mammalian Cell Culture Hood




Hands-On..


What does it mean to "pass" your cultures?

