
1

Setting a standard for electricity pilot studies

Alexander Davis a,b 

Tamar Krishnamurti c,d  

Baruch Fischhoff a,d

Wandi Bruine de Bruin a,d

Carnegie Mellon University

Pittsburgh, PA 15213

June 7, 2012

aDepartment of Social and Decision Sciences, Carnegie Mellon University, 
Pittsburgh, PA 15213.

bTo whom correspondence should be addressed. Email: 
alexander.l.davis1@gmail.com; Phone: 412-268-1207; Fax: 412-268-6938. 
http://dvn.iq.harvard.edu/dvn/dv/alexdavis

cTepper School of Business, Carnegie Mellon University, Pittsburgh, PA 15213. 
Email: tamar@cmu.edu

dDepartment of Engineering and Public Policy, Carnegie Mellon University, 
Pittsburgh, PA 15213. Email: baruch@cmu.edu 

http://dvn.iq.harvard.edu/dvn/dv/alexdavis


2

Author Contributions: A.D., T.K., B.F., and WBB designed research and wrote 
the paper; A.D. and T.K. performed research; A.D. developed risk-of-bias meta-
analysis and analyzed the data.

Abstract

In-home displays, dynamic pricing, and automated devices aim to reduce 

residential electricity use – overall and during peak hours.  We present a meta-

analysis of 32 studies examining the impacts of these interventions.  We find 

that methodological problems were common in the design of these studies, 

leading to artifactually inflated results relative to what one would expect were 

these interventions implemented in the general population.  Particular problems 

included having volunteer participants who may have been especially motivated 

to reduce their electricity use, letting participants chose their preferred 

intervention, and having high participant attrition rates.  Using bias adjustment 

factors from medical clinical trials, we calculate effectiveness estimates less 

than half those reported in the reviewed studies.  Our analyses are limited by 

the incomplete reporting of many studies.  Within that constraint, we find that in-

home displays were the most effective intervention for reducing overall 

electricity use (~4% using reported data; ~3% after adjusting for bias), while 

dynamic pricing significantly reduced peak demand (~12% with reported data; 

~6% after adjusting), especially with home automation (~24% with reported 

data; ~13% after adjusting).  We conclude with recommendations for designing 

and reporting evaluation studies, so as to improve the return on the resources 

invested in them. 

Word count: 198
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1. Introduction

Reducing overall residential electricity use will lower emissions of 

greenhouse gases and other pollutants (Weisser, 2007) and decrease the need 

for additional power plants and transmission capacity (FERC, 2009). Reducing 

residential electricity use during peak demand times (e.g., hot summer 

afternoons) will lower the risk of blackouts and the need for back-up facilities. 

Currently, 15% of generation and transmission capacity in the Mid-Atlantic 

States is used less than 1% of the time (Spees and Lave, 2007). As a result, 

there have been many studies of interventions designed to reduce that waste.

The three most common interventions are (a) in-home displays that 

provide feedback about energy consumption; (b) dynamic pricing programs 

where residential electricity prices follow the wholesale market, creating an 

incentive to reduce use during peak-demand hours; and (c) automation, with 

programmable thermostats, smart switches, and other technologies.

Although many studies have evaluated the effectiveness of such 

interventions, their experimental designs and reporting protocols vary so much 

that it is hard to aggregate their results. Here, we propose and apply a standard 

approach, based on the risk-of-bias (RoB) methodology developed to improve 

medical clinical trials (Higgins, Altman and Sterne, 2011; Moher, Hopewell, 

Schulz et al., 2010) and applied to treatments as diverse as asthma (Hartling, 

Bond, Vandermeer, et al., 2011), routine antenatal care (Turner, Spiegelhalter, 

Smith, et al., 2009), and influenza treatment and prevention (Shun-Shin, 

Thompson, Heneghan, et al., 2009).
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Risk-of-bias analysis extends methodological standards for medical 

research (http://www.cochrane.org/ and http://www.consort-statement.org/; 

Moher, Hopewell, Schulz, et al., 2010) by accommodating the finding that 

flawed studies often found positive health effects that vanished, or reversed, 

with sounder ones (Moher, Pham, Jones, et al. 1998). For example, the initial 

promise of hormone replacement therapy (Petitti, 2004) was later found to 

reflect selection bias, whereby women who opted to take the therapy had 

relatively high socio-economic status, which is associated with better health 

outcomes (Grady, Herrington, Bittner, et al., 2002). The risk-of-bias approach 

adjusts reported effect sizes for the impacts of the most common biases in 

medical research. We apply it here to studies estimating the effects of 

interventions on residential electricity use, first by identifying those biases and 

then by adjusting reported treatment effects, using correction factors for medical 

trials. Our approach also provides guidance for designing and reporting field 

trials.

Reviews of studies evaluating interventions targeting residential 

electricity use often note problems in their design (Abrahamse, Steg, Vlek, et 

al., 2005; Carrol, Hatton, and Brown, 2009; Darby, 2001; Darby, 2006; Ehrhardt-

Martinez, Donnely, and Liatner, 2010; Faruqui, Hledik and Sergici, 2009; 

Faruqui, Sergici and Sharif, 2010; Fischer, 2008; IEA, 2007; Neenan, 2009; 

Roberts and Baker, 2003) and reporting (Fischer, 2008). Indeed, Abrahamse, 

Steg, Vlek et al. (2005) concluded that reporting was so deficient that a 

thorough meta-analysis was infeasible.  Our review considers both reporting 

http://www.consort-statement.org/
http://www.cochrane.org/
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practices and the biases revealed by those details that are provided. 

In its systematic reviews of medical studies, the Cochrane Collaboration 

has identified five common biases with serious effects (Higgins, Altman, and 

Sterne, 2011): 1) selection bias, arising when participants decide whether and 

how to participate; 2) attrition bias, arising when participants are excluded or 

withdraw from a study; 3) performance bias, arising when experimenters know 

participants’ group assignment; 4) detection bias, arising when researchers’ 

knowledge of group assignment affects their interpretation of participants’ 

behavior; and 5) reporting bias, arising when researchers omit details in their 

reports. The following sections briefly discuss the threats that these biases may 

pose to electricity field trials. 

Selection biases arise when people who receive an intervention differ 

from those who do not – limiting researchers’ ability to establish causality and 

generalize study results to the general population. One variant, intervention 

selection bias, occurs when participants choose their treatment group, rather 

than being randomly assigned (Altman and Bland, 1999). Stukel, Fisher, 

Wennberg, et al. (2007) estimated that studies with this bias reported 44% 

greater treatment effects than ones that using a predetermined assignment 

process.  If people who select a treatment are especially motivated to change 

their behavior, this bias leads to overestimating intervention effectiveness.  For 

example, the Olympic Peninsula Pilot Hammerstrom, Ambrosio, Brous, et al. 

(2007) randomly assigned participants to the control or intervention condition, 

but allowed those receiving an intervention to choose among three pricing 
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options: fixed rate, time of use with critical peak pricing, and real-time pricing. 

These results could not be confidently generalized to universal adoption of any 

of these options, if participants chose the plan best suited to them (e.g., if 

people who could, or would not shift their electricity use to off-peak hours chose 

the fixed-rate plan, while those who could and would make that shift selected 

other plans). Generalization would also be limited if people chose plans for 

reasons unrelated to their incentives. For example, if people with less education 

(and less income) choose a fixed rate program because it is simpler and easier 

to understand, its impact will be underestimated because their lower initial 

electricity consumption offers less room for reductions. 

A second version of this bias is volunteer selection bias, arising when 

participants are recruited through advertisements. Volunteers differ from 

randomly sampled individuals in many ways that might bias treatment effects 

(Callahan, Hojat and Gonella, 2007; Rosenthal and Rosnow, 1975; Barclay, 

Todd, Finlay, et al., 2002). For example, Sulyma, Tiedemann, Pedersen et al. 

(2008) found higher education and income levels among volunteer British 

Columbia Hydro customers.  If, as a result, they are also better able to 

comprehend and respond to program information, then studies involving them 

will overestimate programs’ general effectiveness. Baladi, Herriges, and 

Sweeney (1998) found that volunteers were better than non-volunteers at 

estimating peak-demand electricity use in a time-of-use experiment and more 

optimistic about program benefits. Generally speaking, one cannot assume that 

being similar in some respects (e.g., demographics, baseline electricity usage) 
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means responding similarly to treatments (Train, McFadden and Goett, 1987)).  

(Note that one could generalize from a study with volunteer bias to an actual 

program that recruited participants in the same way – e.g. by enrolling relatively 

wealthy, well-educated, optimistic consumers.)

A third form of selection bias, sequence generation bias, occurs when 

participants are assigned to interventions by a non-random process, such as 

alphabetically or by alternating assignments. For example, the Baltimore Gas 

and Electric (Faruqui and Sergici, 2009a) Smart Energy Pricing Pilot, recruited 

consumers for dynamic pricing first, then for peak-time rebate, and so on. If 

people who are most eager to receive some intervention sign up first, serial 

enrollment will overestimate the effectiveness of the first intervention.  Schulz 

(Schulz, 1995a) found larger treatment effects in clinical trials with inadequate 

randomization. 

Formal randomization procedures are needed because people cannot 

generate random sequences on their own (Tune, 1964; Tversky and 

Kahneman, 1971) and may be tempted to make assignments favorable to their 

interests or to let participants do so (e.g., postponing medical treatment until a 

clinical trial begins). Schulz and Grimes (2002) found that 5% of clinical trials 

reporting random assignment actually used deterministic rules (e.g., alternation, 

date of birth, day of hospital admission).  An additional 63% reported too few 

details to determine their method. 

A fourth selection bias, allocation concealment bias, occurs when 
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participants or researchers know the assignment sequence (even if random) 

and can manipulate assignment. Schulz (1995b) and Schulz and Grimes (2002) 

report researchers trying to decipher allocation sequences, for example, by 

holding assignment envelopes up to a light (Carleton, Sanders and Burack, 

1960; Jüni, Altman and Egger, 2001).  In an electricity field study, such a bias 

might involve favoring larger houses for home automation, thinking that they will 

benefit the most or responding to pressure from their owners. 

Clinical researchers have long known how knowledge of condition can 

affect the behavior of experimenters (e.g., giving better care to patients 

receiving a treatment) or participants (e.g., feeling neglected in a control group). 

Hutton, Mauser, Filiatrault, and Ahtola (Hutton, Mauser, Filiatrault, et al., 1986) 

found that consumers told that they were in an energy consumption study used 

less electricity than customers who were not told (310 kWh vs. 270 kWh), even 

though neither group received an actual intervention. That difference might 

reflect a Hawthorne effect, where just knowing one is being studied changes 

behavior (Parsons, 1974; Orne, 1962).

As an example of the care needed to conceal conditions, Karlowski, 

Chalmers, Frenkel et al. (1975) found that some participants in a study on the 

effects of ascorbic acid on the common cold guessed their condition based on 

the taste of their pills. Those in the placebo group who guessed their condition 

reported more severe symptoms and were more likely to drop out, compared to 

those who thought that they had received the intervention. Correcting for these 

problems eliminates what little evidence there was for a protective effect of 
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ascorbic acid.

Attrition bias occurs when participants are excluded or withdraw from a 

study for reasons related to the assigned intervention. A field trial’s effect will be 

overestimated if people who see no benefit are more likely to withdraw, leaving 

no record of their lack of change. The same (or the opposite) could be true for 

people who drop out because they move, pass away, are hard to reach, have 

more problems, or fall out with researchers. Even when conditions have equal 

attrition rates, the causes may be different and bias the results. Faruqui and 

Sergici (2009b) report a 1% monthly rate of people leaving one field trial, for 

reasons unknown. 

2. Results

As seen in Table 1, all studies overstate the mean and understate the 

variance. Both adjustments would be larger, if the literature provided an 

estimate for volunteer bias, which tends to increase treatment effects and 

reduce treatment variance.

[Insert Table 1] 

Biases
Mean 

Adjustmen
t

Variance 
Adjustmen

t

Overall 
Usage 

(N)

Peak 
Usage (N)

4,6 1.20 0.017 3 3
6
3
37
8
0

3,4,5,6 1.63 0.217 10
3,4,5 1.76 0.235 2
2,3,4 2.06 0.424 23

2,3,4,5,6 2.35 0.630 17
2,3,4,5 2.54 0.695 2

Volunteer = 1, Intervention = 2, Sequence Generation = 3, 
Allocation Concealment = 4, Blinding = 5, Attrition = 6
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We used several statistical procedures to aggregate results across the 

32 studies. Figure 1 shows analyses for the three most widely studied peak 

usage interventions, aggregated with the Generic Inverse Variance (GIV) 

method, which weights studies by the inverse of their within-group variance (for 

the minority of studies reporting it) (Higgins, Altman and Sterne, 2011) (see 

Appendix B for more details). The top half shows the interventions’ effects on 

residential peak use reported in the study, with no adjustment for bias. For 

example, the studies reported that Dynamic Pricing and Automation reduced 

peak consumption by 32.8%, on average, with a 95% confidence interval of 

approximately 22% to 44%. The lower half of the table adjusts these estimates 

for risk of bias. It reveals intervention effects that are about half as large and 

confidence intervals about twice as large. All three confidence intervals now 

include the possibility of no effect – although the means all indicate some 

positive effect. These analyses used the Review Manager software (Review 

Manager, 2011). 

[Insert Figure 1]
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Table 2 summarizes the analyses for all interventions targeting peak-

demand residential electricity use, with two aggregation methods: GIV and 

Hierarchical Linear Models (HLM), which considers only the variance across 

group means, hence can be calculated for studies with incomplete reporting. 

GIV gives more weight to studies with less variance, assuming that have better 

methods, with more consistently delivered interventions. With both aggregation 

methods, using Dynamic Pricing alone produces significant reductions, which 

are roughly halved by the risk-of-bias adjustment. Adding Automation 

substantially increases those effects. Adding In-home displays contributes little 

to Dynamic Pricing either alone or combined with Automation. Aggregation with 

Ordinary Least Squares (OLS), which also ignores within-group variance, 

reveals similar patterns (not shown).

[Insert Table 2]
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Generic Inverse Variance Hierarchical Linear Model

Intervention

Un-
adjusted 

Mean 
(SE)

Adjusted 
Mean
(SE)

Studies
(Missing

)

Un-
adjusted 

Mean 
(SE)

Adjusted
Mean
(SE)

Studies
(Missing)

In-home display 
only

NA NA NA NA NA NA

Dynamic Pricing 
only

6.93*
(1.74)

2.49*
(0.64)

11
(17)

11.56*
(2.26)

5.92*
(1.21)

28
(3)

In-Home Display 
with Dynamic 

Pricing

6.30
(4.34)

3.06
(4.44)

1
(10)

14.25*
(3.56)

7.35*
(1.88)

10
(1)

Dynamic Pricing 
with Automation

32.80*
(5.50)

12.53*
(4.64)

3
(16)

24.40*
(2.86)

12.68*
(1.52)

16
(3)

In-Home Display 
with Dynamic 
Pricing and 
Automation

NA NA
0

(4)
25.78*
(6.30)

12.56*
(3.30)

3
(1)

*p<0.05

Table 3 reports comparable statistics for overall reductions in residential 

electricity use for the five interventions reported in any of the 32 studies. GIV 

(calculated for studies reporting within-group variances) found the greatest 

reduction when households received in-home displays alone, equal to 4% in the 

reported data and 1.2% after adjustment for risk of bias. With HLM, in-home 

displays alone were again most effective, reducing usage by about 5% in the 

reported data and 3% after bias adjustment. OLS produced similar results. 

Although all five interventions show lower overall usage, after risk-of-bias 

adjustment, that difference is statistically significant only for in-home displays.

[Insert Table 3]
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Generic Inverse Variance Hierarchical Linear Model

Intervention
Un-adjusted 
Mean (SE)

Adjusted 
Mean
(SE)

Studies
(Missing)

Un-
adjusted 

Mean 
(SE)

Adjusted 
Mean
(SE)

Studies
(Missing)

In-home display 
only

4.00*
(1.33)

1.20
(1.10)

12
(5)

5.10*
(2.33)

2.99*
(1.20)

16
(0)

Dynamic Pricing 
only

2.83*
(0.97)

0.30
(0.35)

10
(18)

1.73
(1.17)

0.91
(0.61)

21
(10)

In-Home Display 
with Dynamic 

Pricing

2.17
(3.57)

1.05
(2.94)

1
(9)

2.23
(1.41)

1.32
(0.87)

8
(3)

Dynamic Pricing 
with Automation

3.61*
(1.58)

0.09
(0.14)

4
(14)

3.84
(2.21)

3.19
(1.92)

11
(7)

In-Home Display 
with Dynamic 
Pricing and 
Automation

3.00*
(0.323)

1.28
(2.18)

1
(3)

3.00 1.28
1

(3)

* p<0.05

3. Discussion

We report a critical meta-analysis of all 32 publicly available evaluation 

studies estimating the effectiveness of interventions designed to reduce overall 

or peak residential electricity use in the US or Canada: In-Home Displays 

(IHDs), Dynamic Pricing, and Automation (through programmable thermostats 

and smart switches). Using the risk-of-bias approach (RoB) developed for 

medical clinical trials, we found that most studies had methodological features 

expected to inflate the effectiveness of their focal interventions, relative to 

routine use in the general population. For example, 27 of the 32 studies used 

volunteers; 20 allowed researchers or participants to select their interventions 

rather than using random assignment. When studies reported enough detail to 

assess their vulnerability to bias, we used estimates from RoB research to 
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adjust their means and variance. We aggregated the estimates from individual 

studies using three metaanalytic procedures, Generalized Inverse Variance 

(GIV), Hierarchical Linear Models (HLM), and Ordinary Least Squares (OLS), 

which produce similar patterns but somewhat different estimates of effect size. 

For peak energy use, the adjustment roughly halved the observed effect 

size (Table 2). Using reported or adjusted estimates and each aggregation 

procedure, Dynamic Pricing produced statistically significant savings. Those 

increased markedly with Automation, but not with IHDs – which also added 

nothing to the combination of Dynamic Pricing and Automation. Thus, 

Automation helps, whereas asking consumers to monitor a display does not, 

even with the incentives offered by Dynamic Pricing. Unfortunately, no study 

examined the effects of Automation or IHDs alone.

For overall energy usage (Table 3), most interventions showed 

statistically significant reductions using the reported data and the more sensitive 

GIV aggregation method (where studies reporting sufficient detail to apply it). 

The exception was Dynamic Pricing with IHDs. RoB adjustments reduced all 

mean effects to 3% or less, leaving one statistically significant reduction: In-

Home Displays alone, when aggregated with HLM. Only Dynamic Pricing, 

which significantly reduced peak demand, had weak effects on overall demand. 

It even seemed to reduce the usefulness of IHDs, a combination that was no 

more effective than Dynamic Pricing alone with peak demand, perhaps 

reflecting cognitive overload on consumers. 

Almost none of the 32 studies reported enough information to assess its 
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vulnerability to sequence generation, allocation concealment, and blinding bias. 

Many lacked detail relevant to intervention or volunteer selection bias. Although 

that lack of information might mean that having appropriate methods went 

without saying, RoB analyses based on fuller reporting might well yield even 

smaller effects. Without within-group variances, we could not apply the more 

sensitive GIV aggregation method to many studies. It appears that reporting 

standards have yet to emerge in the gray literature where most of these reports 

are found. Without them, researchers and practitioners cannot take full 

advantage of the observations from these trials.

Without risk-of-bias adjustments, many interventions seem to reduce 

overall usage; with them, only IHDs d (by 1.2%). For peak usage, Dynamic 

Pricing, especially when combined with Automation, is effective either way, 

although the effect size is halved with RoB adjustments. However, our bias-

adjustment estimates are based on studies of medical clinical trials. There is a 

vital need for studies examining how far these estimates can be generalized to 

electricity field trials. The same mechanisms seem plausible (e.g., allocating 

treatments to people who seem most likely to benefit from them). However, 

there is no substitute for evidence.

Our conclusions are limited to existing studies, which lacked the 

combinations of interventions needed to clarify the joint and separate effects of 

the three forms of intervention. As a result, we cannot, for example, untangle 

just how IHDs help and hinder performance, when used with other 

interventions, or how well Automation does by itself. Although full factorial 
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designs may be prohibitively expensive, fractional factorial designs or response 

surface methods can provide good alternatives (Myers, Montgomery and 

Anderson-Cook, 2009), allowing efficient use of limited resources. 

Our conclusions are also limited by differences among the studies for 

each class of interventions, whose members might have varied in their 

effectiveness (e.g., Dynamic Pricing programs with different incentives). For 

example, some studies provided consumers with detailed information about 

their electricity use, while others sent regular monthly bills and yet others 

required customers to visit websites for their feedback; the studies explained 

their interventions in different ways, likely varying in how well customers 

understood them and saw their opportunities to benefit. Studies varying in so 

many ways beyond the interventions being studies are meta-confounded 

(Deeks, Dinnes, D’Amico, et al. 2003). 

Although we used three different procedures to aggregate results (GIV, 

HLM, OLS), producing generally similar results, other approaches would be 

possible, especially if within-group variances were routinely reported (Ades and 

Sutton, 2006; Greenland, 2005; Ioannidis, 2011; Spiegelhalter and Best, 2003; 

Wolpert and Mengersen, 2004). 

A straightforward way to improve the reporting, and value of such studies 

is to adopt the widely used CONSORT guidelines for medical clinical trials 

(http://www.consort-statement.org/home/), including open web access to 

supplementary materials providing enough detail to allow replicating each study. 

Doing so will, among other things, provide the within-group variances.
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In addition, we have two recommendations specific to the reporting of 

electricity field studies: (a) Report effects on both overall and peak usage, in 

order to see how interventions with one goal affect the other. (b) Report full 

usage statistics for all time periods for all intervention groups.

We make the following recommendations to avoid the six biases studied 

here. Although we recognize that practical concerns (e.g., Public Utility 

Commission approval) may constrain investigators, there are studies that have 

addressed each threat. 

Intervention selection bias can be avoided by randomizing consumers to 

interventions after they have agreed to enroll in the study. For example, the 

Iowa Residential Electricity Study (RES) randomly assigned participants to 

time-of-use pricing or control groups after they had signed up to participate 

(Baladi, Herriges and Sweeney, 1998). See also BC Hydro’s AMI study 

(Sulyma, Tiedemann, Pedersen et al., 2008), the Twin Rivers study (Seligman, 

Darley and Becker, 1978), and AmerenUE’s Residential TOU pilot (Puckett et 

al, 2004). 

Sequence generation bias can be avoided by using formal randomization 

or statistical corrections that adjust estimated effects based on observed factors 

(e.g., propensity score matching) or unobserved ones (e.g., instrumental 

variables) (Stukel, Fisher, Wenenberg, et al., 2007).  For example, the Energy 

Cost Indicator study (Hutton, Mauser, Fillitrault, et al., 1986) divided participants 

into quartiles according to annual energy consumption, then randomly assigned 

100 randomly sampled participants from each quartile to each group (see also 
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Puckett et al., 2004).

Sequence concealment bias can be avoided by hiding the sequence 

from researchers and participants, perhaps using third party central 

randomization (Higgins, Altman and Sterne, 2011) or the sequentially 

numbered, opaque, sealed envelopes (SNOSE) sometimes used in by medical 

researchers. 

Attrition bias can be reduced with extrinsic incentives (e.g., completion 

bonuses) or intrinsic ones (e.g., such as stressing the value of complete data 

sets). Researchers can also adjust their data for attribution with intention-to-

treat analysis (Hollis and Campbell, 1999), which uses imputation methods to 

adjust the partial data from participants who drop out, so that they are not lost 

altogether (Ibrahim, Chen, Lipsitz, et al., 2005; Seligman, Darley and Becker, 

1978). See PG&E’s Smart-Rate pilot (George et al., 2010) or Idaho Power’s 

Energy Watch Pilot (Kline, 2007).

Blinding bias can be reduced by providing as little information as 

possible, consistent with practical constraints (e.g., providing instruction, 

ensuring informed consent). When it is impossible to blind participants to 

condition (e.g., if they received an IHD) it might be possible to blind them to the 

other conditions. For example, the Milton Hydro experiment (Schembri, 2008) 

sought to limit contact between participants in its different conditions. CL&P’s 

Plan-it Wise (Faruqui and Sergici, 2009b) randomly assigned participants 

without mentioning alternative conditions or allowing them to switch 

interventions if they did learn. See also the Ameren Illinois Power-Smart Pricing 
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(PSP) pilot (Violett et al., 2010), BG&E Smart Energy Pricing Pilot (SEPP) 

(Faruqui and Sergici, 2009a), Pepco’s PowerCents DC pilot (King, 2010), and 

Hydro Ottawa’s Ontario Energy Boards Smart Price Pilot (Strapp, King and 

Talbott, 2007). 

Volunteer selection bias can be avoided by requiring participation or by 

using an opt-out strategy, knowing that only strongly motivated individuals will 

change their default status. For example: (a) The Polk’s Landing study 

(McClelland and Cook, 1979) installed in-home displays before residents 

purchased their homes. (b) The Southern California Edison experiment (Sexton, 

Johnson, and Konayama, 1987) had an opt-out design that was never used, 

both because the “exemption procedure was not well known” (p. 57) and 

because they were offered $100 to alleviate any financial hardship. Failing that, 

sample selection bias statistical methods (Heckman, 1976, 1979) may provide 

useful adjustments. For example, PG&E’s Smart-Rate Pilot (George et al., 

2010) used propensity score matching to address differences between those 

who did and did not volunteer. 

Our reported research makes three contributions. It assesses the degree 

of bias in field studies of electricity use. It provides meta-analyses of the results 

of existing studies, making alternative assumptions regarding their data. It 

provides guidelines for study design and directions for future methodological 

research. Future work should adapt reporting guidelines such as CONSORT to 

electricity field studies, design studies to avoid risk of bias, and conduct studies 

to quantify the impacts of bias in this domain. Its approach and 
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recommendations could be applied to field studies of any intervention, 

highlighting the need for general understanding of how these biases affect 

treatment effects.

4. Materials and Methods

We searched Google Scholar with the search terms: feedback + 

energy consumption, feedback + electricity + consumption, in-home feedback 

device + electricity, in-home display + pilots, real-time pricing, smart meter 

feedback devices, programmable thermostat, pricing program; in-home display; 

and automation. We also looked at the references of these studies and at 

publications citing them, as well as writing their authors asking about 

unpublished papers.  Our search identified 112 potentially relevant papers of 

which 49 were eliminated for having no original data and another 31 for not 

satisfying our inclusion criteria: being in the US or Canada (11 studies), studying 

overall or peak reduction (11 studies), evaluating pricing, in-home displays or 

automatic controls (4 studies), and looking at residential use (2 studies).  The 

supplementary materials (Appendix A) have details on the remaining 32 studies, 

25 of which studied overall usage and 17 peak usage.

Two authors independently coded each study for risk of the six biases, 

using a method adapted from (Higgins, Altman and Sterne, 2011; Turner, 

Spigelhalter, Smith, et al., 2009).  Agreement on bias classification had high 

inter-rater reliability (k = 0.75) (Brennan and Prediger, 1981; Randolph, 2008). 

Our coding rules appear in Table 4. 

[Insert Table 4]
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Bias type High risk Low risk

Volunteer • Opt-in design
• Opt-out design
• Mandatory participation
• Heckman Correction *

Intervention

• Random assignment 
before volunteering 
(allowing withdrawal)

• Participant or 
researcher choice

• Availability of 
intervention 

• Assignment based on 
pretests/baseline data

• Random assignment 
after volunteering

• Propensity score *

Generation
• Alternating, day of 

birth, sequential, other 
non-random sequence

• Truly random sequence 

Concealmen
t

• Not low 

• Central Randomization *
• Sequentially numbered 

opaque sealed 
envelopes

Blinding

• Participants knew 
about other 
intervention groups 
when recruited.

• Participants were not 
informed about 
alternative 
intervention/control 
groups

• Data collectors, 
analyzers, and writers 
blinded.

Attrition
• Data exclusions or 

withdrawals and data 
not missing at random

• Intention to treat analysis 
*

• No dropouts or 
exclusions

• Appropriate imputation 
methods *

As seen in Figure 2, the adequacy of the reporting varied considerably, 

as did the prevalence of bias -- where we could evaluate it: (a) All but one study 

reported whether participants had volunteered; all but four of those involved 

volunteers. (b) All studies reported whether the investigator or participant chose 

the intervention group; in roughly two-thirds of studies they did. (c) Only two 



23

studies reported procedures for random assignment; one was proper and one 

not. (d) No study described its procedures for allocation concealment well 

enough to be evaluated; in correspondence, one author reported successful 

concealment. (e) Nine studies reported whether both participants and 

researchers were blinded to treatment group; in seven cases they were. (f) Half 

of studies reported attrition rates; most were represented high risk of bias.

[Insert Figure 2]

Table 1 shows Risk-of-Bias adjustment factors calculated from studies 

comparing medical clinical trials with and without biases (see Appendix B in 

supplementary materials).  We omit quantification of volunteer bias since all 

studies have volunteer bias, and as a result nobody has bothered to quantify 

the magnitude of the bias.  The adjusted treatment mean equals the observed 

mean divided by the mean adjustment factor. Thus, values greater than 1 

indicate that the bias leads to overestimating mean effects. The adjusted 

variance is proportional to the sum of the unadjusted variance within 
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experimental conditions and the variance adjustment factor. Thus, variance 

adjustments greater than zero indicate that the bias leads to underestimating 

variance. When a study had more than one bias (which was always the case), 

the adjustment factors were multiplied, assuming that they were independent.
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Figure Legends

Figure 1. A forest plot of unadjusted and adjusted Generic Inverse Variance 

meta-analysis for peak reduction for DP and automation, DP only, and in-home 

display and DP. The x-axis shows the % reduction and 95% confidence interval.

Figure 2. Distribution of studies that meet the criteria for high, low, or unknown 

risk of bias updated to reflect author responses.

Table Legends

Table 1. Risk of Bias Adjustments for Overall and Peak Reduction. Overall 

count is the number of interventions with that bias combination.  Peak count is 

the number of interventions with that bias combination.

Table 2. Generic inverse variance and Hierarchical Linear Model estimates of 

adjusted and unadjusted effects from the five intervention combinations on 

peak reduction. For the GIV estimate, “missing” means that the within-group 

variances were not reported.  For the HLM estimate, “missing” means that the 

intervention effect was not reported.

Table 3. Generic inverse variance and Hierarchical Linear Model estimates of 

adjusted and unadjusted effects from the five intervention combinations on 
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overall reduction.  For the GIV estimate, “missing” means that the within-group 

variances were not reported.  For the HLM estimate, “missing” means that the 

intervention effect was not reported. 

Table 4. Criteria for classifying studies as high or low risk of bias.  Notes (*): 

Heckman Correction (Heckman, 1976, 1979) statistically controls for factors 

affecting individuals’ chance of being in the sample.  Propensity scores 

statistically models factors that lead participants to choose an intervention 

program (Wooldridge, 2002; Gelman and Hill, 2007).  Central randomization is 

done by a third party (Higgins, Altman and Sterne, 2011). Intention-to-treat 

analysis treats participant in terms of their originally treatment assignment, 

regardless of any subsequent exclusion, non-adherence, or withdrawal (Hollis 

and Campbell, 1999).  Imputation estimates the values of missing data (e.g., by  

the mean from non-missing data (Ibrahim, Chen, Lipsitz, et al., 2005)).


