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Modelling in Biology
Assignment 1
Question 1:  Simple numerics on the single exponential
Part 1

We first define afunction, func asfollows:

function xprime = func(t,x)
xprime = -(2/3)*x;

Then we can implement Runge-Kutta function (ode45) to integrate the function numerically:

time = [0 5];

x0=10;

[T,Y] = ode4s5 (@func, time, x0);
plot(T,Y);

The analytical solution can also be derived from integrating the equation:
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Using the same time points derived from numerical integration with ode45, we can solve for
corresponding values of x and compare the result of the Runge-Kutta method with the
analytical solution.

Z = x0*exp(-(2/3)*T);
plot(T,Y,T,Z2,'0")
title('ode45 solution for simple ODE')

Plotting both the analytical solution and the numerical solution on the same plot gives us an
idea of how good the numerical integrator utilized by Matlab redlly is. The analytical
solution is represented by circles while the numerical solution is represented by the solid line.
As can be seen, the Runge-K utta 4™ order method of numerical integration gives satisfactory
results with a cursory inspection.



Figure 1: ode45 Solution for Simple ODE

To obtain a more quantitative value of the error, we can calcul ate the mean sguared error
between the analytical solution and the numerical solution. Matlab’s mse function enables a
quick and easy way to do this:

msetest = mse(Z-Y)

Resulting in the mean squared error of 3.1489e-011 between the analytical and numerical
solution (provided by ode45).

Part 2

To analyze more carefully the way in which ode45 solves differential equations, we can first
look at the difference in time points. Asis seen in the figure above, the spacing between time
pointsis not equal, but becomes clustered towards the end.

Figure 2: Time Spacing User by ode45 Solver Asisseeninfigure 2, the solver begins
L with time points which are close
together, then switches to time points
011 1 further apart in the middle of the range,
01} 1 and lastly, the time points become
closer together again. From this plot,
we can deduce that the solver takes
more time points at the beginning and
007 1 towards the end of the function since it
0.6 | cannot rely on points beyond the limit
set by the user. The Runge-Kutta
method takes into account severa
5 10 15 20 25 w0 % 4 45 points around the point it wants to
integrate, and because of limitations of
projections before the range and after the range, it must take smaller time points. By doing
this, the solver saves computational time as well.
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If we want equally spaced time points, we can also force the ode45 solver to take specific
time points:



t=[0:0.01:5];

[T1,Y1l] = ode45 (@func, t, x0);
Z1 = x0*exp (- (2/3)*T1) ;
figure;

plot(T1,Y1,T1,Z1,'0o")
title('Figure 3: ode45 with Given Time Steps')

Plotting the analytical solution as circles again superimposed on the numerical solution (line),
we obtain:

_Floue3 odeds wih Ghen Time Steps. Again, there is no noticeable difference
between the analytical and numerical
solution, but we should calculate the mean
squared error to determine a quantitative
value for the error.

Using the mean squared error function as
before yields an error of 3.4371e-011.
Although we used fixed time points, there
isactually adlightly greater error than with
non-fixed time points, suggesting that the
Runge-K utta function corrects for time
steps that would yield a higher error.

To investigate further into the mechanism of the Runge-Kutta method, we can look at the
differences between two adjacent points. For each point, we can also cal cul ate the percentage
change to the next point using the numerical solution we obtained with fixed time points.

t2c=[0.01:0.01:5];

diffmat = diff (Y1) ;

foo = diffmat./Y1(1l:length(Y1l)-1);

figure;

plot (t2c, foo)

title('Figure 4: (x(t+0.01)-x(t))/x(t) plot vs. time')

x10° Figure 4: (x(t+0.01)-x(t))/x(t) plot vs. time
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Thisresultsin an interesting plot
(figure 4). The solver seemsto
oscillate. But if welook at alonger
time period, we see something quite
remarkable, that as you increase the
time, the oscillations become

i unpredictable (figure 4b).
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x 10° Figure 4b: (x(t+0.01)-x(t))/x(t) plot vs. time

If the timeisincreased even further (say
3F 1 t = 80), we get even more unpredictable
behavior with the value reaching up to
80. Looking at the function that we are
51 ] plotting carefully, one can seethat it is
similar to the definition of the derivative,
and it indeed the derivative of the phase
7t ] plane multiplied by the time step, h.
Since we are plotting alinear differential
equation in theform x=kx , the limit of

9
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fact thisis what we see in the above equation with the graph approaching -6.67e-3 at small
values of time. However, since we are doing numerical calculations and not analytical
calculations, there are inherent round-off errors that tend to become multiplied over time.
These round-off errors become increasingly important as the value of x becomes small since
it represents alarger proportion of the function. Matlab compensates for this, which results
in the oscillations seen in figure 4. Asthe error increases and subsequently the oscillations
increase, Matlab takes greater steps to correct and overcompensates leading to large
fluctuations seen at higher time values.

Question 2: Euler Method Implementation
The Euler method provides a simple way of generating a numerical solution to differential
equations and is based on the definition of aderivative. Implementing thiswill allow usto
compare between the Runge-K utta method that Matlab selects and this more rudimentary
method of numerical integration.

x(t +h) = x(t)+ h[- k(t)]

In Matlab thisisimplemented as such:

k = (2/3);
h = 0.01; %time step
myeuler(l) = 10;
timestepsl = 5/h;
for t = [2:1:timestepsl+1]
myeuler (t) = myeuler(t-1) - h*k*myeuler (t-1);
end
timevectl = [0:h:5];
figure;

plot (timevectl, myeuler)
title('Figure 5: h = 0.01 implementation of the Euler algorithm')

Calculating the mean squared error gives us an error of 8.0358e-005. Thisis 6 orders of
magnitude larger than the Runge-K utta method.



Figure 5: h = 0.01 implementation of the Euler algorithm A more easy Compari son comes when
S wetry using h = 0.001 as our time step
and repeating the calculation of the
Euler algorithm (Figure 6).

5 . Although there is no visible difference
between the two plots (Figures 5 and 6)
using ten times more points, we can
calculate the mean squared error again
to determine a quantitative value. The
calculated mean square error is

o os 1 15 2 25 & 35 4 45 5 8.0183e-007, which is 2 orders of
magnitude smaller than using h = 0.01.
Thisissurprising as one would expect
that with an order of magnitude more
time points, there would be a
corresponding order of magnitude
decreasein error.

Figure 6: h = 0.001 implementation of the Euler algorithm

In figure 6a, we can see that although
the error is much higher than the
Runge-Kutta method, our Euler
method does pretty well for afirst
approximation.

Figure 6a: Euler Solution vs. Analytical Solution

Part 2

To simulate noise in the environment, we can include a stochastic term in our differential
equation where o represents the amplitude of the random noise process dw .

dx = —kxdt + odW
In Matlab, we can use the rand function to generate random numbers and the stochastic

differential equation can be solved aso using the Euler algorithm in an adaptation to the code
presented in the previous section.



k = (2/3);

h3 = 0.01;
mystoeul (1) = 10;
sig = 0.2;

timesteps3 = 5/h3;

for t = [2:1:timesteps3+1];
mystoeul (t) = mystoeul (t-1) - h3*k*mystoeul (t-1) + sig*sqgrt (h3)*randn;
end

timevect3 = [0:h3:5];

figure;

plot (timevect3, mystoeul)

title('Figure 7: h = 0.01 Stochastic Implementation of Euler')

Figure 7: h = 0.01 Stochastic Implementation of Euler With each run of the program, the
R stochastic implementation generates a
new graph and reflects the
unpredictable nature of stochastic
differential equations. One would
expect that the average of an infinite
number of runs of the algorithm will
result in the deterministic solution.
This exact method is used in image
processing to reduce the noise level in
an image by averaging many
photographs of the same thing.

If we plot 15 runs of the solution to the SDE and take an average (Figure 8), we can see that
the average (red line) approaches the deterministic solution.

storevals = zeros(15,5/h3);
mystoeull (1) = 10;
storevals(:,1) = mystoeull(l);
figure;

for n = 1:1:15
for t = [2:1:timesteps3+1];

mystoeull (t) = mystoeull(t-1) - h3*k*mystoeull (t-1) +
sig*sqgrt (h3) *randn;
storevals(n,t) = mystoeull(t);

end
end

for n = 1:1:15
hold on;
plot (timevect3, storevals(n, :))
end
title('Figure 8: h = 0.01 15 Repetitions of SDE with Average')

for i = 1:1:timesteps3+1
sumvals (i) = sum(storevals(:,1i)); %$sums values
end

avgvals = sumvals./15; %calculates the average values



plot (timevect3,avgvals, 'red', 'LineWidth', 2)
hold off;

One interesting thing to note about Figure 8 is that there seemsto be less noise at the
beginning when x islarge. Thisisin part due to accumulation of noise throughout the run as
x(t+h) value is dependent upon x(t). The actual noiseitself is generated from a Gaussian
distribution (if using randn) or from a uniform distribution (if using rand).

Figure 8: h = 0.01 15 Repetitions of SDE with Average

To get amore accurate picture of what is happening with the noise, we can effectively just
plot the noise over time and generate a histogram of values. We can also calculate the mean
and the standard deviation of the noise generated by the function randn.

k = (2/3);
step = 0.01;
mysto(l) = 0;
sig = 0.1;

timeval = 10;
tstep = timeval/step;

for t = [2:1:tstep+1];

mysto(t) = mysto(t-1) - step*k*mysto(t-1) + sig*sqgrt(step) *randn;
end
tvect = [0O:step:timevall;
figure;

subplot(1,2,1), plot(tvect,mysto)
title('Figure 9: sig=0.1 w/ x0=0, Noise')
subplot(1,2,2), hist(mysto,40)
title('Figure 10: Histogram of sig = 0.1")

mean02 = mean (mysto)
std02 = std(mysto)



Figure 9: sig=0.1 w/ x0=0, Noise Figure 10: Histogram of sig = 0.1
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Figure 9a: sig=0.1 w/ x0=0, t=100, Noise Figure 10a: Histogram of sig = 0.1, t = 100
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Figure 9 shows just the pure noise when sigmais set to 0.1 and the histogram is shown in
Figure 10. The mean value of the noise was -0.0119 with standard deviation of 0.0665. With
the histogram in Figure 10, it is much easier to see that the mean is still centered around zero
with standard deviation of approximately 0.1. Increasing the sampling timein figures 9aand
10a, the mean remains close to zero (0.0191), but the standard deviation gets closer to 0.1
(0.0947). Thisisyet another method which is used in reducing noise in practical applications
such asimage processing. The noise is measured for along period of time to generate the
mean level and the standard deviation. Thisvalueis then subtracted from the signal value to
recover the original level of the signal.

When we increase sigmato 5, we obtain the results shown in figures 11 and 12.



Figure 11: sig=5 w/ x0=0, Noise Figure 12: Histogram of sig = 5
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The mean value for sigma = 5 was -0.4445 and the standard deviation was 4.1589. Again,
these results are expected but once again show the unpredictability of a stochastic differential
equation. The differencesin width of Figure 10 and 12 are related to the differencein
standard deviation and the sigma value that we used. Running the noise for an extended
period of time will result in the normal distribution of values with the given standard
deviation used. Sincewe used 5 for sigmain Figure 12 and only 0.1 for Figure 10, we expect
the width of Figure 12 to be much larger.

Question 3: Monte Carlo Algorithms

Part 1

1 clear;

2 1=0;

3 for N=[100 1000 5e3 1le4 5e4 1le5 5e5];

4 i=1+41;

5 pp=rand (N, 2) ;

6 P=4*mean ((pp(:,1) ."2+pp(:,2).%2)<=1);
7 A(i,:)=[N P];

8 end

This program generates N number of random points (line 5) and implements atest in line 6.
The average value of all the numbersis saved as the variable P and the array A stores all the
values of P for given values of N (as defined in line 3). Using the rand function generates
random numbers from O to 1 selected from a uniform distribution so that all values are
equally likely to show up. On the other hand, if the function had used randn to generate
numbers, this selects values from a normal distribution with mean 0 and standard deviation of
1.

The test that the program implements is taking the sum of the sguares of the two numbers
generated and seeing if it islessthan one. This program is equivalent to making two columns,

labelling one x and the other y, and seeing if each row satisfies the equation x* + y* <1. If
they do, that point is assigned the value 1 and if the condition is not satisfied, then the point is



assigned avalue 0. Line 6 of the program takes the average of all the 1’'sand 0'sand
multipliesit by 4.

If we look closely at the equation that is being used to test the two points, we notice that it
takes the form of acircle. Indeed, this program is equivalent to generating N number of
points and seeing whether or not they fall inside a circle of unit radius or not. Asthe value of
N increases, coverage of this circle increases. However, for the purposes of Matlab, we test
only ¥ of the circle since we cannot generate negative values using rand. To correct for this,
we just multiply by 4 (line 6). Inthelimit, as N approaches infinity, then the average taken in
line 6 approaches the percentage of the quarter of the circle covering a unit square. The
fraction covered, ie the probability that it hitsinside the circle (and also the area of the sector

since we are dealing with a circle of unit radius and a unit square) is% . Multiplying this by
4 gives the area of the entire circle, z, the limit that P approaches.

The diagram below represents what is happening in the code and what it translatesto in real

terms.
Takes ¥4 of the Multiplying
circlefirst by 4
because of the trandatesto a
limitations on \\ / full circle
rand

Part 2

clear; Q=0; Nfinal=1e6;
for N=1:Nfinal;
pp=rand(1,2) ;
Q=0+ (1./(1+pp(1,1) .%2)>=pp(1,2));
end
P1=Q/Nfinal

To find the limiting value of P1 in the program above, we can use a similar method to what
was used in Part 1. If welook closely at the program, we can see that we are trying to find

the area under the curve of the equation y =

v inthe interval [0,1] by again “throwing
darts’ at the plot and finding the mean of the values of Osand 1s. Actua integration of the
equation will yield the limiting value of arctan(1) which is approximately 0.7854. The value
of P1 generated by the function above is 0.7851, which approximates the limiting value very
well.

clear; Q=0; Nfinal=1le6;
for N=1:Nfinal;
pp=rand(1,2);
Q=0+ (pp(1,1)./(1+pp(1,1).72)>=pp(1,2));
end
P2=Q/Nfinal

10



in the interval

In the program above, we are looking at integrating the equation y = 1+Xx2

[0,1]. The limiting value when integrating the equation is0.5In2, which is approximately
0.3466. The value of P2 generated by the function above is 0.3469, which also approximates
the limiting value very well.

However, there are some limitations to integration by using a Monte Carlo algorithm. First,
the method coded above only allows for functions that are defined within the unit box from 0
to 1. Otherwise, al the pointsin the box would satisfy the condition and the final value will
be 1. We can correct for this by increasing our box to asuitable size, say 2 x 2 if the f(0) =
1.5, or we can scale down our function to fit within the range, just remembering to rescale it
when we report the value of the integration. If we change the range, we must also multiply
our final value by the area of our box, since what we are effectively doing in the algorithm is
sampling the entire box and calcul ating the percentage of the box which satisfies the
conditions set about in the function.

Theoretically, thisintegration method can be extended to n-dimensions, so long as one keeps
track of the exact calculation that is being done, or elseit is easy to misinterpret the results.
Furthermore, the other limitation is that initial conditions have to be known in order to be
able to set an appropriate area/volume through which to integrate. Setting the range too small
will give an erroneous result, but setting the range too large could be costly in terms of
computational time.

Question 4: Normal modes and systems of coupled harmonic (linear) oscillators

Consider the set of differential equations:

% ==k —%,)—k(x —x,)
%, = —K(% = %)= k(% - x,)
X3 =— k(xs X4) k(X3 Xz)
X == k(XA Xs) k(X4 Xl)'k 1

Upon careful inspection of each, we can determine that these equations represent a system of
4 masses attached to each other by springs of equal spring constant (k = 1). Furthermore, we
can deduce that the motion of mass 1 (as governed by the first equation) is connected to
masses 2 and 4 and the velocity isrelated to the length of the “bond” separating them. Going
through each equation gives a clearer picture of the system we are trying to model as shown
below.

11



With the help of Matlab, we can easily integrate our set of differential equationsto come up
with anumerical solution. We first define afunction mydysys to store the equations.

function dx = mydysys(t,x)
dx = zeros(4,1);

dx (1) = -(x(1)-x(2)) - (x(1)-x(4));
dx(2) = -(x(2)-x(3)) - (x(2)-x(1));
dx(3) = -(x(3)-x(4)) - (x(3)-x(2));
dx(4) = -(x(4)-x(3)) - (x(4)-x(1));

And is called by the main program with the given initial conditions:

iniconds = [4 7 -3 -0.4];

time = [0 4];

[T,X] = ode45 (@mydysys, time,iniconds) ;
figure;

plot (T, X)

title('Figure 13: Modelling a Set of Equations')

Thisresultsin the plot shown in Figure 13.

, _ Figue 1 Modelinga Selof Equations In the plot, we can see that although the
A four particles begin at different positions,
they all end up in the same position over

time. Infact, the sum of the all four

coordinates remain the same over time,

. suggesting that the center of mass
—— remains constant over time. With the

given initia conditions, the masses are

1 moved away from their equilibrium value

Position

1/ 1 and released. After agiven time, they
21/ 1 return to their square shape having afixed
‘3; 05 1 15 2 25 3 35 4 length between them.

Time

To get a better idea of what is happening, we can look at the eigenvalues and e genvectors of
the set of equations. We first transform our set of equationsinto the formx = Ax.

X -2 1 1\ x
X, K 1 -2 1 0|x
X, 0 1 -2 1|x
X, 1 0 1 -2)x,

Matlab then allows an easy method of getting the eigenval ues and eigenvectors of our 4™
dimensional problem.
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A=[-2101;1-210;01-21;101 -21;

[V,D] = eig(d)

The eigenvectors:

V =
0.5000 -0.0000 0.7071 -0.5000
-0.5000 0.7071 0.0000 -0.5000
0.5000 0.0000 -0.7071 -0.5000
-0.5000 -0.7071 0 -0.5000

The corresponding eigenvalues in a diagonalized matrix:

D =
-4.0000 0 0 0
0 -2.0000 0 0
0 0 -2.0000 0
0 0 0 0.0000

Asis seen, the maximum eigenvalue is 0 and the corresponding eigenvector is[-0.5, -0.5, -
0.5, -0.5].

If we look more to the genera solution derived from solving the system of differential
equations, we may be able to gain a greater insight as to what the eigenvalues and
eigenvectors mean in terms of the system. Given our eigenvalues, A, and our eigenvectors, 7,

the general solution to alinear system of differential equationsis displayed below.
X(t) =Y e
i=1

For our system, this resultsin the equation below, with the values of ¢ being constants
depending on theinitial values of the system.

-05 0.71 0 0.5
-05 0 0.71 -05
X(t) = + ce+ g ce™
®) _052 " —o7|? 0o |® 05 | *
-05 0 -0.71 -05

We can see that as time approaches infinity, we are left with the eigenvector corresponding to
the eigenvalue of 0. What that equation tells usis that the position vector for each is constant
and in the same direction, so all the masses in our system are stable. If we consider other
values of t, then we realize that they die off, resulting in the same position given by the
eigenvector corresponding to the eigenvalue of 0.

We also must remember that we are in the overdamped limit, which will help usto
understand the other modes corresponding to the other eigenvalues, -2 and -4. For one of the
-2 eigenvalues, we see that this corresponds to perturbing masses 1 and 3 or 2 and 4 at the
sametime. The bond between all the masses will correct for this perturbation and the system
returns to the position defined by the O eigenvalue. In effect, we are only stretching two

13



bonds out of 4, so thiswould theoretically require half as much energy to excite, hence half
the eigenvalue. The -4 eigenvector corresponds to perturbing 1 and 2 in opposite directions
aswell as 3 and 4 in opposite directions, so this represents the stretching of all the bonds,
requiring the most amount of energy.

Figure 14: Sum of all coordinates through time So we can seg, that in these types of
S systems, the eigenval ues correspond to
something similar to vibrational modes
of the system where O represents no
energy input required and increasingly

7.6

7.61

761 ] negative values requiring the need for
more energy to excite that particular

7.61 1 mode.

76l | In figure 14, we can see that if we sum

all the coordinates in time, they remain
‘ ‘ ‘ ‘ ‘ ‘ ‘ constant (7.6), keeping in line with the
05 1 152253 85 fact that the center of mass remains
constant at all times.

7.6
0

To have perhaps a better understanding of the system, we can imagine our coordinate system
in terms of the square upon which our masseslie. The position of the masses are determined
by theinitial conditions and the eigenvectors will determine the modes of the system.
Moving in the negative direction would refer to moving counter-clockwise along the square
coordinate system while moving in the positive direction would refer to moving clockwise
along the coordinate system. With the eigenvector relating to eigenvalue of 0, all of the
masses are moving in the same direction, and thus the entire square is rotating (the
tranglational energy level). With the other eigenvalues and eigenvectors, we are perturbing
the system and causing extension or compression of the bonds/springs, which requires more
energy, and thus has alower eigenvalue than our maximum eigenvalue of O.

Part 2

We consider anew set of differential equations as shown below.

3<
z?i

% =—k(x —
%, = —K(x, - Xs) (x -%)
x3= —k(%; =%, ) — k(6 = x,)

=—k(x, — %;)—kx,, k=1

Now, we can see that the first and fourth mass is connected to both another mass and a fixed
wall, as opposed to two massesin the first problem. A diagram of the physical system that
we are trying to model is shown below.

14
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We can again obtain the eigenvalues and eigenvectors of the system of differential equations
in Matlab.

First, the transformed system in matrix notation:

X, -2 1 0 0}\x
X, " 1 -2 1 0|x
X, 0 1 -2 1 |x
X, 0 0 1 -2)x,
B=[-2100;1-210;012=-21;001 -21;
[V1 D1] = eig(B)
The eigenvalues are:
D1 =
-3.6180 0 0 0
0 -2.6180 0 0
0 0 -1.3820 0
0 0 0 -0.3820

And the corresponding eigenvectors are:

V1l =
0.3717 -0.6015 -0.6015 -0.3717
-0.6015 0.3717 -0.3717 -0.6015
0.6015 0.3717 0.3717 -0.6015
-0.3717 -0.6015 0.6015 -0.3717
Figure 15: Modelling a Set of Equations Herea the maXI mum e'genva| ue IS
T - not O, but is-0.3820. Sincethe
61 1 maximum eigenvalue is negative,
51| ] we can assume that any

perturbation in the system will
result in the system dying down to
zero. And indeed, as shown in
figure 15, the center of mass

1 returnsto zero, given the initial

L/ 1 conditions set in the previous

Al | example.

Position

0 1 2 3 4 5 6 7 8 9 10
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Since the entire system is fixed to awall, it makes sense that the solution of the differential
equations will result in the system returning to its equilibrium state. For our first example,
the center of mass could be trandated and the system was not fixed, but for here, the system
cannot be moved and when perturbed, its motion will return it back to the equilibrium
position.

If we were to repeat the calculation of summing all of the coordinates, the result will not be
the same. The system will begin at a certain point (the sum of theinitial conditions), and will
exponentially decay to zero since the system is fixed and cannot move

Question 5: A Second Order System

We consider the differential equation below.

d’y dy
+n—+y=0
a T Y
We can write this as a system of linear first order differential equations by using the
2
substitution, XZ:%. By definition, )‘(2:% ,andif welet x =y, thisresultsin the
system as shown below.
X =%
LAy dy
Xz_dtz_ ”dt Y=-1%—X%

We can put thisinto Matlab as a function as shown below.

function dx = seode(t,x)

n = 0;

dx = zeros(2,1);

dx (1) = x(2);

dx(2) = -n*x(2)-x(1);

And using ode45 to numerically solve the system of equations for three different values of 7
(0, 0.02, and 5)

t = [0 60];

iniconds = [2 10];

[T,Y] = ode45(@seode, t, iniconds);
figure;

plot (T,Y(:,1))

hold on;

[T1,Y1l] = ode45 (@seodel02, t, iniconds) ;
plot(T1,Y1(:,1), ' 'red")

[T2,Y2] = ode45 (@seode5, t, iniconds) ;

plot(T2,Y2(:,1), 'green')
title('Second Order ODE with various damping coefficients')
hold off;
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Results in the fol I OWi ng pl ot (f| gure 16) Figure 16: Second Order ODE with various damping coefficients

15

With 7= 0, then the solution is purely
harmonic with no damping. With =
0.02, you begin to see some damping,
but as the constant is still small,
damping remains minimal. With n =
5, we are in the overdamped regime
and no oscillations occur.

To get a better idea of the trgjectories a5 ‘

of the three cases, we can explore the
results on a phase plane by plotting the
differential equation itself without having to integrate.

30 40 50 60

figure;
subplot(1,3,1), plot(Y(:,1),Y(:,2))
title ('Phase plane with n = 0'")
subplot(1,3,2), plot(Y1l(:,1), Y1(:,2))
title('Phase plane with n = 0.02"')
subplot(1,3,3), plot(y2(:,1), Y2(:,2))
title('Phase plane with n = 5'")
Figure 17a: Phase plane withn =0 Figure 17b: Phase plane with n = 0.02 Figure 17c: Phase plane withn =5
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In figure 17a, we see that if 77 = 0, then we get acircle (closed line) meaning that the solution
isperiodic. With 77 not equal to zero, then we don’t get a closed line solution, and asis seen,

the solution is no longer periodic and will decay to zero. We can analyze this system again
using eigenvalues and eigvectors as we did in question 4, and we might gain some more

insight into the mechanics of the problem.

We can write the system of equationsin the form x= Ax as shown below.
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As the eigenvalues and eigenvectors depend on the value of 77, we can first test by setting it
equal to zero.

The eigenvalues are:
D =
0 + 1.00001 0
0 0 - 1.0000i

And the corresponding eigenvectors are:
V =

0.7071 0.7071
0 + 0.70711 0 - 0.70711

The eigenvalues are purely imaginary and thus, the analytical solution to the system of
equationsis a combination of imaginary exponentias (or a combination of sine waves). If we
change the value of 77 to be 0.02, the underdamped case, then we get the following

eigenvalues and eigenvectors.

Eigenvalues:
D =
-0.0100 + 0.99991 0
0 -0.0100 - 0.99991

And the corresponding eigenvectors:
V =

0.7071 0.7071
-0.0071 + 0.70711 -0.0071 - 0.70711i

Here, we are no long dealing with purely imaginary eigenvalues, and so our solutionisa
combination of both decay and sinusoidal terms, resulting in the oscillations seen in figure 16.
In the overdamped case where 7 = 5, let’ s see what happensto the eigenvalues. Since we are

not expecting any oscillations, our eigenvalues should be non-imaginary.

Eigenvalues:
D =

-0.2087 0
0 -4.7913

And the corresponding eigenvectors:
vV =

0.9789 -0.2043
-0.2043 0.9789
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S0, the hypothesis was correct in that in the overdamped case, the imaginary term disappears
and we are left with exponentials that decay to zero without any oscillations. Theoretically,
the switch over value of 77 from underdamped to overdamped iswhen { =1 (iethecritically

damped case). If we recall the general formulafor harmonic oscillations and the definition of
¢ , we can derive at which value of 7 the critically damped case will occur.

mX+cxXx+kx=0
C

&= 2dkm

In our case, both m and k are 1 and the cisequal to 77. Thisleadsto the relation §:%.

Thus, for critical damping to occur (¢ = 1), then 7 must equal 2. Let us check to seeif our
solution is correct by considering the eigenvalues and eigenvectors of this system.

First the eigenvalues:

And the corresponding eigenvectors:
V =

0.7071 -0.7071
-0.7071 0.7071

Indeed, we see that we no longer get an imaginary eigenvalue meaning that there are no
oscillations. To check to seeif 7 = 2 redly isthe critical damping point, we can go back to

first principals of finding eigenvalues. If we find the determinant of A—A(l), where

0 1
A:{ j and set it equal to zero (step to find the eigenvalues), then we are left with the

nt\n*-4
2

equation A% + 74 +1=0 whose solutions are — . From here, it is easy to see that

n = 2isthe point at which the solutions, and thus the eigenvectors, will turn from being non-

imaginary to having an imaginary component. Thus, thisis the value at which one expects
the system to switch from one behavior to the other. Figure 18 shows the result of critical
damping and figure 19 displays the corresponding phase plane.
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Position

Figure 18

: Critical Damping

10

Figure 19: Phase plane with Critical Damping
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%Question 2 - An algorithmic implementation of the Euler Method
Y%euler.m
%John Sy

clc; close all; clear all;

%Part la

k 2/3);

h = 0.01; %time step
myeuler(1) = 10;
timestepsl = 5/h;

for t = [2:1:timestepsl+l]
myeuler(t) = myeuler(t-1) - h*k*myeuler(t-1);
end

timevectl = [0:h:5];

figure;

plot(timevectl,myeuler)

title("Figure 5: h = 0.01 implementation of the Euler algorithm®)

anasolnl = myeuler(1)*exp(-(2/3)*timevectl);
mse2la = mse(anasolnl - myeuler)

%Part 1b

k = (2/3);

h2 = 0.001; %time step
myeuler1l(l) = 10;
timesteps2 = 5/h2;

for t = [2:1:timesteps2+1]
myeulerl(t) = myeulerl(t-1) - h2*k*myeulerl(t-1);
end

timevect2 = [0 : h2 : 5];

figure;

plot(timevect2,myeulerl)

title("Figure 6: h = 0.001 implementation of the Euler algorithm®)

anasoln2 = myeulerl(1)*exp(-(2/3)*timevect2);
mse21lb = mse(anasoln2 - myeulerl)
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%Assignemnt 1 Question 2 Part 2
%eulerSDE.m
%John Sy

WPart 2
clc; close all;

k = (2/3);

h3 = 0.01;
mystoeul (1) = 10;
sig = 0.2;
timesteps3 = 5/h3;

for t = [2:1:timesteps3+1];
mystoeul (t) = mystoeul (t-1) - h3*k*mystoeul (t-1) + sig*sqrt(h3)*randn;
end

timevect3 = [0:h3:5];

figure;

plot(timevect3,mystoeul)

title("Figure 7: h = 0.01 Stochastic Implementation of Euler®)

%Part 2b

storevals = zeros(15,5/h3); %create array
mystoeull(1l) = 10;
storevals(:,1) = mystoeull(l);

figure;
for n = 1:1:15
for t = [2:1:timesteps3+1];
mystoeull(t) = mystoeull(t-1) - h3*k*mystoeull(t-1) + sig*sqrt(h3)*randn;
storevals(n,t) = mystoeull(t); %store values into array
end
hold on;
plot(timevect3,storevals(n,:))
end
title("Figure 8: h = 0.01 15 Repetitions of SDE with Average~)

for i = 1:1:timesteps3+1
meanvals(i) = mean(storevals(:,i)); %averages values
end

plot(timevect3,meanvals, "red", "LineWidth",2)
hold off;

%Part 2c - for time values greater than 5

k = (2/3);

step = 0.01;

mysto(l) = O;

sig = 0.1;

timeval = 100;

tstep = timeval/step;
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for t = [2:1:tstep+l];
mysto(t) = mysto(t-1) - step*k*mysto(t-1) + sig*sqrt(step)*randn;
end

tvect = [O:step:timeval];

figure;

subplot(1,2,1), plot(tvect,mysto)

title("Figure 9a: sig=0.1 w/ x0=0, t=100, Noise~)
subplot(1,2,2), hist(mysto,40)

title("Figure 10a: Histogram of sig = 0.1, t = 100%)

mean02 = mean(mysto)
std02 = std(mysto)

sig2 = 5;
mystol(1l) = O;
for t = [2:1:tstep+l];
mystol(t) = mystol(t-1) - step*k*mystol(t-1) + sig2*sqrt(step)*randn;
end

tvect = [O:step:timeval];

figure;

subplot(1,2,1), plot(tvect,mystol)
title("Figure 11: sig=5 w/ x0=0, Noise")
subplot(1,2,2), hist(mystol,b40)
title("Figure 12: Histogram of sig = 5%)

mean5 = mean(mystol)
std5 = std(mystol)
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