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John Sy 
5 November 2007 

 
Modelling in Biology 

 
Assignment 1 

 
Question 1:  Simple numerics on the single exponential 
 
Part 1 
 
We first define a function, func as follows: 
 
function xprime = func(t,x) 
xprime = -(2/3)*x; 
 
Then we can implement Runge-Kutta function (ode45) to integrate the function numerically: 
 
time = [0 5]; 
x0=10; 
[T,Y] = ode45(@func, time, x0); 
plot(T,Y); 
 
The analytical solution can also be derived from integrating the equation: 
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Using the same time points derived from numerical integration with ode45, we can solve for 
corresponding values of x and compare the result of the Runge-Kutta method with the 
analytical solution. 
 
Z = x0*exp(-(2/3)*T); 
plot(T,Y,T,Z,'o') 
title('ode45 solution for simple ODE') 
 
Plotting both the analytical solution and the numerical solution on the same plot gives us an 
idea of how good the numerical integrator utilized by Matlab really is.  The analytical 
solution is represented by circles while the numerical solution is represented by the solid line.  
As can be seen, the Runge-Kutta 4th order method of numerical integration gives satisfactory 
results with a cursory inspection. 
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Figure 1: ode45 Solution for Simple ODE

 
 

To obtain a more quantitative value of the error, we can calculate the mean squared error 
between the analytical solution and the numerical solution.  Matlab’s mse function enables a 
quick and easy way to do this: 
 
msetest = mse(Z-Y) 
 
Resulting in the mean squared error of 3.1489e-011 between the analytical and numerical 
solution (provided by ode45).   
 
Part 2 
 
To analyze more carefully the way in which ode45 solves differential equations, we can first 
look at the difference in time points.  As is seen in the figure above, the spacing between time 
points is not equal, but becomes clustered towards the end.   
 

As is seen in figure 2, the solver begins 
with time points which are close 
together, then switches to time points 
further apart in the middle of the range, 
and lastly, the time points become 
closer together again.  From this plot, 
we can deduce that the solver takes 
more time points at the beginning and 
towards the end of the function since it 
cannot rely on points beyond the limit 
set by the user.  The Runge-Kutta 
method takes into account several 
points around the point it wants to 
integrate, and because of limitations of 

projections before the range and after the range, it must take smaller time points.  By doing 
this, the solver saves computational time as well. 
 
If we want equally spaced time points, we can also force the ode45 solver to take specific 
time points: 
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Figure 2: Time Spacing User by ode45 Solver
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t=[0:0.01:5]; 
[T1,Y1] = ode45(@func, t, x0); 
Z1 = x0*exp(-(2/3)*T1); 
figure; 
plot(T1,Y1,T1,Z1,'o') 
title('Figure 3: ode45 with Given Time Steps') 
 
Plotting the analytical solution as circles again superimposed on the numerical solution (line), 
we obtain: 

 
Again, there is no noticeable difference 
between the analytical and numerical 
solution, but we should calculate the mean 
squared error to determine a quantitative 
value for the error. 
 
Using the mean squared error function as 
before yields an error of 3.4371e-011.  
Although we used fixed time points, there 
is actually a slightly greater error than with 
non-fixed time points, suggesting that the 
Runge-Kutta function corrects for time 
steps that would yield a higher error. 

 
To investigate further into the mechanism of the Runge-Kutta method, we can look at the 
differences between two adjacent points.  For each point, we can also calculate the percentage 
change to the next point using the numerical solution we obtained with fixed time points.   
 
t2c=[0.01:0.01:5]; 
diffmat = diff(Y1); 
foo = diffmat./Y1(1:length(Y1)-1); 
figure; 
plot(t2c,foo) 
title('Figure 4: (x(t+0.01)-x(t))/x(t) plot vs. time') 

 
This results in an interesting plot 
(figure 4).  The solver seems to 
oscillate.  But if we look at a longer 
time period, we see something quite 
remarkable, that as you increase the 
time, the oscillations become 
unpredictable (figure 4b). 
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Figure 3: ode45 with Given Time Steps
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If the time is increased even further (say 
t = 80), we get even more unpredictable 
behavior with the value reaching up to 
80.  Looking at the function that we are 
plotting carefully, one can see that it is 
similar to the definition of the derivative, 
and it indeed the derivative of the phase 
plane multiplied by the time step, h.  
Since we are plotting a linear differential 
equation in the form kxx =&  , the limit of 

the value at small time, t, is just 
h
k .  In 

fact this is what we see in the above equation with the graph approaching -6.67e-3 at small 
values of time.  However, since we are doing numerical calculations and not analytical 
calculations, there are inherent round-off errors that tend to become multiplied over time.  
These round-off errors become increasingly important as the value of x becomes small since 
it represents a larger proportion of the function.   Matlab compensates for this, which results 
in the oscillations seen in figure 4.  As the error increases and subsequently the oscillations 
increase, Matlab takes greater steps to correct and overcompensates leading to large 
fluctuations seen at higher time values. 
 
Question 2:  Euler Method Implementation 
 
The Euler method provides a simple way of generating a numerical solution to differential 
equations and is based on the definition of a derivative.  Implementing this will allow us to 
compare between the Runge-Kutta method that Matlab selects and this more rudimentary 
method of numerical integration. 
 

( ) ( ) ( )[ ]tkxhtxhtx −+=+  
 

In Matlab this is implemented as such: 
 
k = (2/3); 
h = 0.01; %time step 
myeuler(1) = 10; 
timesteps1 = 5/h; 
  
for t = [2:1:timesteps1+1] 
    myeuler(t) = myeuler(t-1) - h*k*myeuler(t-1); 
end 
  
timevect1 = [0:h:5]; 
figure; 
plot(timevect1,myeuler) 
title('Figure 5: h = 0.01 implementation of the Euler algorithm') 
 
Calculating the mean squared error gives us an error of 8.0358e-005.  This is 6 orders of 
magnitude larger than the Runge-Kutta method.  
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A more easy comparison comes when 
we try using h = 0.001 as our time step 
and repeating the calculation of the 
Euler algorithm (Figure 6). 
 
 
Although there is no visible difference 
between the two plots (Figures 5 and 6) 
using ten times more points, we can 
calculate the mean squared error again 
to determine a quantitative value.  The 
calculated mean square error is 
8.0183e-007, which is 2 orders of 
magnitude smaller than using h = 0.01.  
This is surprising as one would expect 
that with an order of magnitude more 
time points, there would be a 
corresponding order of magnitude 
decrease in error.   
 
In figure 6a, we can see that although 
the error is much higher than the 
Runge-Kutta method, our Euler 
method does pretty well for a first 
approximation. 

 
 
 
 
 
 
 
 
 
 
 
Part 2 
 
To simulate noise in the environment, we can include a stochastic term in our differential 
equation where σ represents the amplitude of the random noise process dW .   
 

dWkxdtdx σ+−=  
 
In Matlab, we can use the rand function to generate random numbers and the stochastic 
differential equation can be solved also using the Euler algorithm in an adaptation to the code 
presented in the previous section. 
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Figure 5: h = 0.01 implementation of the Euler algorithm
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Figure 6: h = 0.001 implementation of the Euler algorithm
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Figure 6a: Euler Solution vs. Analytical Solution
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k = (2/3); 
h3 = 0.01; 
mystoeul(1) = 10; 
sig = 0.2; 
timesteps3 = 5/h3; 
  
for t = [2:1:timesteps3+1]; 
    mystoeul(t) = mystoeul(t-1) - h3*k*mystoeul(t-1) + sig*sqrt(h3)*randn; 
end 
  
timevect3 = [0:h3:5]; 
figure; 
plot(timevect3,mystoeul) 
title('Figure 7: h = 0.01 Stochastic Implementation of Euler') 

 
With each run of the program, the 
stochastic implementation generates a 
new graph and reflects the 
unpredictable nature of stochastic 
differential equations.  One would 
expect that the average of an infinite 
number of runs of the algorithm will 
result in the deterministic solution.  
This exact method is used in image 
processing to reduce the noise level in 
an image by averaging many 
photographs of the same thing.   
 
 

If we plot 15 runs of the solution to the SDE and take an average (Figure 8), we can see that 
the average (red line) approaches the deterministic solution. 
 
storevals = zeros(15,5/h3); 
mystoeul1(1) = 10; 
storevals(:,1) = mystoeul1(1); 
  
figure; 
for n = 1:1:15 
    for t = [2:1:timesteps3+1]; 
        mystoeul1(t) = mystoeul1(t-1) - h3*k*mystoeul1(t-1) + 
sig*sqrt(h3)*randn; 
        storevals(n,t) = mystoeul1(t); 
    end 
end 
  
for n = 1:1:15 
    hold on; 
    plot(timevect3,storevals(n,:)) 
end 
title('Figure 8: h = 0.01 15 Repetitions of SDE with Average') 
  
for i = 1:1:timesteps3+1 
    sumvals(i) = sum(storevals(:,i)); %sums values 
end 
  
avgvals = sumvals./15; %calculates the average values 
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Figure 7: h = 0.01 Stochastic Implementation of Euler
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plot(timevect3,avgvals,'red','LineWidth',2) 
hold off; 
 
One interesting thing to note about Figure 8 is that there seems to be less noise at the 
beginning when x is large.  This is in part due to accumulation of noise throughout the run as 
x(t+h) value is dependent upon x(t).  The actual noise itself is generated from a Gaussian 
distribution (if using randn) or from a uniform distribution (if using rand).   
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
To get a more accurate picture of what is happening with the noise, we can effectively just 
plot the noise over time and generate a histogram of values.  We can also calculate the mean 
and the standard deviation of the noise generated by the function randn.    
 
k = (2/3); 
step = 0.01; 
mysto(1) = 0; 
sig = 0.1; 
timeval = 10; 
tstep = timeval/step; 
  
for t = [2:1:tstep+1]; 
    mysto(t) = mysto(t-1) - step*k*mysto(t-1) + sig*sqrt(step)*randn; 
end 
  
tvect = [0:step:timeval]; 
figure; 
subplot(1,2,1), plot(tvect,mysto) 
title('Figure 9: sig=0.1 w/ x0=0, Noise') 
subplot(1,2,2), hist(mysto,40) 
title('Figure 10: Histogram of sig = 0.1') 
  
mean02 = mean(mysto) 
std02 = std(mysto) 
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Figure 8: h = 0.01 15 Repetitions of SDE with Average
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Figure 10: Histogram of sig = 0.1
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Figure 10a: Histogram of sig = 0.1, t = 100

 
Figure 9 shows just the pure noise when sigma is set to 0.1 and the histogram is shown in 
Figure 10.  The mean value of the noise was -0.0119 with standard deviation of 0.0665.  With 
the histogram in Figure 10, it is much easier to see that the mean is still centered around zero 
with standard deviation of approximately 0.1.  Increasing the sampling time in figures 9a and 
10a, the mean remains close to zero (0.0191), but the standard deviation gets closer to 0.1 
(0.0947).  This is yet another method which is used in reducing noise in practical applications 
such as image processing.  The noise is measured for a long period of time to generate the 
mean level and the standard deviation.  This value is then subtracted from the signal value to 
recover the original level of the signal. 
 
When we increase sigma to 5, we obtain the results shown in figures 11 and 12.   
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The mean value for sigma = 5 was -0.4445 and the standard deviation was 4.1589.  Again, 
these results are expected but once again show the unpredictability of a stochastic differential 
equation.  The differences in width of Figure 10 and 12 are related to the difference in 
standard deviation and the sigma value that we used.  Running the noise for an extended 
period of time will result in the normal distribution of values with the given standard 
deviation used.  Since we used 5 for sigma in Figure 12 and only 0.1 for Figure 10, we expect 
the width of Figure 12 to be much larger. 
 
 
Question 3:  Monte Carlo Algorithms 
 
Part 1 
 
1 clear; 
2 i=0; 
3 for N=[100 1000 5e3 1e4 5e4 1e5 5e5]; 
4     i=i+1; 
5     pp=rand(N,2); 
6     P=4*mean((pp(:,1).^2+pp(:,2).^2)<=1); 
7     A(i,:)=[N P]; 
8 end 
 
This program generates N number of random points (line 5) and implements a test in line 6.  
The average value of all the numbers is saved as the variable P and the array A stores all the 
values of P for given values of N (as defined in line 3).  Using the rand function generates 
random numbers from 0 to 1 selected from a uniform distribution so that all values are 
equally likely to show up.  On the other hand, if the function had used randn to generate 
numbers, this selects values from a normal distribution with mean 0 and standard deviation of 
1.   
 
The test that the program implements is taking the sum of the squares of the two numbers 
generated and seeing if it is less than one.  This program is equivalent to making two columns, 
labelling one x and the other y, and seeing if each row satisfies the equation 122 ≤+ yx .  If 
they do, that point is assigned the value 1 and if the condition is not satisfied, then the point is 
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assigned a value 0.  Line 6 of the program takes the average of all the 1’s and 0’s and 
multiplies it by 4. 
 
If we look closely at the equation that is being used to test the two points, we notice that it 
takes the form of a circle.  Indeed, this program is equivalent to generating N number of 
points and seeing whether or not they fall inside a circle of unit radius or not.  As the value of 
N increases, coverage of this circle increases.  However, for the purposes of Matlab, we test 
only ¼ of the circle since we cannot generate negative values using rand.  To correct for this, 
we just multiply by 4 (line 6).  In the limit, as N approaches infinity, then the average taken in 
line 6 approaches the percentage of the quarter of the circle covering a unit square.  The 
fraction covered, ie the probability that it hits inside the circle (and also the area of the sector 
since we are dealing with a circle of unit radius and a unit square) is 4

π .  Multiplying this by 

4 gives the area of the entire circle, π , the limit that P approaches. 
 
The diagram below represents what is happening in the code and what it translates to in real 
terms. 
 
 
 
 
 
 
 
 
 
Part 2 
 
clear; Q=0; Nfinal=1e6; 
for N=1:Nfinal; 
    pp=rand(1,2); 
    Q=Q+(1./(1+pp(1,1).^2)>=pp(1,2)); 
end 
P1=Q/Nfinal 
 
To find the limiting value of P1 in the program above, we can use a similar method to what 
was used in Part 1.  If we look closely at the program, we can see that we are trying to find 

the area under the curve of the equation 21
1
x

y
+

=  in the interval [0,1] by again “throwing 

darts” at the plot and finding the mean of the values of 0s and 1s.  Actual integration of the 
equation will yield the limiting value of arctan(1) which is approximately 0.7854.  The value 
of P1 generated by the function above is 0.7851, which approximates the limiting value very 
well.   
 
clear; Q=0; Nfinal=1e6; 
for N=1:Nfinal; 
    pp=rand(1,2); 
    Q=Q+(pp(1,1)./(1+pp(1,1).^2)>=pp(1,2)); 
end 
P2=Q/Nfinal 
 

Takes ¼ of the 
circle first 
because of the 
limitations on 
rand 

Multiplying 
by 4 
translates to a 
full circle 
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In the program above, we are looking at integrating the equation 21 x
xy

+
=  in the interval 

[0,1].  The limiting value when integrating the equation is 2ln5.0 , which is approximately 
0.3466.  The value of P2 generated by the function above is 0.3469, which also approximates 
the limiting value very well. 
 
However, there are some limitations to integration by using a Monte Carlo algorithm.  First, 
the method coded above only allows for functions that are defined within the unit box from 0 
to 1.  Otherwise, all the points in the box would satisfy the condition and the final value will 
be 1.  We can correct for this by increasing our box to a suitable size, say 2 x 2 if the f(0) = 
1.5, or we can scale down our function to fit within the range, just remembering to rescale it 
when we report the value of the integration.  If we change the range, we must also multiply 
our final value by the area of our box, since what we are effectively doing in the algorithm is 
sampling the entire box and calculating the percentage of the box which satisfies the 
conditions set about in the function.   
 
Theoretically, this integration method can be extended to n-dimensions, so long as one keeps 
track of the exact calculation that is being done, or else it is easy to misinterpret the results.  
Furthermore, the other limitation is that initial conditions have to be known in order to be 
able to set an appropriate area/volume through which to integrate.  Setting the range too small 
will give an erroneous result, but setting the range too large could be costly in terms of 
computational time.   
 
 
 
 
Question 4:  Normal modes and systems of coupled harmonic (linear) oscillators 
 
Consider the set of differential equations: 
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Upon careful inspection of each, we can determine that these equations represent a system of 
4 masses attached to each other by springs of equal spring constant (k = 1).  Furthermore, we 
can deduce that the motion of mass 1 (as governed by the first equation) is connected to 
masses 2 and 4 and the velocity is related to the length of the “bond” separating them.  Going 
through each equation gives a clearer picture of the system we are trying to model as shown 
below. 
 
 
 
 
 
  
 
 

1 2 

3 4 

k 

k 

k k 
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With the help of Matlab, we can easily integrate our set of differential equations to come up 
with a numerical solution.  We first define a function mydysys to store the equations. 
 
function dx = mydysys(t,x) 
dx = zeros(4,1); 
dx(1) = -(x(1)-x(2)) - (x(1)-x(4)); 
dx(2) = -(x(2)-x(3)) - (x(2)-x(1)); 
dx(3) = -(x(3)-x(4)) - (x(3)-x(2)); 
dx(4) = -(x(4)-x(3)) - (x(4)-x(1)); 
 
And is called by the main program with the given initial conditions: 
 
iniconds = [4 7 -3 -0.4]; 
time = [0 4]; 
[T,X] = ode45(@mydysys,time,iniconds); 
  
figure; 
plot(T,X) 
title('Figure 13: Modelling a Set of Equations') 
 
This results in the plot shown in Figure 13. 
 

 
In the plot, we can see that although the 
four particles begin at different positions, 
they all end up in the same position over 
time.  In fact, the sum of the all four 
coordinates remain the same over time, 
suggesting that the center of mass 
remains constant over time.  With the 
given initial conditions, the masses are 
moved away from their equilibrium value 
and released.  After a given time, they 
return to their square shape having a fixed 
length between them. 
 
 

To get a better idea of what is happening, we can look at the eigenvalues and eigenvectors of 
the set of equations.  We first transform our set of equations into the form Axx =& . 
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Matlab then allows an easy method of getting the eigenvalues and eigenvectors of our 4th 
dimensional problem. 
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Figure 13: Modelling a Set of Equations
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A = [-2 1 0 1;1 -2 1 0;0 1 -2 1;1 0 1 -2]; 
[V,D] = eig(A) 
 
The eigenvectors: 
V =  
 
    0.5000   -0.0000    0.7071   -0.5000 
   -0.5000    0.7071    0.0000   -0.5000 
    0.5000    0.0000   -0.7071   -0.5000 
   -0.5000   -0.7071         0   -0.5000 
 
The corresponding eigenvalues in a diagonalized matrix: 
D = 
 
   -4.0000         0         0         0 
         0   -2.0000         0         0 
         0         0   -2.0000         0 
         0         0         0    0.0000 
 
As is seen, the maximum eigenvalue is 0 and the corresponding eigenvector is [-0.5, -0.5, -
0.5, -0.5].   
 
If we look more to the general solution derived from solving the system of differential 
equations, we may be able to gain a greater insight as to what the eigenvalues and 
eigenvectors mean in terms of the system.  Given our eigenvalues, λ , and our eigenvectors,η , 
the general solution to a linear system of differential equations is displayed below. 
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For our system, this results in the equation below, with the values of c being constants 
depending on the initial values of the system. 
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We can see that as time approaches infinity, we are left with the eigenvector corresponding to 
the eigenvalue of 0.  What that equation tells us is that the position vector for each is constant 
and in the same direction, so all the masses in our system are stable.  If we consider other 
values of t, then we realize that they die off, resulting in the same position given by the 
eigenvector corresponding to the eigenvalue of 0.   
 
We also must remember that we are in the overdamped limit, which will help us to 
understand the other modes corresponding to the other eigenvalues, -2 and -4.  For one of the 
-2 eigenvalues, we see that this corresponds to perturbing masses 1 and 3 or 2 and 4 at the 
same time.  The bond between all the masses will correct for this perturbation and the system 
returns to the position defined by the 0 eigenvalue.  In effect, we are only stretching two 
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bonds out of 4, so this would theoretically require half as much energy to excite, hence half 
the eigenvalue.  The -4 eigenvector corresponds to perturbing 1 and 2 in opposite directions 
as well as 3 and 4 in opposite directions, so this represents the stretching of all the bonds, 
requiring the most amount of energy.   

 
So we can see, that in these types of 
systems, the eigenvalues correspond to 
something similar to vibrational modes 
of the system where 0 represents no 
energy input required and increasingly 
negative values requiring the need for 
more energy to excite that particular 
mode.   
 
In figure 14, we can see that if we sum 
all the coordinates in time, they remain 
constant (7.6), keeping in line with the 
fact that the center of mass remains 
constant at all times.   

 
To have perhaps a better understanding of the system, we can imagine our coordinate system 
in terms of the square upon which our masses lie.  The position of the masses are determined 
by the initial conditions and the eigenvectors will determine the modes of the system.  
Moving in the negative direction would refer to moving counter-clockwise along the square 
coordinate system while moving in the positive direction would refer to moving clockwise 
along the coordinate system.  With the eigenvector relating to eigenvalue of 0, all of the 
masses are moving in the same direction, and thus the entire square is rotating (the 
translational energy level).  With the other eigenvalues and eigenvectors, we are perturbing 
the system and causing extension or compression of the bonds/springs, which requires more 
energy, and thus has a lower eigenvalue than our maximum eigenvalue of 0.   
 
Part 2 
 
We consider a new set of differential equations as shown below. 
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&
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Now, we can see that the first and fourth mass is connected to both another mass and a fixed 
wall, as opposed to two masses in the first problem.  A diagram of the physical system that 
we are trying to model is shown below. 
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Figure 14: Sum of all coordinates through time
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We can again obtain the eigenvalues and eigenvectors of the system of differential equations 
in Matlab. 
 
First, the transformed system in matrix notation: 
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B = [-2 1 0 0;1 -2 1 0;0 1 -2 1;0 0 1 -2]; 
[V1 D1] = eig(B) 
 
The eigenvalues are: 
D1 = 
 
   -3.6180         0         0         0 
         0   -2.6180         0         0 
         0         0   -1.3820         0 
         0         0         0   -0.3820 
 
And the corresponding eigenvectors are: 
V1 = 
 
    0.3717   -0.6015   -0.6015   -0.3717 
   -0.6015    0.3717   -0.3717   -0.6015 
    0.6015    0.3717    0.3717   -0.6015 
   -0.3717   -0.6015    0.6015   -0.3717 
 

Here, the maximum eigenvalue is 
not 0, but is -0.3820.  Since the 
maximum eigenvalue is negative, 
we can assume that any 
perturbation in the system will 
result in the system dying down to 
zero.  And indeed, as shown in 
figure 15, the center of mass 
returns to zero, given the initial 
conditions set in the previous 
example.   
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Figure 15: Modelling a Set of Equations
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Since the entire system is fixed to a wall, it makes sense that the solution of the differential 
equations will result in the system returning to its equilibrium state.  For our first example, 
the center of mass could be translated and the system was not fixed, but for here, the system 
cannot be moved and when perturbed, its motion will return it back to the equilibrium 
position. 
 
If we were to repeat the calculation of summing all of the coordinates, the result will not be 
the same.  The system will begin at a certain point (the sum of the initial conditions), and will 
exponentially decay to zero since the system is fixed and cannot move 
 
 
Question 5:  A Second Order System 
 
We consider the differential equation below. 
 

02

2

=++ y
dt
dy

dt
yd η  

 
We can write this as a system of linear first order differential equations by using the 

substitution, 
dt
dyx =2 .  By definition, 2

2

2 dt
ydx =&  , and if we let yx =1 , this results in the 

system as shown below. 
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ηη&

&

 

 
We can put this into Matlab as a function as shown below. 
 
function dx = seode(t,x) 
n = 0; 
dx = zeros(2,1); 
dx(1) = x(2); 
dx(2) = -n*x(2)-x(1); 
 
And using ode45 to numerically solve the system of equations for three different values of η  
(0, 0.02, and 5) 
 
t = [0 60]; 
iniconds = [2 10]; 
[T,Y] = ode45(@seode, t, iniconds); 
figure; 
plot(T,Y(:,1)) 
hold on; 
[T1,Y1] = ode45(@seode02, t, iniconds); 
plot(T1,Y1(:,1),'red') 
[T2,Y2] = ode45(@seode5, t, iniconds); 
plot(T2,Y2(:,1),'green') 
title('Second Order ODE with various damping coefficients') 
hold off; 
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Results in the following plot (figure 16) 
 
With η = 0, then the solution is purely 
harmonic with no damping.  With η  = 
0.02, you begin to see some damping, 
but as the constant is still small, 
damping remains minimal.  With η  = 
5, we are in the overdamped regime 
and no oscillations occur. 
 
 
To get a better idea of the trajectories 
of the three cases, we can explore the 
results on a phase plane by plotting the 
differential equation itself without having to integrate. 
 
figure; 
subplot(1,3,1), plot(Y(:,1),Y(:,2)) 
title('Phase plane with n = 0') 
subplot(1,3,2), plot(Y1(:,1), Y1(:,2)) 
title('Phase plane with n = 0.02') 
subplot(1,3,3), plot(Y2(:,1), Y2(:,2)) 
title('Phase plane with n = 5') 
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Figure 17a: Phase plane with n = 0
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Figure 17b: Phase plane with n = 0.02
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Figure 17c: Phase plane with n = 5

 
 
In figure 17a, we see that if η  = 0, then we get a circle (closed line) meaning that the solution 
is periodic.  With η  not equal to zero, then we don’t get a closed line solution, and as is seen, 
the solution is no longer periodic and will decay to zero.  We can analyze this system again 
using eigenvalues and eigvectors as we did in question 4, and we might gain some more 
insight into the mechanics of the problem.   
 
We can write the system of equations in the form Axx =&  as shown below. 
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& ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
−−

=
η1
10

 

 

0 10 20 30 40 50 60
-15

-10

-5

0

5

10

15
Figure 16: Second Order ODE with various damping coefficients
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As the eigenvalues and eigenvectors depend on the value of η , we can first test by setting it 
equal to zero.   
 
The eigenvalues are: 
D = 
 
        0 + 1.0000i        0           
        0                  0 - 1.0000i 
 
And the corresponding eigenvectors are: 
V = 
 
   0.7071             0.7071           
        0 + 0.7071i        0 - 0.7071i 
 
The eigenvalues are purely imaginary and thus, the analytical solution to the system of 
equations is a combination of imaginary exponentials (or a combination of sine waves).  If we 
change the value of η  to be 0.02, the underdamped case, then we get the following 
eigenvalues and eigenvectors. 
 
Eigenvalues: 
D = 
 
  -0.0100 + 0.9999i        0           
        0            -0.0100 - 0.9999i 
 
And the corresponding eigenvectors: 
V = 
 
   0.7071             0.7071           
  -0.0071 + 0.7071i  -0.0071 - 0.7071i 
 
Here, we are no long dealing with purely imaginary eigenvalues, and so our solution is a 
combination of both decay and sinusoidal terms, resulting in the oscillations seen in figure 16.  
In the overdamped case where η  = 5, let’s see what happens to the eigenvalues.  Since we are 
not expecting any oscillations, our eigenvalues should be non-imaginary. 
 
Eigenvalues: 
D = 
 
   -0.2087         0 
         0   -4.7913 
 
And the corresponding eigenvectors: 
V = 
 
    0.9789   -0.2043 
   -0.2043    0.9789 
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So, the hypothesis was correct in that in the overdamped case, the imaginary term disappears 
and we are left with exponentials that decay to zero without any oscillations.  Theoretically, 
the switch over value of η  from underdamped to overdamped is when ζ  = 1 (ie the critically 
damped case).  If we recall the general formula for harmonic oscillations and the definition of 
ζ , we can derive at which value of η  the critically damped case will occur. 
 

km
c

kxxcxm

2

0

=

=++

ζ

&&&

 

 

In our case, both m and k are 1 and the c is equal to η .  This leads to the relation 
2
ηζ = .  

Thus, for critical damping to occur (ζ  = 1), then η  must equal 2.  Let us check to see if our 
solution is correct by considering the eigenvalues and eigenvectors of this system. 
 
First the eigenvalues: 
D = 
 
    -1     0 
     0    -1 
 
And the corresponding eigenvectors: 
V = 
 
    0.7071   -0.7071 
   -0.7071    0.7071 
 
Indeed, we see that we no longer get an imaginary eigenvalue meaning that there are no 
oscillations.  To check to see if η  = 2 really is the critical damping point, we can go back to 
first principals of finding eigenvalues.  If we find the determinant of )(IA λ− , where 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−−

=
η1
10

A  and set it equal to zero (step to find the eigenvalues), then we are left with the 

equation 012 =++ηλλ  whose solutions are 
2

42 −±− ηη .  From here, it is easy to see that 

η  = 2 is the point at which the solutions, and thus the eigenvectors, will turn from being non-
imaginary to having an imaginary component.  Thus, this is the value at which one expects 
the system to switch from one behavior to the other.  Figure 18 shows the result of critical 
damping and figure 19 displays the corresponding phase plane. 
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Figure 19: Phase plane with Critical Damping
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%Question 2 - An algorithmic implementation of the Euler Method
%euler.m
%John Sy
 
clc; close all; clear all;
 
%Part 1a
 
k = (2/3);
h = 0.01; %time step
myeuler(1) = 10;
timesteps1 = 5/h;
 
for t = [2:1:timesteps1+1]
    myeuler(t) = myeuler(t-1) - h*k*myeuler(t-1);
end
 
timevect1 = [0:h:5];
figure;
plot(timevect1,myeuler)
title('Figure 5: h = 0.01 implementation of the Euler algorithm')
 
anasoln1 = myeuler(1)*exp(-(2/3)*timevect1);
mse21a = mse(anasoln1 - myeuler)
 
%Part 1b
 
k = (2/3);
h2 = 0.001; %time step
myeuler1(1) = 10;
timesteps2 = 5/h2;
 
for t = [2:1:timesteps2+1]
    myeuler1(t) = myeuler1(t-1) - h2*k*myeuler1(t-1);
end
 
timevect2 = [0 : h2 : 5];
figure;
plot(timevect2,myeuler1)
title('Figure 6: h = 0.001 implementation of the Euler algorithm')
 
anasoln2 = myeuler1(1)*exp(-(2/3)*timevect2);
mse21b = mse(anasoln2 - myeuler1)
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%Assignemnt 1 Question 2 Part 2
%eulerSDE.m
%John Sy
 
%Part 2
 
clc; close all;
 
k = (2/3);
h3 = 0.01;
mystoeul(1) = 10;
sig = 0.2;
timesteps3 = 5/h3;
 
for t = [2:1:timesteps3+1];
    mystoeul(t) = mystoeul(t-1) - h3*k*mystoeul(t-1) + sig*sqrt(h3)*randn;
end
 
timevect3 = [0:h3:5];
figure;
plot(timevect3,mystoeul)
title('Figure 7: h = 0.01 Stochastic Implementation of Euler')
 
%Part 2b
 
storevals = zeros(15,5/h3); %create array
mystoeul1(1) = 10;
storevals(:,1) = mystoeul1(1);
 
figure;
for n = 1:1:15
    for t = [2:1:timesteps3+1];
        mystoeul1(t) = mystoeul1(t-1) - h3*k*mystoeul1(t-1) + sig*sqrt(h3)*randn;
        storevals(n,t) = mystoeul1(t); %store values into array
    end
    hold on;
    plot(timevect3,storevals(n,:))
end
title('Figure 8: h = 0.01 15 Repetitions of SDE with Average')
 
for i = 1:1:timesteps3+1
    meanvals(i) = mean(storevals(:,i)); %averages values
end
 
plot(timevect3,meanvals,'red','LineWidth',2)
hold off;
 
%Part 2c - for time values greater than 5
 
k = (2/3);
step = 0.01;
mysto(1) = 0;
sig = 0.1;
timeval = 100;
tstep = timeval/step;
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for t = [2:1:tstep+1];
    mysto(t) = mysto(t-1) - step*k*mysto(t-1) + sig*sqrt(step)*randn;
end
 
tvect = [0:step:timeval];
figure;
subplot(1,2,1), plot(tvect,mysto)
title('Figure 9a: sig=0.1 w/ x0=0, t=100, Noise')
subplot(1,2,2), hist(mysto,40)
title('Figure 10a: Histogram of sig = 0.1, t = 100')
 
mean02 = mean(mysto)
std02 = std(mysto)
 
sig2 = 5;
mysto1(1) = 0;
for t = [2:1:tstep+1];
    mysto1(t) = mysto1(t-1) - step*k*mysto1(t-1) + sig2*sqrt(step)*randn;
end
 
tvect = [0:step:timeval];
figure;
subplot(1,2,1), plot(tvect,mysto1)
title('Figure 11: sig=5 w/ x0=0, Noise')
subplot(1,2,2), hist(mysto1,40)
title('Figure 12: Histogram of sig = 5')
 
mean5 = mean(mysto1)
std5 = std(mysto1)
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