Evolution-guided optimization of biosynthetic pathways

Srivatsan Raman, Jameson K. Rogers, Noah D. Taylor, and George M. Church

Presented by Gabi Garcia and Ellie Laukaitis

Introduction and motivation

Biosynthetic chemical production has benefits over other synthesis methods.

Can cellular mechanisms be optimized to yield higher concentrations of desired chemicals?

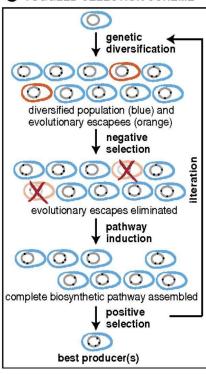
- Mutated genome of E. coli cells and guided through evolution to yield highproducing strains
- Used flux balance analysis (FBA) to identify key genes in the production of naringenin and glucaric acid
- Evaluated success by comparing chemical production titers against those of unmodified cells

Experiment significance

Harnessing evolution to optimize metabolic pathways

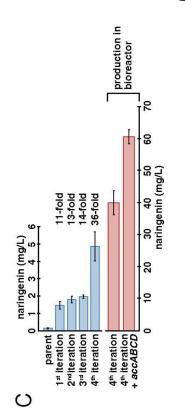
Efficient, high-throughput chemical production

Naringenin


- Pharmacologically useful
- Previous experiments exist against which to measure success

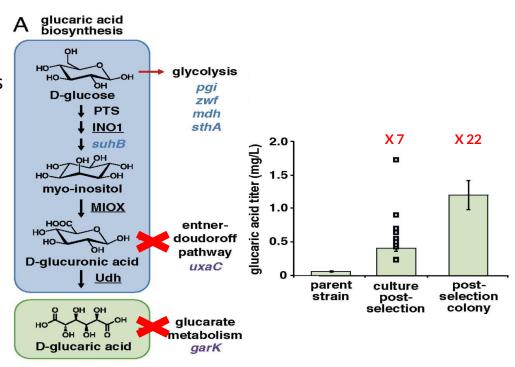
Glucaric acid

- Key chemical in pathways to produce polymers without petroleum
- Unlike naringenin, no previous benchmarks authors could test system on a new pathway


Combatting "evolutionary escape"

C TOGGLED SELECTION SCHEME

- "Cheater cells" survive selection without producing target molecule: mutations that reduce sensor sensitivity
- Leaky selector leads to higher incidence of false positives
- Operational range: chemical inducer range that yields production advantage
- Toggled selection scheme: alternating negative/positive selection using TolC limits escapees without decreasing operational range
- Resulting cell pool contains best producers out of all cells with optimized pathways


Producing naringenin

- Production limited by malonyl-CoA: sought to optimize malonyl-CoA production through glycolysis, fatty acid biosynthesis, and TCA cycle
- MAGE to control gene expression
- Identified and modified seven genes important in regulation; found many nontargeted mutations during later sequencing
- 4th round titer 36 times higher than in parent strain;
 >400 times higher in bioreactor with additional mutation

Producing glucaric acid

- Focused on branch point between glucaric acid synthesis and glycolysis
- Knocked out enzymes responsible for glucaric acid and glucuronic acid catabolism
- Found that strain used for enrichment was not optimized
- E. coli B strain titer was 300 times higher than parent strain versus 22 times in K strain

Srivatsan Raman et al. PNAS 2014;111:17803-17808

Future work

- Use of this type of sensor selectors to interrogate pathways of potentially useful chemicals
- Design of novel transcription factors to detect metabolic targets
- Utilize branch points to optimize different end points of metabolic pathways
- Investigate gene locations of untargeted mutations for further potential optimization
- Patent pending! George Church's lab have numerous patents related to microbe genetic engineering

Critiques for Raman et al.

Concerns we would have as a reviewer

- System may not be modular or widely applicable
- Paper could have been seen as two separate works
- Supplementary info is extremely long, could use some refinement

What we appreciated about this paper

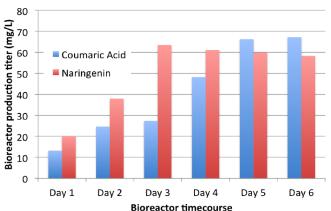
- This paper had a large amount of work involved but it was all clearly documented
- Clear explanations of the experiments that lead them to make certain decisions
- Any possible question about mutations or sequences could be found in the supplementary material

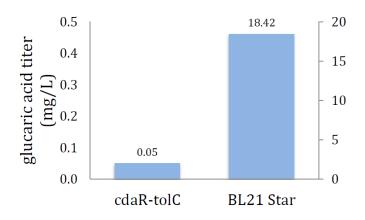
Evolution-guided optimization of biosynthetic pathways

Significance

- Microbes can be engineered to produce industrially significant chemicals
- Microbe metabolism engineering can now balance cell viability and productivity

Goals


 Use a toggle switch and FBA to select for best producers of glucaric acid and naringenin


Experiments

 Target pathway to increase key starting material and limit end product catabolism

Results

 Strains with 36 fold increase in naringenin* production and 22 fold increase of glucaric acid**

^{* 400} fold increase with additional upregulation

^{**300} fold with better suited strain