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Probability, Random

Vectors, and Vector Spaces

1.1 INTRODUCTION

In these notes, we explore a powerful and remarkably broad framework for gener-
ating, modeling, and processing signals characterized by some degree of random-
ness or uncertainty. As we’ll see, this framework will be useful not only concep-
tually, but also practically, allowing us to develop a wide range of efficient algo-
rithms for various kinds of applications. In this first chapter of the course notes,
we develop important foundations for this framework, which we’ll build on in
subsequent chapters.

We build this foundation by combining the tools of probability theory with
concepts from the theory of vector spaces. We assume you’ve had a good deal of
exposure to basic probability concepts in your undergraduate curriculum. And
we assume you’ve also developed considerable experience with Euclidean vector
spaces and the associated tools of linear algebra from your undergraduate curricu-
lum. One role this chapter serves is to collect together and summarize those con-
cepts and techniques from this material that we will exploit extensively through-
out the course. However, the larger and more important purpose of this chapter is
to introduce and develop new ideas that arise from exploiting these ideas jointly.
As an example, we’ll develop the concept of a random vector, and explore some
important ways for characterizing such quantities. And we’ll introduce the no-
tion of abstract (non-Euclidean) vector spaces, which we’ll use in turn, to explore,
e.g., the notion of vector spaces of random variables. Some of these ideas will un-
doubtedly seem quite unusual at first, and will take some time and effort to digest.
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6 Probability, Random Vectors, and Vector Spaces Chap. 1

However, as we’ll see they lead to some powerful geometric perspectives that will
play a key role in the course.

A detailed outline of the chapter is as follows. We begin with a compact sum-
mary of those probability concepts that will be of most use to us. Building on this
foundation, we then introduce random vectors using a vector-matrix notation, and
develop key concepts and properties. Finally, we introduce the concept of abstract
vector space, and develop several important examples of such spaces, including
those involving random variables. The accompanying appendices summarize im-
portant concepts and results from linear algebra and vector calculus that we rely
on in this and future chapters. Additional results from linear algebra and vector
space theory will be developed as we need them in subsequent chapters.

1.2 AXIOMS OF PROBABILITY AND BASIC CONCEPTS

A probability space, (Ω, Pr [·]), for an experiment consists of a sample space Ω =
{ω} containing all the elementary outcomes of the experiment, and a probability
measure Pr [·] which assigns probabilities to subsets of Ω (called events).1 The
measure Pr [·] has the following properties:

0 ≤ Pr [A] ≤ 1 for all valid A ⊂ Ω (1.1)

Pr [Ω] = 1 (1.2)

Pr [A ∪B] = Pr [A] + Pr [B] if A ∩B = ∅. (1.3)

Two of the many consequences of these axioms are

Pr [∅] = 0 (1.4)

and

Pr [A ∪B] = Pr [A] + Pr [B]− Pr [A ∩B] . (1.5)

Finally, (1.5) can be used with induction to establish the union bound: if the
Ai, i = 1, 2, . . . , n are an arbitrary collection of events, then

Pr

[

n
⋃

i=1

Ai

]

≤
n
∑

i=1

Pr [Ai] , (1.6)

where equality in (1.6) holds if and only if the Ai are a collection of mutually exclu-
sive events, i.e., if Ai ∩Aj = ∅ for i 6= j.

1In fact we cannot compute the probability of every subset of Ω. Those that we can we will
term valid subsets. In formal mathematical treatments a probability space is specified in terms
of a sample space, a probability measure, and a collection of valid sets. At our level of treatment,
however, you can assume that any subset we mention or construct—either explicitly or implicitly—
is valid.
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1.2.1 Conditional Probabilities

The conditional probability of event A given event B is defined by

Pr [A | B] =
Pr [A ∩B]

Pr [B]
. (1.7)

Exploiting, in turn, the definition of Pr [B | A] in the numerator of (1.7) yields

Pr [A | B] =
Pr [B | A] Pr [A]

Pr [B]
. (1.8)

A straightforward extention of (1.8) is Bayes’ Rule: let Ai, i = 1, 2, . . . , n be a set of
mutually exclusive events that are also exhaustive, i.e.,

n
⋃

i=1

Ai = Ω;

then for any event B,

Pr [Aj | B] =
Pr [B | Aj] Pr [Aj ]
n
∑

i=1

Pr [B | Ai] Pr [Ai]

. (1.9)

1.2.2 Independence

Two (nontrivial) events are independent if knowledge of one event’s occurrence
provides no information about the other event’s occurrence, i.e., if

Pr [A | B] = Pr [A] . (1.10)

Using (1.7) we see that (1.10) is equivalent to

Pr [A ∩B] = Pr [A] Pr [B] . (1.11)

More generally, a collection of events {A1, A2, . . . , AN} are said to be mutually
independent if for every i we have

Pr [Ai | {Aj, j ∈ J}] = Pr [Ai] , (1.12)

where J is any subset of indices between 1 through N but excluding i. The condi-
tion (1.12) is equivalent to the requirement that for every subset of distinct indices
i1, i2, . . . , iK , drawn from 1, 2, . . . , N and corresponding to some K ≤ N we have

Pr

[

K
⋂

k=1

Aik

]

=
K
∏

k=1

Pr [Aik ] . (1.13)
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For three events A, B, and C to be mutually independent, for example, this means
that we require that all the following hold:

Pr [A ∩B ∩ C] = Pr [A] Pr [B] Pr [C] (1.14)

Pr [A ∩B] = Pr [A] Pr [B] (1.15)

Pr [A ∩ C] = Pr [A] Pr [C] (1.16)

Pr [B ∩ C] = Pr [B] Pr [C] . (1.17)

In particular, (1.14) alone is not sufficient; (1.15)–(1.17) are also required.

1.3 RANDOM VARIABLES

In these notes, we adopt the useful convention of using fonts without serifs for
random variables, and the corresponding fonts with serifs for sample values and
dummy arguments. For example, x , y , z , and Θ will denote random variables, and
x, y, z, and Θ corresponding generic sample values.

Formally, a random variable x is a real-valued function on the sample space
Ω. The probability distribution function for x is defined by

Px(x) = Pr [ω | x(ω) ≤ x] = Pr [x ≤ x] , (1.18)

where the last expression we use for notational convenience. This distribution is a
complete characterization of the random variable. Likewise, the probability density
function (pdf) px(x), which is related to the distribution by

px(x) =
dPx(x)

dx
, (1.19)

is also a complete characterization.2 This follows from the fact that for any valid
A, we can write

Pr [x ∈ A] =

∫

A

px(x) dx. (1.20)

If x takes on particular values with nonzero probability, then Px(x) will con-
tain step-discontinuities and px(x) will contain impulses. For example,

px(x) =
1

2
δ(x + 1) +

1

2
δ(x− 1) (1.21)

is the density of a random variable taking on the values ±1 each with the prob-
ability 1/2. To accommodate the possibility of px(x) having impulses and remain
consistent with (1.18), we write the inverse of (1.19) as

Px(x) =

∫ x+

−∞

px(u) du, (1.22)

2We’ll assume in our treatment that densities always exist for the quantities of interest, at
least in this generalized sense (i.e., allowing impulses). However, it is worth keeping in mind
that there exist random variables whose probability distributions are not differentiable even in a
generalized sense.
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using x+ in the upper limit of (1.22) to indicate that the endpoint x is included in
the interval. Also, since [cf. (1.19)]

px(x0) = lim
δx→0

Pr [x0 < x ≤ x0 + δx]

δx
,

we have the frequently useful approximation valid for suitably small δx:

Pr [x0 < x ≤ x0 + δx] ≈ px(x0) δx. (1.23)

1.3.1 Expectations

Often we are interested in partial characterizations of a random variable in the
form of certain expectations. The expected value of a function g(x) of a random vari-
able is given by

g(x) , E [g(x)] =

∫ +∞

−∞

g(x) px(x) dx. (1.24)

Remember that since z = g(x) is itself a random variable we may also write (1.24)
in the form

E [g(x)] = E [z ] =

∫ +∞

−∞

z pz(z) dz, (1.25)

where pz(z) is the probability density for z = g(x). If g(·) is a one-to-one and
differentiable function, a simple expression for pz(z) can be derived, viz.,

pz(z) =
px (g−1(z))

|g′ (g−1(z))| (1.26)

where g′(·) denotes the first derivative of g(·). If g(·) is not invertible, the more
general method-of-events approach for deriving densities, which we briefly re-
view later in the multivariate case, can be employed to obtain pz(z). In terms of
the ultimate goal of evaluating E [g(x)], whether (1.24) or (1.25) turns out to be
more convenient depends on the problem at hand.

Several expectations that are important partial characterizations of a random
variable are the mean value (or first moment)

E [x ] = x , mx , (1.27)

the mean-squared value (or second moment)

E
[

x2
]

= x2, (1.28)

and the variance (or second central-moment)

E
[

(x −mx )
2
]

= x2 −m2
x , var x , σ2

x , λx . (1.29)

In (1.27)–(1.29) we have introduced a variety of notation that will be convenient to
use in subsequent sections of these notes. The standard deviation is σx , the square
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root of the variance. One important bound provided by these moments is the
Chebyshev inequality

Pr [|x −mx | ≥ ε] ≤ σ2
x

ε2
(1.30)

Observe that (1.30) implies that x is a constant (i.e., Pr [x = α] = 1 for some con-
stant α) if σ2

x = 0. Note that the corresponding “only if” statement follows imme-
diately from (1.29).

The Chebyshev bound is a particularly convenient bound to use in practice
because its calculation involves only the mean and variance of the random vari-
able, i.e., it doesn’t depend on the detailed form of the density. However, for this
same reason the Chebyshev bound is not a particularly tight bound.3

1.3.2 Characteristic Functions

The characteristic function of a random variable is defined as

Mx(jv) = E
[

ejvx
]

=

∫ +∞

−∞

ejvx px(x) dx (1.31)

and, as is apparent from the integral in (1.31), corresponds to the Fourier transform
of the density (to within a minor sign change). As a Fourier transform, we can
recover px(x) from Mx (jv) via the inverse formula

px(x) =
1

2π

∫ +∞

−∞

e−jvx Mx(jv) dv. (1.32)

and hence the characteristic function is an equivalent complete characterization of
a random variable.

Characteristic functions are particularly useful in computing certain expec-
tations involving the random variable. For example, the moments of x can all be
efficiently recovered from Mx (jv) by differentiation, i.e.,

E [xn] =

[

1

jn

dn

dvn
Mx(jv)

]∣

∣

∣

∣

v=0

(1.33)

Observe that (1.33) implies that the characteristic function can be expanded in
terms of the power series

Mx(jv) =
+∞
∑

k=0

E
[

xk
] (jv)k

k!
(1.34)

when all the moments of the form (1.33) exist. This result implies, in turn, that
knowledge of all moments is an equivalent characterization for such random vari-
ables: given these moments we can reconstruct Mx(jv) via (1.34).

3As an aside, an alternative bound that is typically much tighter but which requires access
to more information about the random variable is the Chernoff bound.
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The characteristic function is also frequently useful in deriving the density
of the sum of independent random variables. In particular, if {x1, x2, . . . , xN} is a
set of mutually independent random variables then the characteristic function for
their sum

z = x1 + x2 + · · ·+ xN

is simply given by the product of the characteristic functions of the constituents,
i.e.,

Mz(jv) = E
[

ejvz
]

= E
[

ejv(x1+x2+···+xN )
]

= E
[

ejvx1
]

E
[

ejvx2
]

· · · E
[

ejvxN
]

= Mx1(jv) Mx2(jv) · · · MxN
(jv). (1.35)

Thus, after computing Mz(jv) via (1.35), we can determine pz(z) by the Fourier
transform inverse formula (1.32). Note that inverting (1.35) directly yields, via the
convolution property of Fourier transforms, the familiar result

pz(z) = px1(z) ∗ px2(z) ∗ · · · ∗ pxN
(z), (1.36)

where ∗ denotes the convolution operator.

1.3.3 Discrete Random Variables

Random variables that take on only integer values can be fully developed within
the framework we’ve been describing. In particular, their probability densities
consist entirely of uniformly-spaced impulses with suitable weights. However, to
make manipulation of these quantities less cumbersome, it is sometimes conve-
nient to adopt some special notation for specifically discrete random variables. In
particular, we define the probability mass function (pmf) of an integer-valued ran-
dom variable k as

pk [k] = Pr [k = k] (1.37)

using square brackets to distinguish masses from densities, and to remind us that
the argument is integer-valued. The density can, of course, be derived from the
mass function via

pk(k) =

+∞
∑

i=−∞

pk [k] δ(i− k) (1.38)

and related to the distribution function via

Pk(k) =
k
∑

i=−∞

pk [i]. (1.39)

With this notation, expectations can be expressed in terms of sums rather
than integrals, e.g.,

E [f [k]] =
+∞
∑

k=−∞

f [k] pk [k].
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Furthermore, the characteristic function can be viewed as the discrete-time Fourier
transform (again to within a minor sign change) of the mass function, i.e.,

Mk(jv) = E
[

ejvk
]

=

+∞
∑

k=−∞

ejvkpk [k].

1.4 PAIRS OF RANDOM VARIABLES

We will frequently deal with several random variables, and we will find it conve-
nient to use vector notation in this case. Before we do that, however, let us recall
some complete joint characterizations of a pair of random variables x and y . One
such characterization is the joint distribution function for x and y , which is defined
by

Px ,y(x, y) = Pr [x ≤ x and y ≤ y] . (1.40)

A second complete joint characterization is the joint density of x and y , i.e.,

px ,y(x, y) =
∂2Px ,y(x, y)

∂x ∂y
. (1.41)

If A ⊂ R2 is a valid set, where R2 denotes4 the plane of all pairs (x, y), then

Pr [(x , y) ∈ A] =

∫ ∫

A

px ,y(x, y) dx dy. (1.42)

Evidently, a special case of (1.42) is the inverse to (1.41), i.e.,

Px ,y(x, y) =

∫ x+

−∞

∫ y+

−∞

px,y(u, v) du dv.

Again, from (1.41) we also have the following approximation valid for suitably
small δx and δy:

Pr [x0 < x ≤ x0 + δx and y0 < y ≤ y0 + δy] ≈ px ,y(x0, y0) δx δy. (1.43)

1.4.1 Marginal and Conditional Densities

Recall that the marginal densities of either x or y can be recovered by integrating
out the other variable:

px(x) =

∫ +∞

−∞

px ,y(x, y) dy (1.44)

py (y) =

∫ +∞

−∞

px ,y(x, y) dx. (1.45)

4See the Appendix 1.A for a discussion of such spaces.
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Geometrically, it is useful to visualize marginal densities px(x) and py (y) as (inte-
grated) projections of the joint density px ,y(x, y) onto the x and y axes, respectively,
of the (x, y) plane.

The conditional density for x given that y = y is defined by

px |y(x|y) =
px ,y(x, y)

py (y)
, (1.46)

which, as a function of x and for a particular y = y0, corresponds to a slice into
the plane through the joint density along the y = y0 line that is normalized to have
unit integral. In particular, the denominator in (1.46), i.e., py (y), is precisely this
normalization factor. Note too that since py |x(y|x) is defined analogously, we have,
e.g.,

px |y(x|y) =
py |x(y|x) px(x)

py (y)
.

1.4.2 Independence

A pair of random variables x and y are independent if knowledge of the value of
one does not affect the density of the other, i.e., if

px |y(x|y) = px(x). (1.47)

Using (1.47) with (1.46), we get the equivalent condition for independence

px ,y(x, y) = px(x) py (y). (1.48)

1.4.3 Expectations and Correlation

Expectations also provide partial characterizations for pairs of random variables.
The expected value of a function of x and y is given by

E [f(x , y)] =

∫ +∞

−∞

∫ +∞

−∞

f(x, y) px ,y(x, y) dx dy = f(x , y). (1.49)

Note that (1.49) gives (1.24) as a special case:

E [g(x)] =

∫ +∞

−∞

∫ +∞

−∞

g(x) px ,y(x, y) dx dy =

∫ +∞

−∞

g(x) px(x) dx. (1.50)

On many occasions we will exploit the fact that expectations are linear opera-
tions. For example, for arbitrary constants α and β we have

E [αx + βy ] = αE [x ] + βE [y ] .

This means that in computations we can typically interchange expectations with
summations, integrations, and other linear operations.

In addition to (1.27)–(1.29) for x and their counterparts for y , some additional
expectations that constitute useful partial characterizations of the statistical rela-
tionship between x and y are
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Correlation:

E [xy ] (1.51)

Covariance:

E [(x −mx)(y −my )] = E [xy ]−mxmy

= λxy , cov (x , y) . (1.52)

Note that var x = cov (x , x).

A pair of variables x and y are said to be uncorrelated if λxy = 0, i.e., if

E [xy ] = E [x ]E [y ] .

If random variables x and y are independent, they are also uncorrelated:

E [xy ] =

∫ +∞

−∞

∫ +∞

−∞

xy px ,y(x, y) dx dy

=

∫ +∞

−∞

∫ +∞

−∞

xy px(x)py (y) dx dy

= E [x ] E [y ] .

However, the converse is not true—uncorrelated random variables are generally
not independent. A pair of random variables is said to be orthogonal when

E [xy ] = 0.

For reasons that will become apparent in Section 1.7, we sometimes express this
condition using the notation x ⊥ y .

The correlation coefficient ρxy is a normalized measure of the correlation be-
tween two random variables x and y , and is defined by

ρxy =
λxy

σxσy

. (1.53)

Later in Section 1.7, we will establish that −1 ≤ ρxy ≤ 1, with

ρxy = 0⇔ x and y uncorrelated

ρxy = +1⇔ x is a positive multiple of y plus a constant

ρxy = −1⇔ x is a negative multiple of y plus a constant

(1.54)

We can also define conditional expectations involving x and y . The conditional
expectation of x given y = y, for example, is given by

E [x |y = y] =

∫ +∞

−∞

x px |y(x|y) dx. (1.55)
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Note that E [x |y = y] is a function of y and consequently E [x |y ] can be viewed as
a random variable. Its expectation is then

E [E [x |y ]] =

∫ +∞

−∞

E [x |y = y] py (y) dy

=

∫ +∞

−∞

(
∫ +∞

−∞

x px |y(x|y) dx

)

py (y) dy

=

∫ +∞

−∞

∫ +∞

−∞

x px ,y(x, y) dx dy = E [x ] (1.56)

The identity (1.56), which we’ll use on many occasions in this course, is called the
law of “iterated expectation.”

As a final remark, we point out that the condition

E [x |y ] = E [x ] (1.57)

is equivalent to neither independence nor uncorrelatedness. While it is true that
(1.57) holds if x and y are independent since

E [x |y = y] =

∫ +∞

−∞

x px |y(x|y) dx =

∫ +∞

−∞

x px(x) dx = E [x ] ,

the converse is not true: x and y are not necessarily independent if (1.57) holds.
As a simple counterexample we have the joint density

px ,y(x, y) =
1

3
δ(x, y − 1) +

1

3
δ(x + 1, y) +

1

3
δ(x− 1, y). (1.58)

Likewise, it is true that x and y are uncorrelated if (1.57) holds since, using iterated
expectation, we have

E [xy ] = E [E [xy |y ]] = E [yE [x |y ]] = E [yE [x ]] = E [x ] E [y ] ;

however, the converse is again not true: if x and y are uncorrelated, we cannot
deduce that (1.57) holds. A simple counterexample is the density (1.58) with x and
y interchanged:

px ,y(x, y) =
1

3
δ(x− 1, y) +

1

3
δ(x, y + 1) +

1

3
δ(x, y − 1).
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1.5 RANDOM VECTORS

It is generally more convenient to represent collections of two or more random
variables in terms of a vector of random variables.5 If, for example, we let

x =











x1

x2
...

xN











(1.59)

denote a vector of N random variables, then the joint distribution function can be
expressed in the form

Px(x) = Pr [x1 ≤ x1, x2 ≤ x2, . . . , xN ≤ xN ] . (1.60)

Provided this distribution function is differentiable, the corresponding joint den-
sity function is

px(x) =
∂NPx(x)

∂x1 ∂x2 · · ·∂xN
. (1.61)

Analogous to the scalar case, we have px(x) ≥ 0 and
∫ +∞

−∞

· · ·
∫ +∞

−∞

px(x) dx = 1. (1.62)

The joint density function is a complete characterization of the random vari-
ables that comprise the vector. In particular, for any valid set A ⊂ R

N

Pr [x ∈ A] =

∫

· · ·
∫

A

px(x) dx1 · · · dxN =

∫

A

px(x) dx (1.63)

where the last expression is a notational convenience. Furthermore, we can recon-
struct the original distribution function from the joint density via

Px(x) =

∫ x1+

−∞

∫ x2+

−∞

· · ·
∫ xN+

−∞

px(u) du. (1.64)

Rather than collecting all the random variables of interest into a single vector
x, in many problems it is often more natural and more convenient to divide them
among several random vectors of possibly different sizes.

In the case where we divide our random variables into two random vectors
x ∈ RN and y ∈ RM , we can define the joint distribution

Px,y(x,y) = Pr [x1 ≤ x1, x2 ≤ x2, . . . , xN ≤ xN , y1 ≤ y1, y2 ≤ y2, . . . , yM ≤ yM ]
(1.65)

5Since we use bold face fonts for vectors, random vectors will be denoted using bold face
fonts without serifs, and sample values will be denoted using bold face fonts with serifs. For
example, x, y, z, and Θ will be random vectors, and x, y, z, and Θ will be associated sample
values.
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and the joint density

px,y(x,y) =
∂N+MPx,y(x,y)

∂x1 ∂x2 · · ·∂xN ∂y1 ∂y2 · · ·∂yM
, (1.66)

each of which fully characterizes the statistical relationship among all the elements
of x and y.

In turn, using the joint density (1.66), we can recover marginal densities, e.g.,

px(x) =

∫ +∞

−∞

px,y(x,y) dy. (1.67)

1.5.1 Conditional Densities and Independence

The conditional density for x given y = y is given by

px|y(x|y) =
px,y(x,y)

py(y)
, (1.68)

and hence we have

px,y(x,y) = px|y(x|y) py(y) = py|x(y|x) px(x). (1.69)

Thus, using (1.69) we have, in turn,

px|y(x|y) =
py|x(y|x) px(x)

py(y)
. (1.70)

Two random vectors x and y are independent (meaning that the two cor-
responding collections of random variables are mutually independent of one an-
other) if knowledge of any of the elements of y provides no information about any
of the elements of x (or vice versa), i.e., if

px|y(x|y) = px(x). (1.71)

Analogous to our earlier results, using (1.68) we find that (1.71) is equivalent to
the condition

px,y(x,y) = px(x) py(y). (1.72)

All of these formulas extend to more than two random vectors. For instance,
a collection of K random vectors x1, x2, . . . , xK are mutually independent if for
every i we have

pxi|{xj ,j∈J}(xi | {xj , j ∈ J}) = pxi
(xi), (1.73)

where J is any subset of indices between 1 through K but excluding i. The condi-
tion (1.73) is equivalent to the requirement that

px1,x2,...,xN
(x1,x2, . . . ,xN) =

n
∏

i=1

pxi
(xi). (1.74)
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Note that by integrating out any subset of vectors in (1.74) we obtain lower-order
independence relations among arbitrary subsets of the random vectors as well,
i.e., if I is an arbitrary subset of distinct indices selected from 1 to K, then

p{xi,i∈I}({xi, i ∈ I}) =
∏

i∈I

pxi
(xi). (1.75)

To show that (1.74) implies (1.73) involves a straightforward application of
the definition of conditional probabilities:

pxi|{xj ,j∈J}(xi | {xj , j ∈ J})

=
pxi,{xj ,j∈J}(xi, {xj, j ∈ J})

p{xj ,j∈J}({xj, j ∈ J})

=

∏

k∈{i}∪J
pxk

(xk)
∏

k∈J
pxk

(xk)

= pxi
(xi).

To show the converse—that (1.73) implies (1.74)—requires rewriting the joint
density as the product of conditionals of the form of the left-hand side of (1.73).
As a special case, if x, y and z are three random vectors then their joint density can
be expressed as

px,y,z(x,y, z) = px|y,z(x|y, z) py,z(y, z)

= px|y,z(x|y, z) py|z(y|z) pz(z). (1.76)

Applying (1.73) to each of the right-hand side terms of (1.76), we get that x, y and
z are mutually independent if

px,y,z(x,y, z) = px(x) py(y) pz(z). (1.77)

We emphasize that from integrations of (1.77) we get that mutual indepen-
dence implies pairwise independence, i.e.,

px,y(x,y) = px(x) py(y)

px,z(x, z) = px(x) pz(z)

py,z(y, z) = py(y) pz(z)

However, the converse is not true—pairwise independence alone does not ensure
mutual independence.

Finally, we note that all of the results in this section can be used in the spe-
cial case in which each of the random vectors has only a single element and are,
hence, scalar random variables. As an example, we have that the random variables
{x1, x2, . . . , xN} are mutually independent if and only if

px1,x2,...,xN
(x1, x2, . . . , xN ) = px1(x1) px2(x2) · · · pxN

(xN). (1.78)
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1.5.2 Derived Distributions and Jacobians

Suppose

y =











y1

y2
...

yM











= g(x) =











g1(x)
g2(x)

...
gM(x)











is an M-dimensional random vector obtained as a function of the N-dimensional
random vector x. We can always in principle calculate the distribution for y from
the method of events:

Py(y) = Pr [g1(x) ≤ y1, g2(x) ≤ y2, . . . , gM(x) ≤ yM ]

=

∫

A(y)

px(x) dx (1.79)

where
A(y) = {x | g1(x) ≤ y1, g2(x) ≤ y2, . . . , gM(x) ≤ yM} (1.80)

We can then obtain the density via

py(y) =
∂MPy(y)

∂y1 ∂y2 · · ·∂yM
. (1.81)

If M = N and g(x) is one-to-one, this approach leads to the expression

py(y) =
px (g−1(y))
∣

∣

dg
dx

(g−1(y))
∣

∣

(1.82)

where, as is discussed in Appendix 1.B, dg/dx is the Jacobian matrix correspond-
ing to g and | · | = det(·) denotes the determinant of its matrix argument.

1.5.3 Expectations and Covariance Matrices

The expectation of a scalar-valued function of x is given by

E [f(x)] =

∫ +∞

−∞

f(x) px(x) dx (1.83)

The expectations of vector-valued (or even matrix-valued) functions of x are de-
fined component-wise. For example, if

f(x) =











f1(x)
f2(x)

...
fM(x)











, (1.84)
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then

E [f(x)] =











E [f1(x)]
E [f2(x)]

...
E [fM(x)]











. (1.85)

Some important expectations are:

Mean Vector:
E [x] = mx (1.86)

Correlation Matrix:
E
[

xxT
]

(1.87)

Covariance Matrix:

cov (x, x) = Λxx = E
[

(x−mx)(x−mx)
T
]

= E
[

xxT
]

−mxm
T
x (1.88)

Cross-Covariance Matrix:

cov (x, y) = Λxy = E
[

(x−mx)(y−my)
T
]

= E
[

xyT
]

−mxm
T
y (1.89)

Conditional Mean:

mx|y(y) = mx|y=y = E [x|y = y] =

∫ +∞

−∞

x px|y(x|y) dx (1.90)

Conditional Covariance:

Λx|y(y) = Λx|y=y

=

∫ +∞

−∞

(x− E [x|y = y]) (x− E [x|y = y])T px|y(x|y) dx (1.91)

As before we can think of the conditional statistics mx|y and Λx|y in (1.90)
and (1.91), respectively, as deterministic quantities that are functions of a partic-
ular value y = y. Alternatively, mx|y and Λx|y can be viewed as functions of y

and therefore random variables in their own right. As before, the law of iterated
expectation applies, i.e.,

E [E [x|y]] = E [x] .

For notational convenience, we will often drop one of the subscripts in deal-
ing with the covariance of a random vector x, i.e., we will often write Λx in-
stead of Λxx. In terms of dimensions, note that if x is N-dimensional and y is
M-dimensional, then Λx is N ×N , Λxy is N ×M , and Λyx is M ×N . Furthermore
the (i, j)th and (i, i)th elements of Λx are

[Λx]ij = cov (xi, xj) (1.92)

[Λx]ii = σ2
xi

(1.93)
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while the (i, j)th element of Λxy is

[Λxy]ij = cov (xi, yj) . (1.94)

Furthermore
Λyx = ΛT

xy (1.95)

and Λx is a symmetric matrix, i.e.,

Λx = ΛT
x . (1.96)

The random vectors x and y are uncorrelated if every element of x is uncorre-
lated with every element of y, i.e.,

Λxy = 0 (1.97)

or
E
[

xyT
]

= E [x] [E [y]]T. (1.98)

And we say two random vectors x and y are orthogonal if

E
[

xyT
]

= 0,

i.e., if every element of x is orthogonal to every element of y.

1.5.4 Characteristic Functions of Random Vectors

The characteristic function of a random vector is given by

Mx(jv) = E
[

ejvTx
]

=

∫ +∞

−∞

ejvTxpx(x) dx, (1.99)

and corresponds to the (sign-reversed) N-dimensional Fourier transform of the
joint density. Analogous to the scalar case, when it exists, the characteristic func-
tion corresponds to an alternative complete statistical characterization of the ran-
dom vector, and in particular the inverse formula for reconstructing px(x) from
Mx(jv) is

px(x) =
1

(2π)N

∫ +∞

−∞

e−jvTxMx(jv) dv. (1.100)

Among its uses, all mixed moments of x can be efficiently recovered from the
characteristic function via differentiation; specifically, with K = k1 + k2 + · · ·+ kN ,
we have

E
[

xk1
1 xk2

2 · · · xkN
N

]

=

[

1

jK

∂KMx(jv)

∂vk1
1 ∂vk2

2 · · ·∂vkN
N

]∣

∣

∣

∣

v=0

. (1.101)

In turn, (1.101) implies that Mx(jv) can be expanded in a power series of the form

Mx(jv) =

+∞
∑

k1=0

+∞
∑

k2=0

· · ·
+∞
∑

kN=0

E
[

xk1
1 xk2

2 · · · xkN
N

] (jv1)
k1

k1!

(jv2)
k2

k2!
· · · (jvN )kN

kN !
, (1.102)
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provided all the constituent moments exist. Hence, many classes of random vec-
tors are completely characterized by the complete set of moments of the form
(1.101).

In addition, note that the collection of random variables x1, x2, . . . , xN are mu-
tually independent if and only if

Mx(jv) = Mx1(jv1) Mx2(jv2) · · · MxN
(jvN). (1.103)

To establish the “only if” part, it suffices to note that if the x1, x2, . . . , xN are mutu-
ally independent then

Mx(jv) = E
[

ejvTx
]

= E
[

ej(v1x1+v2x2+···+vN xN )
]

= E
[

ejv1x1
]

E
[

ejv2x2
]

· · · E
[

ejvN xN
]

= Mx1(jv1) Mx2(jv2) · · · MxN
(jvN). (1.104)

To establish the “if” part, we note that if (1.103) holds then by (1.100) and (1.32)
we have

px(x) =
1

(2π)N

∫ +∞

−∞

e−jvTxMx(jv) dv

=
1

(2π)N

∫ +∞

−∞

dv
N
∏

i=1

e−jvixiMxi
(jvi)

=

N
∏

i=1

1

2π

∫ +∞

−∞

e−jvixiMxi
(jvi) dvi

=

N
∏

i=1

pxi
(xi).

Among several implications of (1.103) is the following conceptually useful
alternative condition for mutual independence: the collection of random variables
{x1, x2, . . . , xN} is mutually independent if and only if for all choices of functions
f1(·), f2(·), . . . , fN(·) we have

E [f1(x1) f2(x2) · · · fN(xN)] = E [f1(x1)] E [f2(x2)] · · · E [fN (xN)] . (1.105)

The “only if” part requires a straightforward application of (1.78). To establish the
“if” part, it suffices to choose the fi(xi) = ejvixi and then exploit (1.103).

Finally, by combining (1.103) with the power series expansions (1.102) and
(1.34) we get a related but milder equivalent condition for mutual independence:
the collection of random variables {x1, x2, . . . , xN} is mutually independent if and
only if for every set of nonnegative integers k1, k2, . . . , kN we have

E
[

xk1
1 xk2

2 · · · xkN
N

]

= E
[

xk1
1

]

E
[

xk2
2

]

· · · E
[

x
kN
N

]

. (1.106)
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Properties and Geometry of the Covariance Matrix

Let x and y be random vectors and define z as follows:

z = Ax + By + b (1.107)

where A and B are matrices of appropriate dimensions and b is a deterministic
vector. Then straightforward calculations yield the following:

mz = Amx + Bmy + b (1.108)

Λz = AΛxA
T + AΛxyB

T + BΛyxA
T + BΛyB

T. (1.109)

Note that if x and y are uncorrelated (1.109) simplifies to

Λz = AΛxA
T + BΛyB

T. (1.110)

As a special case, let a be a vector of numbers and consider the scalar random
variable

z = aTx =

N
∑

i=1

aixi. (1.111)

Then from (1.109)
σ2

z = λz = aTΛxa. (1.112)

Since σ2
z must be a non-negative number we see that Λx must be a positive semidef-

inite matrix.6 If Λx is invertible, i.e., if it is positive definite, then σ2
z > 0 for any

vector a 6= 0. However, if Λx is singular, so that Λx is not positive definite, then
there is some vector a 6= 0 so that σ2

z = aTΛxa = 0. Consequently, z in this case is a
known constant and therefore one of the xi equals a constant plus a deterministic
linear combination of the other components of x.

Example 1.1

Let x and y be two scalar random variables, and consider the random vector

w =

[

x

y

]

. (1.113)

Then

Λw =

[

σ2
x λxy

λxy σ2
y

]

=

[

σ2
x ρxyσxσy

ρxyσxσy σ2
y

]

. (1.114)

For Λw to be positive definite, it must be true that the determinant of Λw is positive:

det(Λw) = (1− ρ2
xy)σ

2
xσ

2
y > 0. (1.115)

From this equation we can see that Λw will not be positive definite if and only if the
correlation coefficient ρxy equals ±1. In either of these cases we can conclude that x

must equal a multiple of y plus a constant, i.e., x = cy + d for some constants c and
d. It is straightforward to check that the sign of c is the same as that of ρxy .

6See Appendix 1.A for a discussion of positive definite and semidefinite matrices.
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To develop the geometrical properties of the covariance matrix, suppose x

is an N-dimensional random vector. As discussed in Appendix 1.A, since Λx is
symmetric, there exists an orthogonal matrix P such that if we define

z = Px (1.116)

then
Λz = PΛxP

T = diag(λ1, λ2, . . . , λN) (1.117)

where λ1, λ2, . . . , λN are the eigenvalues of Λx.

The interpretation of this result is very important. Specifically, we see that we
can perform a change of coordinates (1.116) on our random vector so that the com-
ponents of the transformed vector z are uncorrelated. The columns of PT, which
are the eigenvectors of Λx, are the “principal directions” of Λx, i.e., they specify the
linear combinations of x that make up the uncorrelated components of z. More-
over, the eigenvalues of Λx are the variances of the corresponding components of
z.

Example 1.2

Continuing Example 1.1, suppose that

Λw =

[

3/2 1/2
1/2 3/2

]

.

Then the eigenvalues are λ1 = 2 and λ2 = 1, and the corresponding normalized
eigenvectors are

p1 =

[

1/
√

2

1/
√

2

]

p2 =

[

1/
√

2

−1/
√

2

]

.

Hence, we can conclude that the pair of random variables

u =
√

2pT
1 w = x + y

v =
√

2pT
2 w = x − y

are uncorrelated and have variances

var u = var [x + y ] = 2 var

[

x + y√
2

]

= 2λ1 = 4

var v = var [x − y ] = 2 var

[

x − y√
2

]

= 2λ2 = 2.

1.6 GAUSSIAN RANDOM VARIABLES

In this section we define and develop the basic properties of jointly Gaussian or
normal random variables (or, equivalently, Gaussian or normal random vectors).
Gaussian random variables are important for at least two reasons. First, Gaus-
sian random vectors are good models in many physical scenarios. For example,
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1/√2πeσ2

1/√2πσ 2

p  (x)x

mm-σ m+σ x

Figure 1.1. The probability density
function of a scalar Gaussian random
variable.

Gaussian distributions arise in practice when the quantity observed is composed
of a superposition of a large number of small, independent, random contributions.
This behavior is captured by the Central Limit Theorem, which we describe shortly.
Second, jointly Gaussian random variables are highly tractable, having convenient
mathematical properties that greatly simplify a variety of calculations involving,
e.g., linear transformations.

A Gaussian random variable x has a probability density of the form

px(x) =
1√

2πσ2
exp

[

−(x−m)2

2σ2

]

(1.118)

for some parameters m and σ2 > 0. To emphasize the fact that this density is
parametrized by these two numbers, we will use the notation x ∼ N(m, σ2) as
shorthand for “x is Gaussian with mean m and variance σ2” and we will also write

px(x) = N(x; m, σ2) = N(x−m; 0, σ2) =
1

σ
N

(

x−m

σ
; 0, 1

)

. (1.119)

The density (1.118) is the familiar bell-shaped curve depicted in Fig. 1.1. It is
centered at x = m and σx is a measure of its width. In fact, the first and second
(central) moments of x are related to the parameters in the manner one would
expect based on our choice of notation, i.e.,

E [x ] = m (1.120)

var x = σ2. (1.121)

Eqs. (1.120) and (1.121) can be verified by direct computation of the expectation
integrals.

The characteristic function of a Gaussian random variable x is frequently
useful in computations. It takes the form

Mx (jv) = exp

[

jvm− 1

2
v2σ2

]

, (1.122)
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which, again, can be verified by direct computation of the corresponding Fourier
transform (1.31).

As an example application, we can use the characteristic function to establish
that if a and b are arbitrary constants, the random variable z = ax + b is N(am +
b, a2σ2). To verify this, we note that

Mz(jv) = E
[

ejvz
]

= E
[

ejvax
]

ejvb = Mx(jva)ejvb = exp

[

jv(am + b)− 1

2
v2(a2σ2)

]

,

(1.123)
where we have used (1.122) to obtain the last equality in (1.123).

1.6.1 Central Limit Theorem

One fairly general form of the Central Limit Theorem is stated formally as follows.
Let

x1, x2, x3, . . .

be a sequence of mutually independent zero-mean random variables with distri-
butions

Px1(x1), Px2(x2), Px3(x3), . . .

and variances
σ2

1 , σ2
2 , σ2

3, . . . ,

respectively. If for any ǫ > 0 there exists a k (depending on ǫ) sufficiently large that

σi < ǫ Sk for i = 1, 2, . . . , k (1.124)

with

Sk =

√

√

√

√

k
∑

i=1

σ2
i ,

then the distribution function of the normalized sum

zn =
1

Sn

n
∑

i=1

xi (1.125)

converges to the distribution function of a Gaussian random variable with zero-
mean and unit-variance, i.e.,

Pzn(z)→
∫ z

−∞

N(x; 0, 1) dx as n→∞.

A couple of points are worth emphasizing. First, the somewhat exotic con-
straint (1.124) essentially ensures that no one term dominates the sum (1.125).7 In

7To see that this constraint is critical, it suffices to consider the sequence of independent
Bernoulli random variables xi, each of which is ±1/2i with equal probability. Note that this se-
quence does not satisfy (1.124). For this sequence, it is straightforward to verify using (1.36) that
the distribution of the normalized sum (1.125) converges to a uniform rather than Gaussian distri-
bution.
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fact, a simpler special case of this theorem corresponds to the xi being identically-
distributed and having a finite common variance. Second, it is important to em-
phasize that the theorem guarantees convergence in distribution but not in density.
In fact, when the random variables in the sum are discrete, it is impossible to have
convergence in density since arbitrary partial sums will be discrete!

1.6.2 Error Functions

In the context of many engineering applications of Gaussian random variables, we
need to compute the area under the tail of a Gaussian density. In general, there is
no closed-form expression for such quantities. However, the corresponding quan-
tities for normalized Gaussian densities are often available numerically via tables
or computer software packages.

In particular, if x ∼ N(0, 1), then the standard Q-function is defined accord-
ing to Q (α) = Pr [x > α], i.e.,

Q (α) ,
1√
2π

∫ ∞

α

e−x2/2 dx. (1.126)

This function, the area under the tail of the unit Gaussian (normal) density, is
closely related to the so-called “complementary error function” erfc(·) via

Q (α) =
1

2
erfc

(

α√
2

)

. (1.127)

This function is also well-tabulated, and can be evaluated, e.g., using the MAT-
LAB function erfc. In calculations, it is often convenient to exploit the symmetry
property

Q (α) = 1− Q (−α) (1.128)

and the bound
Q (α) ≤ 1

2
e−α2/2 (1.129)

valid for α > 0. A variety of tighter bounds that are useful in a number of applica-
tions can also be developed.

Via a change of variables, the area under tails of other nonnormalized Gaus-
sian densities is readily expressed in terms of the Q-function. For example, if
x ∼ N(m, σ2), then x̃ = (x −m)/σ ∼ N(0, 1), so

Pr [x > α] = Pr

[

x −m

σ
>

α−m

σ

]

= Q

(

α−m

σ

)

.

1.6.3 Gaussian Random Vectors

The notion of a Gaussian random vector is a powerful and important one, and
builds on our notion of a Gaussian random variable. Specifically, an N-dimensional
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random vector

x =











x1

x2
...

xN











is defined to be a Gaussian random vector, or equivalently {x1, x2, . . . , xN} is de-
fined to be a set of jointly Gaussian random variables when for all choices of the
constant vector

a =











a1

a2
...

aN











(1.130)

the scalar y = aTx is a Gaussian random variable.

Gaussian random vectors have several important properties. In what fol-
lows, suppose x is a Gaussian random vector whose mean is mx and whose co-
variance matrix is Λx.

First, all subsets of {x1, x2, . . . , xN} are jointly Gaussian. Deriving this result
simply requires setting some of the ai’s in (1.130) to zero. As a special case of
this result—corresponding to having only one nonzero component in (1.130)—we
have that all the constituents must be individually Gaussian random variables,
i.e.,

xi ∼ N(mi, λii) for i = 1, 2, . . . , N

where
λii = [Λx]ii .

The characteristic function for a Gaussian random vector takes the form

Mx(jv) = exp

[

jvTmx −
1

2
vTΛxv

]

. (1.131)

To prove (1.131), first note that

Mx(jv) = E
[

ejvTx
]

= E
[

ej(v1x1+v2x2+···+vN xN )
]

(1.132)

Now for an arbitrary a let
y = aTx, (1.133)

which from the definition of a Gaussian random vector means that y is a Gaussian
random variable; specifically, y ∼ N(aTmx, a

TΛxa). Then

My (jv) = E
[

ejvy
]

= E
[

ej(va1x1+va2x2+···+vaN xN )
]

(1.134)

Combining (1.132) with (1.134) we obtain

My (jv) = Mx(jva), (1.135)
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while combining (1.134) with (1.122) we obtain

My (jv) = exp

[

j(vaT)mx −
1

2
(vaT)Λx(va)

]

. (1.136)

Finally, equating (1.135) and (1.136), and choosing a = v/v we obtain our desired
result (1.131).

Having derived the characteristic function of a Gaussian random vector, we
now turn our attention to the corresponding density. When |Λx| = det(Λx) > 0
(i.e., the nondegenerate case), the density function for a Gaussian random vector
takes the following form

px(x) =
exp

[

−1
2
(x−mx)

TΛ−1
x (x−mx)

]

(2π)N/2|Λx|1/2
(1.137)

, N(x;mx,Λx)

= |Λx|−1/2N(Λ−1/2
x (x−mx); 0, I) (1.138)

where Λ−1
x is the inverse matrix associated with Λx, and where Λ1/2

x is the positive
definite square root matrix of Λx, i.e., as discussed in Appendix 1.A, the (unique)
matrix satisfying8

Λ1/2
x =

[

Λ1/2
x

]T

> 0 (1.139a)

Λ1/2
x Λ1/2

x = Λx. (1.139b)

The density (1.137) can be obtained via direct computation of the inverse
Fourier transform of (1.131); a derivation is as follows. First, observe that

px(x) =
1

(2π)N

∫ +∞

−∞

Mx(jv)e−jvTx dv

=
1

(2π)N

∫ +∞

−∞

exp

[

−jvT(x−mx)−
1

2
vTΛxv

]

dv. (1.140)

Then, using the change of variables u = Λ1/2
x v with Λ1/2

x as defined in (1.139), and
noting that the Jacobian of the transformation is, using (1.139b), |du/dv| = |Λ1/2

x | =
|Λx|1/2, we can rewrite (1.140) as

px(x) =
1

(2π)N

∫ +∞

−∞

exp

[

−juTΛ−1/2
x (x−mx)−

1

2
uTu

]

du

|Λx|1/2
,

which when we adopt the convenient notation

x̃ = Λ−1/2
x (x−mx) (1.141)

8We have used Λ−1/2
x to denote the inverse of this square root matrix. Incidently, it is

straightforward to verify that this matrix is also the positive definite square root matrix of Λ−1
x .
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and complete the square in the exponential yields

px(Λ
1/2
x x̃ + mx) =

1

(2π)N |Λx|1/2
exp

[

−1

2
x̃Tx̃

]
∫ +∞

−∞

exp

[

−1

2
(u + jx̃)T(u + jx̃)

]

du

=
1

(2π)N |Λx|1/2
exp

[

−1

2
x̃Tx̃

] N
∏

i=1

√
2π

∫ +∞

−∞

N(ui;−jx̃i; 1) dui

(1.142)

Finally, recognizing that each of the integrals in (1.142) is unity, and replacing x̃
with its definition (1.141) we obtain, after some simple manipulations, our desired
result (1.137).

Other Properties of Gaussian Random Vectors

Several additional important properties of Gaussian random vectors are worth de-
veloping. First, a pair of jointly Gaussian random vectors x and y are independent
if and only if they are uncorrelated. We established the “only if” part for any pair
of random vectors earlier. To establish the “if” part, let

z =

[

x

y

]

(1.143)

so that z ∼ N(mz,Λz), with

mz =

[

mx

my

]

(1.144)

Λz =

[

Λx Λxy

Λyx Λy

]

. (1.145)

Then when x and y are uncorrelated, i.e., when Λxy = 0, we have

detΛz = detΛx detΛy (1.146)

and

Λ−1
z =

[

Λ−1
x 0
0 Λ−1

y

]

. (1.147)

Using the expression (1.137) for the Gaussian density with these results, one can
easily check that in this case

pz(z) = px,y(x,y) = px(x) py(y). (1.148)

Second, linear transformations of Gaussian random vectors always produce
Gaussian random vectors. To see this, let A be an arbitrary m × n matrix and let
y = Ax where x is a Gaussian random vector. Then y is a Gaussian random vector
provided z = bTy is a Gaussian random variable for every b. But z = b̃Tx where
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b̃ = ATb. Hence, since x is a Gaussian random vector, z is indeed a Gaussian
random variable.

Note that as an immediate corollary to the last result we have that x and y

are also jointly Gaussian random vectors. To see this, it suffices to observe that
[

x

y

]

= Âx =

[

I
A

]

x.

Third, for jointly Gaussian random vectors x and y the conditional distribu-
tion for x given y = y is also Gaussian with mean

mx|y(y) = mx + ΛxyΛ
−1
y (y−my) (1.149)

and covariance9

Λx|y(y) = Λx −ΛxyΛ
−1
y ΛT

xy. (1.150)

A particularly straightforward proof of this result will appear later in our dis-
cussion of optimal estimation of random vectors in Chapter 3. Also, note that
consistent with our preceding discussions, if Λxy = 0 then mx|y(y) = mx and
Λx|y(y) = Λx.

Finally, we stress that a Gaussian random vector is completely determined
by its mean and covariance. For example, suppose that x and y are independent
Gaussian random vectors and consider

z = Ax + By + b. (1.151)

Then, since as we’ve shown Gaussianity is preserved under linear operations, we
know that z is Gaussian. Consequently, in order to specify its density completely,
we need only calculate its mean and covariance. As we saw in (1.108) and (1.110),
these computations are also straightforward; we repeat them here for convenience:

mz = Amx + Bmy + b

Λz = AΛxA
T + BΛyB

T.

Since the mean vector and covariance matrix fully parameterize the density
of a collection of jointly Gaussian random variables, this means that all moments
can be expressed as functions of the mean and covariance. Moreover, in the Gaus-
sian case, these moments can be computed extremely efficiently. To see this, let
{x1, x2, . . . , xN} be a set of jointly Gaussian random variables with mean values x̄i

and covariances λij = cov (xi, xj), 1 ≤ i, j ≤ N . In addition, for convenience define

x̃i = xi − x̄i.

Then for any set of integers i1, i2, . . . , iL selected from {1, 2, . . . , N}—with repeti-
tion allowed—it follows that

E [x̃i1 x̃i2 · · · x̃iL] =

{

0 L odd
∑

λj1j2λj3j4 . . . λjL−1jL
L even

(1.152)

9Note from (1.150) that Λx|y(y) is a constant matrix, i.e., independent of the value of y.
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where the summation in (1.152) is over all distinct pairings {j1, j2}, {j3, j4}, . . . ,
{jL−1, jL} of the set of symbols {i1, i2, . . . , iL}. Although we won’t develop it here,
this result may be derived in a relatively straightforward manner using, e.g., a
Taylor series expansion of Mx(jv). As an example application of (1.152) we have

E [x̃i1 x̃i2 x̃i3 x̃i4] = λi1i2λi3i4 + λi1i3λi2i4 + λi1i4λi2i3 (1.153)

so that

E [x̃1x̃2x̃3x̃4] = λ12λ34 + λ13λ24 + λ14λ23 (1.154)

E
[

x̃2
1 x̃2

2

]

= λ11λ22 + 2λ2
12 (1.155)

E
[

x̃4
1

]

= 3λ2
11. (1.156)

As a final remark, we point out that the detailed shape of the contours of
equiprobability for the multidimensional Gaussian density can be directly de-
duced from geometry of the covariance matrix as developed in Section 1.5.4. In
particular, from (1.137) we see that the contours of equiprobability are the N-
dimensional ellipsoids defined by

(x−mx)
TΛ−1

x (x−mx) = constant. (1.157)

From this perspective the transformation (1.116) from x to z corresponds to a gen-
eralized coordinate rotation (i.e., length preserving transformation) such that the
components of z represent the principal or major axes of this ellipsoid, i.e.,

(z1 −mz1)
2

λ1
+

(z2 −mz2)
2

λ2
+ · · ·+ (zN −mzN

)2

λN
= constant.

Note that the λi = var zi describe the proportions of the ellipsoid: they correspond
to (squares of) the relative lengths along the principal axes. Note too that since z

is Gaussian, its components are not only uncorrelated but mutually independent
random variables.

We conclude this section by specializing our results to the case of two-dimensional
Gaussian random vectors, where we let

mx =

[

m1

m2

]

Λx =

[

σ2
1 ρσ1σ2

ρσ1σ2 σ2
2

]

. (1.158)

Here

px(x) =
1

(2π)N/2|Λx|1/2
exp

[

−1

2
(x−mx)

TΛ−1
x (x−mx)

]

(1.159)

=
exp

[

− (x1−m1)2σ2
2−2(x1−m1)(x2−m2)ρσ1σ2+(x2−m2)2σ2

1

2σ2
1σ2

2(1−ρ2)

]

2πσ1σ2(1− ρ2)1/2
(1.160)

Fig. 1.2 depicts the joint density of a pair of Gaussian random variables. In
Fig. 1.3 we have plotted the associated contours of constant values of px(x) which
are the ellipses

(x1 −m1)
2σ2

2 − 2(x1 −m1)(x2 −m2)ρσ1σ2 + (x2 −m2)
2σ2

1 = constant. (1.161)
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Figure 1.2. The two-dimensional
probability density function of a pair
of jointly Gaussian random variables.

m1

m2

z -m11 ′ 

′ z -m22

x2

x1

Figure 1.3. The contours of equiprob-
ability corresponding to the density of
Fig. 1.2.

As indicated in the figure, the components of z define the principal axes of the
ellipses in (1.161), i.e., this equation in the transformed coordinates becomes

(z1 −m′
1)

2

λ1
+

(z2 −m′
2)

2

λ2
= constant

where λ1 and λ2 are the eigenvalues of Λx and where

mz =

[

m′
1

m′
2

]

= Pmx.

The larger |ρ| is, the more eccentric these ellipses become, degenerating to lines
when |ρ| = 1.

1.7 ABSTRACT VECTOR SPACE, AND SPACES OF RANDOM VARIABLES

The notion of a vector space is very powerful, and one that we will exploit on
numerous occasions throughout the course. Clearly, we’ve already used certain



34 Probability, Random Vectors, and Vector Spaces Chap. 1

vector space ideas in preceding sections exploiting results from Appendix 1.A. In
particular, we’ve exploited properties of the Euclidean space RN consisting of N-
dimensional vectors. However, while Euclidean space is an important example
of a vector space, there are in fact many other somewhat more abstract vector
spaces that turn out to be at least as important to us in this course. Although more
abstract, many properties carry over from the Euclidean case, and you will often
be able to rely on the geometric picture and intuition you have developed for this
case.

Most generally, a vector space is a collection of elements or objects satisfy-
ing certain properties. This collection of elements may indeed consist of vectors
x as we usually think of them, or they may be other kinds of objects like whole
sequences x[n] or functions x(t), or even random variables x(ω). To avoid a con-
ceptual bias, we’ll just use the generic notation x for one such element.

For our purposes, vector spaces are special classes of metric spaces—i.e., spaces
in which there is some notion of distance between the various elements in the col-
lection.10 A metric space is described by the pair (S, d(·, ·)) where S is the collection
of elements and d(·, ·) is referred to as the metric. It is a measure of distance be-
tween an arbitrary pair of elements in the set; in particular d(x, y) is the distance
between elements x and y in S.

For a metric to be useful, it must satisfy certain key properties that are con-
sistent with our intuition about what distance is. In particular, we must have, for
any elements x, y, and z in S,

d(x, y) ≥ 0 (1.162)

d(x, y) = 0⇔ x = y (1.163)

d(x, y) = d(y, x) (1.164)

d(x, y) ≤ d(x, z) + d(z, y) (1.165)

The last of these, i.e., (1.165), is referred to as the triangle inequality.

An obvious (but not unique) example of a metric in RN is the usual Euclidean
distance

d(x,y) =

√

√

√

√

N
∑

n=1

(xn − yn)2. (1.166)

where xn and yn are the nth elements of x and y, respectively. You can verify that
(1.166) satisfies (1.162)–(1.165).

The metric spaces we’re usually interested in have additional structure.

First, we want to work with spaces that are complete. While the technical def-
inition is beyond the scope of our treatment here, in essence completeness means

10As a note of caution, our use of the term “vector space” is not universal. Some references
consider the term to be equivalent to the term “linear space.” However, as will become apparent,
we will find it convenient to define vector spaces as linear spaces that are also metric spaces.
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the metric space has no “holes.” An example of a metric space that isn’t complete
is S = (0, 1] ⊂ R with d(x, y) = |x−y|. Note that the sequence of elements xn = 1/n
for n = 1, 2, . . . , are all in the space S, but limn→∞ xn = 0 is not. The sequence xn

is an example of what is called a Cauchy sequence, and for a metric space to be
complete, all such Cauchy sequences must converge to an element of S.

A vector space V is a metric space that is linear. In order to talk about lin-
earity, we’ll need to define addition and scalar multiplication operators for objects
in V. For the cases of interest to us, we’ll be using the usual definitions of these
operators. We say V is a vector space if the following two properties hold:11

x, y ∈ V⇒ x + y ∈ V (1.167)

x ∈ V, α ∈ R⇒ αx ∈ V. (1.168)

There are lots of important examples of vector spaces. First, there is the usual
Euclidean space RN composed of N-dimensional vectors x. There is also the space
of sequences x[n] with finite energy

∞
∑

n=−∞

x2[n] <∞

which is usually denoted ℓ2(Z), and the space of (integrable) functions x(t) with
finite energy

∫ +∞

−∞

x2(t) dt <∞

which is usually denoted L2(R). And there is the space of random variables x(ω)
with finite mean-square

var x = E
[

x2
]

=

∫ +∞

−∞

x2 px(x) dx <∞,

which is usually denoted L2(Ω).12

1.7.1 Linear Subspaces

Subspaces are an important concept associated with vector space. A subspace is a
vector space that lies within another vector space, i.e., a subset W ⊂ V is a subspace

11When the scalar α is restricted to be a real number as (1.168) indicates, the result is referred
to as a real vector space; when it can be a complex number, i.e., α ∈ C, the result is a complex
vector space. Although we will largely focus on the former class in this course to simplify our
development, we remark in advance that we will sometimes need to work with complex vector
spaces. Fortunately, however, there are no significant conceptual differences between the two.

12Incidently, for every probability space, there is an associated vector space of such random
variables.
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if W is itself a vector space.13 As an example if V is the plane R2, then the line

W = {(x, y) ∈ R
2 | y = x}

is a subspace.

1.7.2 Linear Transformations

A linear transformation L(·) is a linear mapping from one vector space V to another
vector space U. This means that the powerful principle of superposition is satisfied,
i.e., if xk for k = 1, 2, . . . , K are each elements of V, and if αk for k = 1, 2, . . . , K are
scalars, then

L(α1x1 + α2x2 + · · ·+ αKxK) = α1y1 + α2y2 + · · ·+ αKyK

where yk = L(xk).

When the vector spaces are the familiar Euclidean spaces, e.g., V = RN and
U = RM , then L(·) is represented by a matrix, i.e.,

y = L(x) = Ax

where A is an M × N-dimensional matrix. Several properties of matrices are de-
veloped in Appendix 1.A.

1.7.3 Linear Independence

A set of elements x1, x2, . . . , xK in a vector space V are said to be linearly indepen-
dent when

α1x1 + α2x2 + · · ·+ αKxK = 0⇔ α1 = α2 = · · · = αK = 0. (1.169)

From (1.169) we see that linear dependency implies that the set of elements is
redundant, i.e., that some of the elements can be expressed as a linear combination
of the others. For example, if (1.169) does not hold, then assuming α1 6= 0 we have

x1 = β2x2 + β3x3 + · · ·+ βKxK

where βk = −αk/α1.

1.7.4 Bases

A basis for V is a linearly independent set of elements in V that span V. A set of
elements x1, x2, . . . , xK is said to span V if any element x ∈ V can be represented
as a linear combination of of the elements in this set, i.e., there exist αk for k =
1, 2, . . . , K such that

x = α1x1 + α2x2 + · · ·+ αKxK .

13Technically, the mathematical notion of a subspace is more general. The definition we
provide is of a specifically linear subspace, which is the only type of interest to us.
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Note that when this set is linearly independent, the αk must be unique.

All bases for a vector space have the same cardinality. This cardinality is
referred to as the dimension of the vector space. As you’ve seen, the Euclidean
space V = RN has dimension N . Hence, these spaces are finite-dimensional.
Other spaces, like the space of finite-energy sequences ℓ2(Z) and the space of finite-
energy functions L2(R) are infinite-dimensional. The space of finite mean-square
random variables L2(Ω) is not only infinite-dimensional, but its dimension is un-
countable (unless the probability space is discrete)! Although infinite-dimensional
spaces are difficult to visualize, much intuition from finite-dimensional Euclidean
space carries over. Furthermore, in many problems involving these vector spaces,
we will often work with finite-dimensional subspaces, for which our geometric
pictures are well-developed.

Let us continue to add more geometric structure to our notion of vector
space.

1.7.5 Normed Vector Spaces

A normed vector space is a special kind of vector space for which the concept of
length is defined for elements of the space. Let us use ‖x‖ to denote the length or
norm of each x ∈ V, so a normed vector space is defined by specifying the pair
(V, ‖ · ‖). In order for a function ‖ · ‖ to make sense as a norm on V it must satisfy
certain properties. In particular, for x ∈ V and α an arbitrary scalar, it must satisfy:

‖x‖ ≥ 0 (1.170)

‖x + y‖ ≤ ‖x‖+ ‖y‖ (1.171)

‖αx‖ = |α|‖x‖ (1.172)

‖x‖ = 0⇔ x = 0 (1.173)

Note that (1.171) is referred to as the triangle inequality for norms.

For normed vector spaces, the following rather natural metric can be defined:
for x and y in V,

d(x, y) = ‖x− y‖. (1.174)

It should be a straightforward exercise to verify that (1.174) satisfies the necessary
properties of a metric, i.e., (1.162)–(1.165). Normed vector spaces that are complete
in the sense we discussed earlier have a special and somewhat arcane name—they
are referred to as Banach spaces.
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As examples, RN , ℓ2(Z), L2(R), and L2(Ω) are all normed vector spaces. The
corresponding norms are defined by, respectively,

‖x‖2 =

N
∑

n=1

x2
n

‖x[·]‖2 =
∑

n

x2[n]

‖x(·)‖2 =

∫

x2(t) dt

‖x(·)‖2 = E
[

x2
]

.

Note however that there are many other norms one can define even for vectors in
RN ; for example,

‖x‖ = max
1≤n≤N

|xn|.

Likewise, for functions x(t), for any positive integer p,

‖x(·)‖ =

(
∫

|x(t)|p dt

)1/p

is a valid norm, and defines a whole family of normed vector spaces Lp(R) param-
eterized by p. We emphasize that to fully specify a normed vector space we need
both a collection of elements and a norm.

Ultimately, we’re interested in normed vector spaces with even more struc-
ture, as we’ll now develop.

1.7.6 Inner Product Spaces

An inner product space is a normed vector space where there is a notion of relative
orientation or “angle” between elements. We use the notation 〈x, y〉 to denote the
inner product between two elements x and y in V. An inner product space is
therefore defined by the pair (V, 〈·, ·〉). An inner product defines the operation
of projection of one element onto another. A valid inner product must satisfy the
following properties14:

〈x + y, z〉 = 〈x, z〉+ 〈y, z〉 (1.175)

〈αx, y〉 = α 〈x, y〉 (1.176)

〈x, y〉 = 〈y, x〉 (1.177)

〈x, x〉 > 0⇔ x 6= 0. (1.178)

14For simplicity, we’ll restrict our attention to real-valued inner products even though many
important examples are complex-valued.
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For each inner product space there is a natural notion of norm. We call this
the induced norm, and it is defined in terms of the inner product as follows:

‖x‖ =
√

〈x, x〉. (1.179)

In turn, from the induced norm we get the associated metric

d(x, y) =
√

〈x− y, x− y〉.

From the inner product and the induced norm, we arrive at a definition of
the angle θ between two elements x, y ∈ V. In particular, we have

cos θ =
〈x, y〉
‖x‖‖y‖ . (1.180)

One enormously useful inequality that applies to inner product spaces is the
Cauchy-Schwarz inequality: for any x and y in V,

| 〈x, y〉 | ≤ ‖x‖‖y‖ (1.181)

A proof is as follows. For any α, we have, from the properties of a norm and
(1.179),

〈x− αy, x− αy〉 = ‖x− αy‖2 ≥ 0. (1.182)

Exploiting (1.175)–(1.178), we can rewrite the left hand side of (1.182) to get

〈x− αy, x− αy〉 = ‖x‖2 − 2α 〈x, y〉+ α2‖y‖2 ≥ 0 (1.183)

Then if we let α = 〈x, y〉 / 〈y, y〉, (1.183) becomes

‖x‖2 − 〈x, y〉2
‖y‖2 ≥ 0 (1.184)

which can be rewritten in the form (1.181). As a final comment, note from (1.182)
and (1.178) that equality in (1.181) holds if and only if x − αy = 0 for an arbitrary
α.

Inner product spaces that are complete also have a special and arcane name—
they are referred to as Hilbert spaces.

As examples, RN , ℓ2(Z), L2(R), and L2(Ω) are also all complete inner product
(i.e., Hilbert) spaces. The corresponding inner products are defined by, respec-
tively,

〈x,y〉 = xTy =
N
∑

n=1

xnyn

〈x[·], y[·]〉 =
∑

n

x[n]y[n]

〈x(·), y(·)〉 =

∫

x(t) y(t) dt

〈x(·), y(·)〉 = E [xy ] .
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Note that the Cauchy-Schwarz inequality for L2(Ω) implies that

(E [xy ])2 ≤ E
[

x2
]

E
[

y 2
]

(1.185)

with equality if and only if x = αy for some α, i.e., if and only if x and y are scaled
versions of the same random variable. Likewise, for the subspace of L2(Ω) con-
sisting of zero-mean, finite-variance random variables, the specialization of (1.185)
yields the following property of the correlation coefficient mentioned earlier in the
chapter:

|ρxy | =
|cov (x , y)|√
var x var y

≤ 1,

again with equality if and only if x = αy for some α.

1.7.7 Orthonormal Bases

With inner product spaces we have enough structure that we can finally talk about
the concept of orthogonality. Specifically, we say that elements x and y in V are
orthogonal, denoted x ⊥ y, when their inner product is zero, i.e.,

x ⊥ y ⇔ 〈x, y〉 = 0. (1.186)

In turn, we can talk about orthogonal complements of a subspace. In particular,
if W ⊂ V is a subspace of V, then its orthogonal complement, denoted W⊥, is
defined as follows:

W⊥ = {x ∈ V : 〈x, y〉 = 0, for all y ∈W}.
Note that V is the direct sum of W and W⊥, which we write as V = W ⊕W⊥. This
means that every x ∈ V can be uniquely expressed as the sum x = u + v where
u ∈W and v ∈W⊥.

A collection of elements

{x1, x2, . . . , xK}
in V (with K possibly infinite) is said to be an orthonormal set if

〈xi, xj〉 = δ[i− j] =

{

1 i = j

0 otherwise
.

If this collection of elements is an orthonormal basis for V (equivalently referred to
as a “complete orthonormal set”), then expansions in this basis are especially easy
to compute. In particular (and consistent with our geometric intuition), if x ∈ V

then we can write

x =
K
∑

k=1

αkxk

where the αk are projections of x onto the basis functions xk, i.e., αk = 〈x, xk〉.
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An important identity that applies to orthonormal bases is Parseval’s relation.
In particular, if {x1, x2, . . . , xK} is an orthonormal basis for V and if x and y are
arbitrary elements of V, then

〈x, y〉 =

K
∑

k=1

αkβk

where αk = 〈x, xk〉 and βk = 〈y, xk〉. A special case of Parseval’s relation that
corresponds to choosing x = y is the Plancherel formula:

‖x‖2 =

K
∑

k=1

|αk|2

where again αk = 〈x, xk〉.
If you are interested in exploring the concept of an abstract vector space in

more detail, a good starting point is, e.g., A. W. Naylor and G. R. Sell, Linear Oper-
ator Theory in Engineering and Science, Springer-Verlag, New York, 1982.

1.A LINEAR ALGEBRA AND EUCLIDEAN VECTOR SPACE

1.A.1 Vectors and Matrices

In this course vectors will be matrices that are specifically columns, and as such
will be denoted by boldface lowercase characters; for example,

x =











x1

x2
...

xn











(1.187)

where x1, x2, . . . , xn are either real or complex numbers. The set of all such n-
dimensional vectors of real numbers is denoted by Rn. The corresponding set of
all n-dimensional vectors of complex numbers is denoted by Cn. The transpose of
a column vector x is the row vector

xT =
[

x1 x2 · · · xn

]

. (1.188)

Vector addition and scalar multiplication are defined componentwise, i.e.,










x1

x2
...

xn











+











y1

y2
...

yn











=











x1 + y1

x2 + y2
...

xn + yn











(1.189)
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and

α











x1

x2
...

xn











=











αx1

αx2
...

αxn











(1.190)

where α is a real or complex number.

A set of vectors x1,x2, . . . ,xr in Rn is linearly independent if15

α1x1 + α2x2 + · · ·+ αrxr = 0 (1.191)

implies that

α1 = α2 = · · · = αr = 0. (1.192)

Otherwise the set of vectors is said to be linearly dependent, and in this case one of
the xi can be written as a linear combination of the others. For example, if α1 6= 0 in
(1.191)

x1 = β2x2 + · · ·+ βrxr (1.193)

with

β2 = −α2/α1, . . . , βr = −αr/α1. (1.194)

In Rn there exist sets of at most n linearly independent vectors. Any such set
{x1,x2, . . . ,xn} forms a basis for Rn. That is, any x ∈ Rn can be written as a linear
combination of x1,x2, . . . ,xn.

Matrices will in general be denoted by boldface uppercase characters. The
element in the ith row and jth column of A will be denoted by aij or, alternatively,
by [A]ij. If A is m× n, i.e., if A has m rows and n columns, then

A =











a11 a12 · · · a1n

a21 a22 · · · a2n
...

...
. . .

...
am1 am2 · · · amn











. (1.195)

The set of all m × n real-valued matrices is denoted Rm×n. As with vectors, we
define matrix addition and scalar multiplication componentwise. If m = n, A is a
square matrix. The transpose of an m× n matrix A is the n×m matrix

AT =











a11 a21 · · · am1

a12 a22 · · · am2
...

...
. . .

...
a1n a2n · · · amn











. (1.196)

15The symbol 0 denotes the matrix or vector of appropriate dimension, all of whose compo-
nents are zero.
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A square matrix is said to be symmetric if AT = A. A diagonal square matrix is one
of the form

A =











µ1 0 · · · 0
0 µ2 · · · 0
...

...
. . .

...
0 0 · · · µn











= diag(µ1, µ2, . . . , µn) (1.197)

where the last expression in (1.197) introduces notation that is sometimes conve-
nient. The identity matrix is defined as

I = diag(1, 1, . . . , 1). (1.198)

On (rare) occasions when there is risk of ambiguity, we will write In to make ex-
plicit the size (i.e., n × n) of the identity matrix. The trace of a square matrix A is
the sum of its diagonal elements:

tr(A) =

n
∑

i=1

aii. (1.199)

Let A be an m × n matrix and B an n × p matrix. Then we can define the
product

C = AB. (1.200)

Here C is an m× p matrix whose elements are given by

cij =

n
∑

k=1

aik bkj . (1.201)

Note the required compatibility condition—the number of columns of A must
equal the number of rows of B for AB to be defined. Note too that BA may
not be defined even if AB is (e.g., let m = 7, n = 4, p = 3). Even if BA is defined
it is generally not the same size as AB. For example, if A is 2 × 4 and B is 4 × 2,
then AB is 2× 2, but BA is 4× 4. If A and B are square and of the same size, then
AB and BA are as well. In general, however, AB 6= BA. Note also that

AI = IA = A (1.202)

(AB)T = BT AT (1.203)

Also, if A ∈ R
m×n and x ∈ R

n, then Ax ∈ R
m. In addition, if both AB and BA are

defined,
tr(AB) = tr(BA). (1.204)

Let x ∈ Rn and y ∈ Rm. Then the dyadic or outer product of x and y is the
n×m matrix

xyT =











x1y1 x1y2 · · · x1ym

x2y1 x2y2 · · · x2ym
...

...
. . .

...
xny1 xny2 · · · xnym











∈ R
n×m. (1.205)
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If n = m we can also define the dot or inner product

xTy =
n
∑

i=1

xiyi = yTx ∈ R (1.206)

Two n-vectors x and y are orthogonal, denoted x ⊥ y, if

xTy = 0. (1.207)

Note that a set of nonzero, mutually orthogonal vectors is linearly independent.
The length or norm of x ∈ Rn is

‖x‖ = (xTx)1/2 =
(

x2
1 + x2

2 + · · ·+ x2
n

)1/2
(1.208)

Note, too, that
‖x‖2 = xTx = tr(xTx) = tr(xxT) (1.209)

On occasion we will find it useful to deal with matrices written in block form,
such as

[

A11 A12

A21 A22

]

(1.210)

where A11 and A12 have the same number of rows, and A11 and A21 have the same
number of columns. The product of two matrices in block form is computed in a
manner analogous to usual matrix multiplication. For example,

[

A11 A12

A21 A22

] [

B11 B12

B21 B22

]

=

[

A11B11 + A12B21 A11B12 + A12B22

A21B11 + A22B21 A21B12 + A22B22

]

(1.211)

where the blocks on the left side of (1.211) must be partitioned in a compatible
fashion, and where the order of multiplication of the various terms on the right-
hand side is important.

1.A.2 Matrix Inverses and Determinants

An n × n matrix A is invertible or nonsingular if there exists another n × n matrix
A−1, called the inverse of A, so that

AA−1 = A−1A = I. (1.212)

If no such matrix exists A is said to be singular or, equivalently, noninvertible.
Consider the set of equations

Ax = y (1.213)

where A is n × n. This equation has a unique solution x for any y if and only if
A is invertible (in which case the solution is A−1y). Consequently, the equation
Ax = 0 has a nonzero solution if and only if A is not invertible.

The determinant of a square matrix A, denoted by |A| or det(A), can be
computed recursively. If A is 1 × 1, then |A| = A. If A is n × n, then we can
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compute |A| by “expanding by minors” using any row or column. For example,
using the ith row,

|A| = ai1Ai1 + ai2Ai2 + · · ·+ ainAin, (1.214)

or, using the jth column,

|A| = a1jA1j + a2jA2j + · · ·+ anjAnj, (1.215)

where the cofactors Aij are given by

Aij = (−1)i+j det(Mij) (1.216)

and where Mij is the (n− 1)× (n− 1) matrix obtained from A by deleting the ith
row and jth column.

As a simple example, we have
∣

∣

∣

∣

a11 a12

a21 a22

∣

∣

∣

∣

= a11a22 − a12a21. (1.217)

As a more complex example we have
∣

∣

∣

∣

∣

∣

∣

∣

2 0 0 3
1 1 0 0
1 1 1 0
5 1 1 9

∣

∣

∣

∣

∣

∣

∣

∣

= 2(−1)1+1

∣

∣

∣

∣

∣

∣

1 0 0
1 1 0
1 1 9

∣

∣

∣

∣

∣

∣

+ 0(−1)1+2

∣

∣

∣

∣

∣

∣

1 0 0
1 1 0
5 1 9

∣

∣

∣

∣

∣

∣

+ 0(−1)1+3

∣

∣

∣

∣

∣

∣

1 1 0
1 1 0
5 1 9

∣

∣

∣

∣

∣

∣

+ 3(−1)1+4

∣

∣

∣

∣

∣

∣

1 1 0
1 1 1
5 1 1

∣

∣

∣

∣

∣

∣

= 2 · 1 · (−1)1+1

∣

∣

∣

∣

1 0
1 9

∣

∣

∣

∣

− 3 · 1 · (−1)1+1

∣

∣

∣

∣

1 1
1 1

∣

∣

∣

∣

− 3 · 1 · (−1)1+2

∣

∣

∣

∣

1 1
5 1

∣

∣

∣

∣

= 2 · 9− 3 · 0 + 3 · (−4) = 6

Several useful properties of determinants are

|AB| = |A||B| (1.218)

|αA| = αn|A| (1.219)

|AT| = |A| (1.220)

|A−1| = 1

|A| (1.221)

The invertibility of a matrix A is equivalent to each of the following state-
ments:

1. |A| 6= 0
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2. All of the columns of A are linearly independent.

3. All of the rows of A are linearly independent.

The inverse of A can be expressed as

A−1 =
1

|A| adjA (1.222)

where [adjA]ij = Aji is referred to as the adjugate or adjoint matrix, with Aij as
defined in (1.216). As a simple example, we have

[

a11 a12

a21 a22

]−1

=
1

a11a22 − a12a21

[

a22 −a12

−a21 a11

]

(1.223)

Some useful properties of inverses are

(AT)−1 = (A−1)T (1.224)

(AB)−1 = B−1A−1 (1.225)

and

A = diag(µ1, µ2, . . . , µn)⇔ A−1 = diag

(

1

µ1
,

1

µ2
, . . . ,

1

µn

)

. (1.226)

A matrix P is said to be orthogonal if

P−1 = PT. (1.227)

If we think of P as consisting of a set of columns, i.e.,

P =
[

x1 x2 · · · xn

]

(1.228)

then, in general,

PTP =











xT
1 x1 xT

1 x2 · · · xT
1 xn

xT
2 x1 xT

2 x2 · · · xT
2 xn

...
...

. . .
...

xT
nx1 xT

nx2
... xT

nxn











. (1.229)

Consequently, we see that P is orthogonal if and only if its columns are orthonormal,
i.e., if xi ⊥ xj for i 6= j, and if ‖xi‖ = 1.

There are also some useful results for block matrices. For example, for a block
diagonal matrix

A = diag(F1,F2, . . . ,Fr)⇔ A−1 = diag(F−1
1 ,F−1

2 , . . . ,F−1
r ). (1.230)

Also, we have the formulas
[

A11 A12

A21 A22

]−1

=

[

(A11 −A12A
−1
22 A21)

−1 −(A11 −A12A
−1
22 A21)

−1A12A
−1
22

−A−1
22 A21(A11 −A12A

−1
22 A21)

−1 A−1
22 + A−1

22 A21(A11 −A12A
−1
22 A21)

−1A12A
−1
22

]

(1.231)
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and

det

[

A11 A12

A21 A22

]

=
∣

∣A11 −A12A
−1
22 A21

∣

∣ |A22| , (1.232)

which are valid if A22 is nonsingular. These formulas can be verified by exploiting
the identity
[

I −A12A
−1
22

0 I

] [

A11 A12

A21 A22

] [

I 0
−A−1

22 A21 I

]

=

[

A11 −A12A
−1
22 A21 0

0 A22

]

. (1.233)

If on the other hand A11 is nonsingular, then as an alternative to (1.231) we
have
[

A11 A12

A21 A22

]−1

=

[

A−1
11 + A−1

11 A12(A22 −A21A
−1
11 A12)

−1A21A
−1
11 −A−1

11 A12(A22 −A21A
−1
11 A12)

−1

−(A22 −A21A
−1
11 A12)

−1A21A
−1
11 (A22 −A21A

−1
11 A12)

−1

]

.

(1.234)

Other useful results are obtained by comparing (1.231) and (1.234). For ex-
ample, equating the upper left blocks in these two expressions yields the useful
identity

(A11 −A12A
−1
22 A21)

−1 = A−1
11 + A−1

11 A12(A22 −A21A
−1
11 A12)

−1A21A
−1
11 . (1.235)

1.A.3 Eigenvalues and Eigenvectors

Let A be an n×n real matrix. A scalar λ is called an eigenvalue of A with associated
nonzero eigenvector x if

Ax = λx. (1.236)

The above equation can be rewritten as

(λI−A)x = 0. (1.237)

Thus λ is an eigenvalue of A if and only if (1.237) has a solution x 6= 0. This will
be the case if and only if λI −A is singular, i.e., if and only if λ is a solution of the
characteristic equation

φA(λ) = |λI−A| = 0. (1.238)

Here φA(λ) is called the characteristic polynomial of A and is of the form

φA(λ) = λn + αn−1λ
n−1 + · · ·+ α1λ + α0 (1.239)

= (λ− λ1) · (λ− λ2) · · · (λ− λn). (1.240)

The λ1, λ2, . . . , λn in (1.240) are the n eigenvalues, which may or may not be dis-
tinct. Some of the λi may in general be complex, in which case they occur in
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complex conjugate pairs. However, if A is symmetric, the λi are always real. Also
note that

|A| = (−1)nφA(0) = (−1)nα0 =

n
∏

i=1

λi (1.241)

so that A is invertible if and only if all of the eigenvalues of A are nonzero. In
addition, one can show that

tr(A) = −αn−1 =

n
∑

i=1

λi. (1.242)

If λi is an eigenvalue of A, then we can determine an associated eigenvector
xi by solving the set of linear equations

Axi = λixi. (1.243)

Note that if xi is an eigenvector, so is αxi for any scalar α. Consequently, we can
always adjust the length of the eigenvectors arbitrarily, and, in particular, we can
normalize them to have unit length. It is also possible to show that each distinct
λi has a linearly independent xi corresponding to it. If, on the other hand, λi has
multiplicity k > 1, i.e., if λi is a kth-order root of φA(λ), then in general there
may be anywhere from 1 to k linearly independent eigenvectors associated with
λi. Note that we can always combine (1.243) for different values of i into one
equation

A
[

x1 x2 · · · xn

]

=
[

x1 x2 · · · xn

]











λ1 0 · · · 0
0 λ2 · · · 0
...

...
. . .

...
0 0 · · · λn











. (1.244)

If A is symmetric, some special properties result. First, eigenvectors corre-
sponding to distinct eigenvalues are not only linearly independent, but orthogonal.
Second, eigenvalues with multiplicity k have a full set of (i.e., k) linearly inde-
pendent eigenvectors, which can also be chosen to be orthogonal to one another.
Hence, symmetric matrices always have a full set of linearly independent eigen-
vectors that can be chosen so as to be orthonormal as well.

In general, an n × n matrix A that has a full set of n linearly independent
eigenvectors x1,x2, . . . ,xn is called diagonalizable. For a diagonalizable matrix, the
matrix of eigenvectors in (1.244), viz.,

[

x1 x2 · · · xn

]

, P−1, (1.245)

is nonsingular. Hence, we can write

PAP−1 = diag(λ1, λ2, . . . , λn). (1.246)

We emphasize that if A is a symmetric matrix we can choose the xi to be orthonor-
mal so that P−1 = PT, further simplifying manipulations. The matrix representa-
tion (1.246) will prove very useful. It is an example of a similarity transformation,
which we briefly describe next.
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1.A.4 Similarity Transformation

Let A be an n × n matrix, and let P be an invertible matrix of the same size. We
can then define a similarity transformation of A as

B = PAP−1. (1.247)

We sometimes say that “B is similar to A”. A similarity transformation can be
interpreted as arising out of a change of coordinates. To see this, suppose

y = Ax (1.248)

and consider the change of coordinates

u = Px (1.249)

v = Py, (1.250)

so that (since x = P−1u) each component of u, for example, is a weighted sum of
components of x and vice versa. Then

v = Bu (1.251)

with B as given in (1.247). Furthermore,

φB(λ) = |λI−B| = |λPP−1 −PAP−1| = |P−1(λI−A)P|
= |P−1||λI−A||P| = |λI−A| = φA(λ)

so the eigenvalues of B and A are the same. Thus by (1.241) and (1.242), A and B
have the same determinant and trace, respectively.

1.A.5 Positive Definite Matrices

A symmetric square matrix A is positive semidefinite, written A ≥ 0, if and only if

xTAx ≥ 0 (1.252)

for all vectors x. This matrix A is positive definite, written A > 0, if and only if

xTAx > 0 for any x 6= 0. (1.253)

It is not difficult to see that a positive semidefinite matrix is positive definite if and
only if it is invertible.

Some basic facts about positive semidefinite matrices are the following:

1. If A ≥ 0 and B ≥ 0, then A + B ≥ 0, since

xT(A + B)x = xTAx + xTBx (1.254)

2. If either A or B in (1.254) is positive definite, then so is A + B. This again
follows from (1.254).
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3. If A > 0, then A−1 > 0, since

xTA−1x = (A−1x)TA(A−1x) > 0 if x 6= 0 (1.255)

4. If Q ≥ 0 then FTQF ≥ 0 for any (not necessarily square) matrix F for which
FTQF is defined. This follows from

xT(FTQF)x = (Fx)TQ(Fx) ≥ 0 (1.256)

5. If Q > 0 and F is invertible, FTQF > 0. This also follows from (1.256).

One test for positive definiteness is Sylvester’s Test. Let

A =











a11 a12 · · · a1n

a12 a22 · · · a2n
...

...
. . .

...
a1n a2n · · · ann











. (1.257)

Then A is positive definite if and only if the determinant of every upper left sub-
matrix of A is positive, i.e.,16

a11 > 0
∣

∣

∣

∣

a11 a12

a12 a22

∣

∣

∣

∣

> 0

∣

∣

∣

∣

∣

∣

a11 a12 a13

a12 a22 a23

a13 a23 a33

∣

∣

∣

∣

∣

∣

> 0

etc.

(1.258)

Let A be symmetric and let P be the orthogonal matrix of eigenvectors so
that [cf. (1.246)]

PAPT = diag(λ1, λ2, . . . , λn) , Λ. (1.259)

Then, letting z = Px, we have

xTAx = xTPT(PAPT)Px = zTΛz = λ1z
2
1 + λ2z

2
2 + · · ·+ λnz2

n (1.260)

From this we can conclude that a symmetric matrix A is positive semidefinite (pos-
itive definite) if and only if all its eigenvalues are nonnegative (positive).

Another characterization of positive semidefinite matrices is in terms of their
square root matrices. In particular, any A ≥ 0 has a square root matrix F such that

A = FTF. (1.261)

16Beware, however—there is no corresponding test for positive semidefiniteness that in-
volves examining upper submatrices for nonnegative determinants. Consider, e.g., the matrix
[

0 0
0 −1

]

which is not positive semidefinite.
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Specifically, from (1.259) we see that we can take

F =
√

ΛP. (1.262)

where √
Λ , diag

(

√

λ1,
√

λ2, . . . ,
√

λn

)

. (1.263)

Note that the F we choose in (1.262) is invertible if and only if A > 0.

In general, the square root matrix as defined in (1.261) is not unique. For
example, let Q be any orthogonal matrix, and let

F̂ = QF (1.264)

Then F̂ is also a valid square root matrix for A, i.e.,

F̂TF̂ = FTQTQF = FTIF = FTF = A. (1.265)

However, choosing Q = PT in (1.264) gives the positive semidefinite square root
matrix

F̂ = PT
√

ΛP. (1.266)

In fact, (1.266) is the unique positive semidefinite square root matrix associated
with A, and hence we will reserve the notation A1/2 for this particular matrix.

As a final important remark, it is often convenient to make use of matrix
inequalities of the form

A ≥ B, (1.267)

which are interpreted in the sense of positive definiteness. In particular, (1.267)
means that A − B ≥ 0, i.e., that the difference matrix A − B is positive semidef-
inite. Similarly, the notation A > B means that A − B is positive definite, and
the notation A < B means that B −A is positive definite. Also, it is occasionally
convenient to use the terminology negative definite to refer to a matrix A satisfying
A < 0, and negative semidefinite to refer to a matrix A satisfying A ≤ 0. Using these
conventions, we have, for example, that A is negative definite whenever −A is
positive definite, etc. A matrix that is neither positive semidefinite nor negative
semidefinite is termed indefinite.

We emphasize that (1.267) does not mean that every entry of A is at least as
big as the corresponding entry of B. However, if we choose, for any j,

[x]i =

{

1 i = j

0 otherwise
,

then the definition of positive semidefiniteness, i.e., (1.252), implies that

[A]jj ≥ 0 for all j. (1.268)

Hence, using (1.268) we can conclude that (1.267) implies, among other relation-
ships, that every diagonal entry of A is not less than the corresponding entry of
B.
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1.A.6 Subspaces

A subset S ⊂ R
n is a subspace if S is closed under vector addition and scalar

multiplication. Examples of subspaces of R2 are17

S1 =

{

[

a
0

]

∣

∣

∣

∣

∣

a ∈ R

}

(1.269)

S2 =

{

[

a
2a

]

∣

∣

∣

∣

∣

a ∈ R

}

(1.270)

The dimension of a subspace equals the maximum number of vectors in S that can
form a linearly independent set.

Let K be any subset of Rn. The orthogonal complement of K in Rn is defined as
follows:

K⊥ = {x ∈ R
n | x ⊥ y for all y ∈ K}. (1.271)

Note that K⊥ is a subspace whether or not K is, since if x1,x2 ∈ K⊥ and y ∈ K,

(x1 + x2)
Ty = xT

1 y + xT
2 y = 0 (1.272)

(αx1)
Ty = αxT

1 y = 0 (1.273)

so x1 + x2 ∈ K⊥ and αx1 ∈ K⊥.

Let d be a single nonzero vector in Rn (so {d} is not a subspace), and consider
{d}⊥. This is a subspace of dimension n− 1. For example, as illustrated in Fig. 1.4,
when n = 2 the set of x such that dTx = 0 is a line through the origin perpendicular
to d. In 3-dimensions this set is a plane through the origin, again perpendicular to
d. Note that the subspace {d}⊥ splits Rn into two half-spaces, one corresponding to
those x for which dTx > 0, the other to dTx < 0.

For additional insights into the concepts and results summarized in this sec-
tion, see, e.g., G. S. Strang, Linear Algebra and its Applications, 3rd ed., Academic
Press, New York, 1988.

1.B VECTOR CALCULUS

Several results from vector calculus, which we briefly summarize here, will prove
useful. First, consider a scalar function of a vector of n real variables

f(x) = f





















x1

x2
...

xn





















= f(x1, x2, . . . , xn). (1.274)

17Here R equals the set of real numbers.
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d

{x :  d x = 0}T
Figure 1.4. An example of a one-
dimensional orthogonal complement
subspace.

Partial derivatives, integrals, etc., can all be defined in a useful manner. For exam-
ple, it is convenient to define a Jacobian row vector, which consists of first partial
derivatives:

df

dx
(x) = ∇xf(x) =

[

∂f
∂x1

(x) ∂f
∂x2

(x) · · · ∂f
∂xn

(x)
]

. (1.275)

It is also convenient to define a Hessian matrix, which consists of second-order
partial derivatives:

d2f

dx2
(x) = ∇2

xf(x) =













∂2f
∂x2

1
(x) ∂2f

∂x1∂x2
(x) · · · ∂2f

∂x1∂xn
(x)

∂2f
∂x2∂x1

(x) ∂2f
∂x2

2
(x) · · · ∂2f

∂x2∂xn
(x)

...
...

. . .
...

∂2f
∂xn∂x1

(x) ∂2f
∂xn∂x2

(x) · · · ∂2f
∂x2

n
(x)













. (1.276)

Note that the Hessian is a symmetric matrix. Furthermore, the Hessian matrix at
x = x0 is positive semidefinite, i.e., d2f/dx2(x0) ≥ 0 whenever x0 corresponds to
a local minimum of f(·). Similarly, if x = x0 is the location of a local maximum of
f(·), then the Hessian satisfies d2f/dx2(x0) ≤ 0 which means that −d2f/dx2(x0) is
positive semidefinite.

Using the notation (1.275) and (1.276) we can conveniently express the mul-
tivariable Taylor’s series expansion as

f(x + δx) = f(x) +
df

dx
(x)δx +

1

2!
(δx)Td2f

dx2
(x)δx + · · · (1.277)

where · · · in (1.277) denotes higher order terms.

Finally, we briefly discuss vector-valued functions f(·). Derivatives, inte-
grals, limits, etc., for functions of this type are defined component-wise, e.g., for a
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vector-valued function with a scalar argument, we have

d

dx
f(x) =











d
dx

f1(x)
d
dx

f2(x)
...

d
dx

fm(x)











. (1.278)

More generally, for a vector-valued function of a vector argument, we define the
Jacobian matrix18

df

dx
(x) = ∇xf(x) =











∂f1

∂x1
(x) ∂f1

∂x2
(x) · · · ∂f1

∂xn
(x)

∂f2

∂x1
(x) ∂f2

∂x2
(x) · · · ∂f2

∂xn
(x)

...
...

. . .
...

∂fm

∂x1
(x) ∂fm

∂x2
(x) · · · ∂fm

∂xn
(x)











. (1.279)

Defining second-order derivatives for vector-valued functions of vector-valued
arguments is possible but generally less useful (because of the need for three-
dimensional matrices). In any case, a multidimensional Taylor series expansion
can be obtained from (1.277) through componentwise operations on f(·), yielding

f(x + δx) = f(x) +
df

dx
(x)δx + · · · (1.280)

where, again, · · · denotes higher order terms.

Some simple (but useful) examples of the calculations described in this sec-
tion are the following:

dx

dx
= I (1.281)

d

dx
Ax = A (1.282)

d

dx
xTAx = xT(A + AT) (1.283)

d2

dx2
xTAx = A + AT. (1.284)

18Note that (1.279) is consistent both with (1.275) when m = 1 and with (1.278) when n = 1.




