Sampling, Nyquist, Discrete Transforms, and all that

-or-What Does This Box Do?

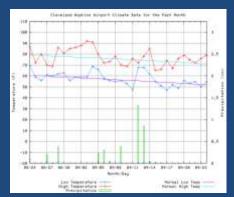
Agenda

- Sampling
 - Aliasing
 - –Quantization noise
- Discrete Fourier Transform
- Lab thoughts
- Questions

Continuous vs. Discrete Time Signals

Continuous (Defined for all values of independent variable)

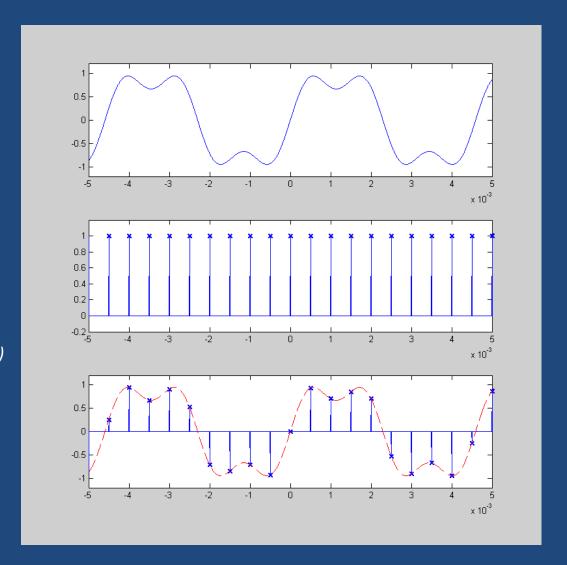
Discrete(Defined for specific values of independent variable)



Sample

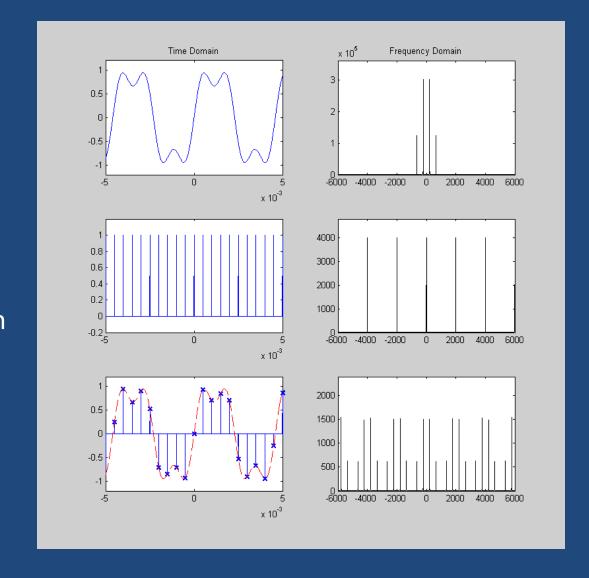
Sampling

- Record the value of a continuous function at regular intervals
 - Sampling period: T
 - Sampling frequency $F_s=1/T$
- Mathematically:
 - Multiply by an impulse train
 - *I(t)=1* for *t=nT*
 - *I(t)=0* otherwise
 - Almost there -- function is continuous, but = 0 outside of sample points
 - Sampled version of v(t), v[n]=v(nT)
- Example function, v(t)
 - F_s=2 kHz
 - Fundamental frequency 217 Hz
 - Note: these signals are periodic and extend to t=±∞
- What does sampling do to the signal?

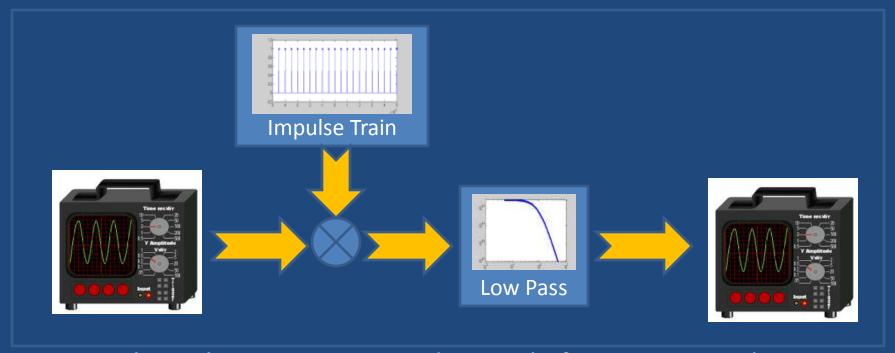


What Happens to the Signal?

- Multiplication by an impulse train causes the spectrum to be repeated at multiple frequencies
 - Convolution and multiplication are dual operations
 - More on this later (next week)
- The Fourier transform of an impulse train in time is an impulse train in frequency
 - Separated by $2\pi/T$
- Note: these signals are periodic and of infinite extent



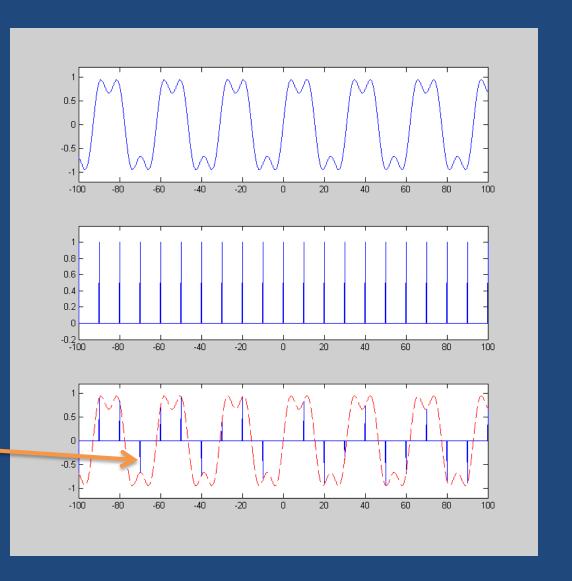
What Do You Lose?



- Signal can be reconstructed exactly from its samples
- How?
 - Run sampled signal through a low pass filter
- No information is lost
 - IF the sampling rate is fast enough

Example: Higher Frequency Waveform

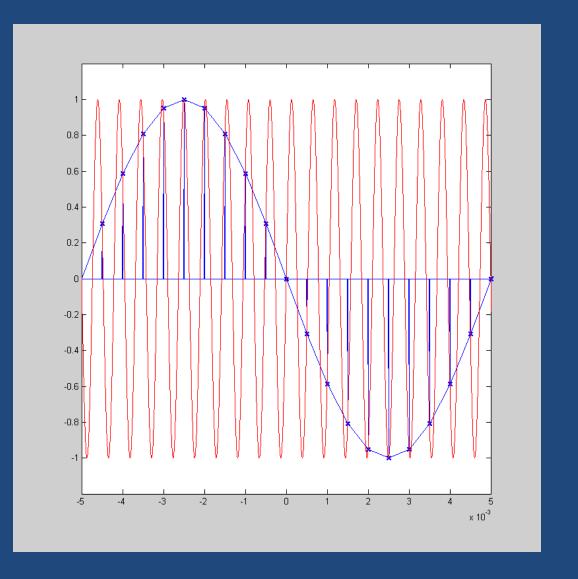
- Fundamental Frequency: 651 Hz
- Third harmonic: 1953Hz
- Seems like there are not enough sample to reconstruct the original signal
 - You can't see the bumps with just one sample here



How Fast is Fast Enough?

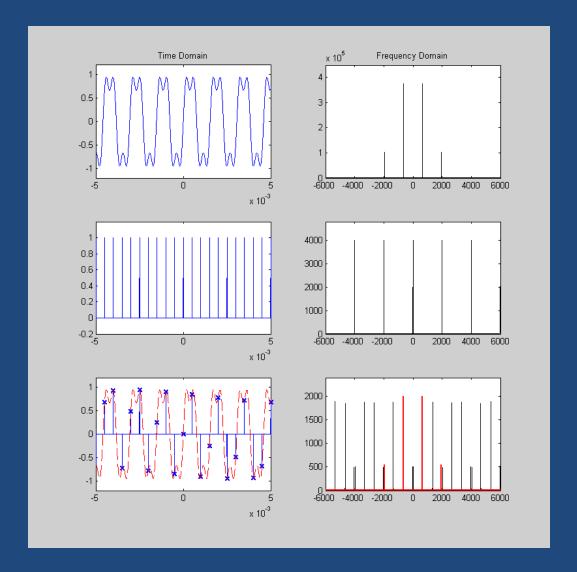
Nyquist frequency

- Signal must be band-limited
- F_s must be greater than 2x the highest frequency
 - At least two samples per cycle
- Otherwise: aliasing
 - In this example,
 1900 Hz
 masquerades as
 100 Hz (F_s = 2 kHz)
- What is aliasing?



What Happened?

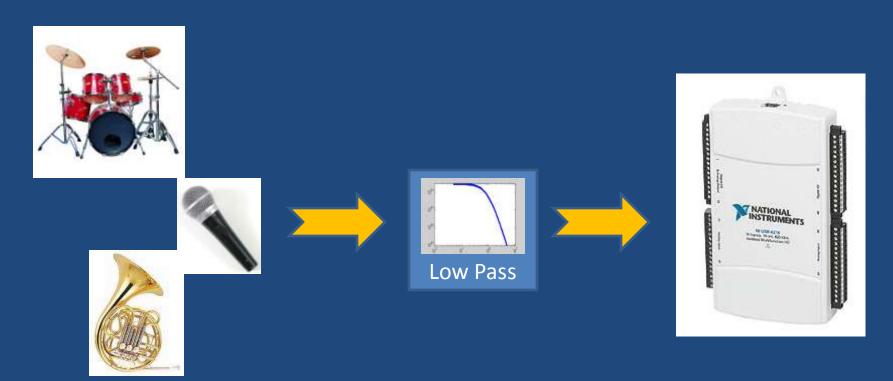
- Repeated instances of the spectrum got tangled up
 - Aliasing
- After the low pass filter, these mixed up frequencies are still present
- Frequency f $(F_s/2 < f < F_s)$ aliases to $F_s - f$
- Frequency f $(F_s < f < 3F_s/2)$ aliases to $f - F_s$
- And so on ...



Aliasing Example: Audio

- Typical digital audio signal is band-limited to around 22 KHz with a low-pass filter and then digitized at a rate of 44.1 KHz
- Example 1: frequency sweep
 - Original waveform: band-limited, sampled at 44.1 KHz
 - Sampled at 22 KHz
 - Sampled at 2.2 KHz
- Example 2: piano notes
 - Original waveform: band-limited, sampled at 44.1 KHz
 - Sampled at 8820 Hz
 - Sampled at 4100 Hz
 - Sampled at 882 Hz
 - Sampled at 441 Hz

Practical Matters: Band-Limited Signals



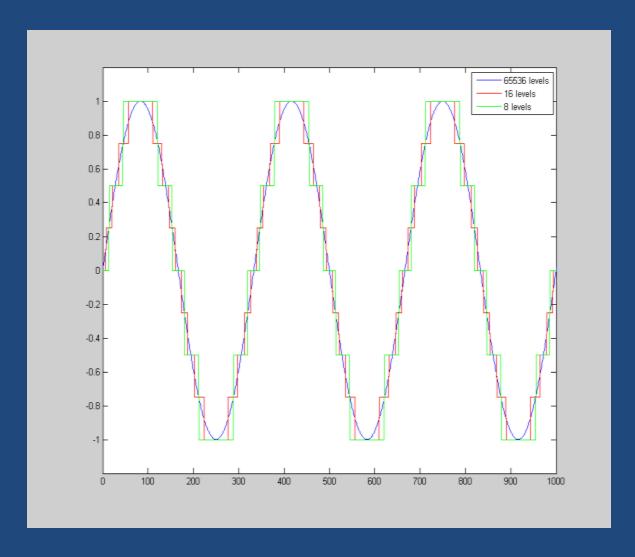
- Most signals are not band-limited
- Analog low-pass filter before digitizing
- Even better: oversample and decimate
 - Often easier to implement good filters digitally

Practical Matters: A/D Converters

- ADC specifications
 - Sampling frequency
 - Number of levels
 - Resolution (bits)
 - Linearity
 - Integral nonlinearity: maximum error in any output level
 - Differential nonlinearity: maximum error between two adjacent levels

How Many Levels?

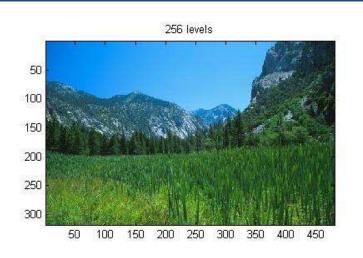
- A/D converter has a limited number of levels
 - Sampled signal is discrete in both time and value
 - Example: 16 bits
 - 65536 levels
 - Dynamic range: 96 dB
- Noise resulting from finite number of levels is called quantization noise
 - Acts like ½ LSB of random noise most of the time

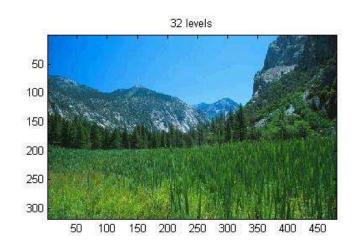


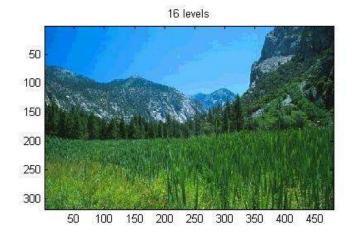
Quantization Noise Demo: Sound

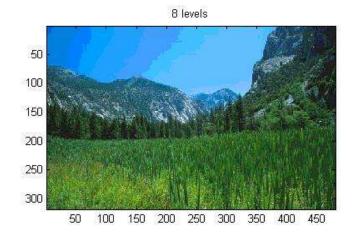
- Piano notes
 - 65536 levels (16 bits)
 - 16 levels (4 bits)
 - 4 levels (2 bits)
 - 2 levels (1 bit)

Quantization Noise Demo II: Banding









You have a Sampled Waveform. Now What?

$$X(\omega) = \sum_{n=-\infty}^{\infty} x[n] \, e^{-i\omega n}. \qquad x[n] = \frac{1}{2\pi} \int_{-\pi}^{\pi} X(\omega) \cdot e^{i\omega n} \, d\omega$$

- Discrete Time Fourier Transform
 - Input: infinitely long sequence of (usually) real samples
 - Output: continuous, periodic function of complex frequency coefficients
 - $-X(\omega)$ is periodic with period $\omega=2\pi$
- Computing this takes forever ... literally
 - Useful for data described by equations, but almost never applicable to measured quantities
 - Don't normally have the luxury of taking a measurement forever

Discrete Fourier Transform

DFT:
$$H[k] = \frac{1}{N} \sum_{k=0}^{N-1} h[n] e^{-ik\left(\frac{2\pi}{N}\right)^n}$$

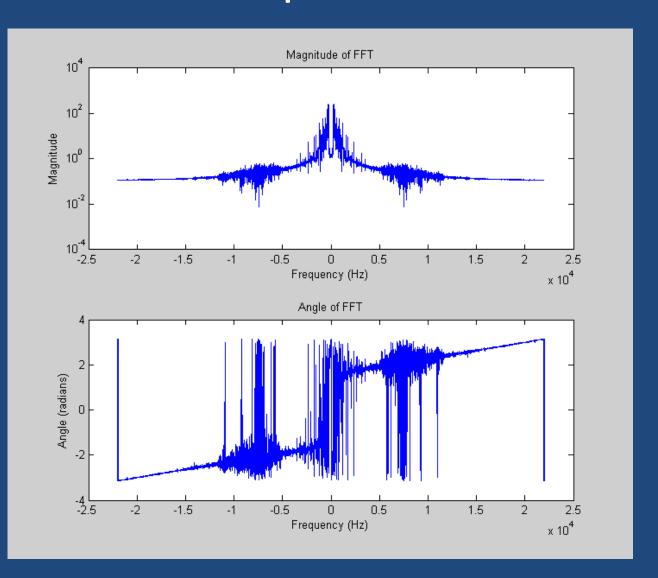
IDFT:
$$h[n] = \frac{1}{N} \sum_{k=0}^{N-1} H[k] e^{ik\left(\frac{2\pi}{N}\right)^n}$$

- Input:
 - Finite extent length N
 - Discrete in time
 - As is the case is most practical measurements
- Output:
 - N complex coefficients
 - Also finite length and discrete
- FFT algorithm allows efficient computation
 - $O(N \log N)$ instead of $O(N^2)$

DFT Example

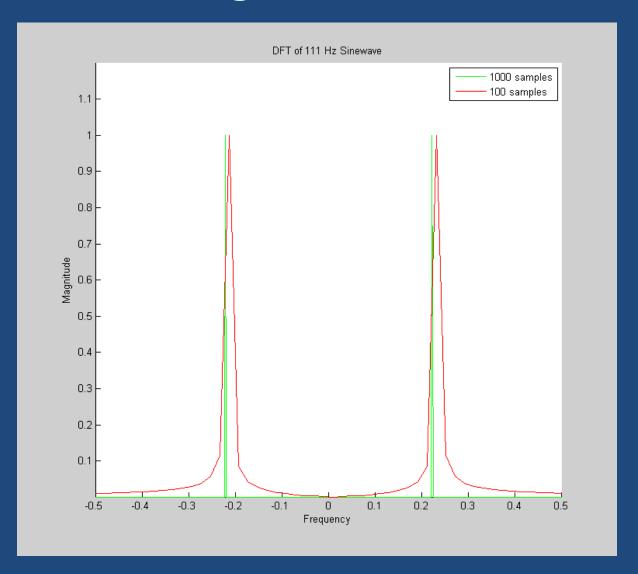
- FFT of piano sound
- Symmetric because signal is real:

X[k]=X*[N-k]



Effect of Finite Signal Extent

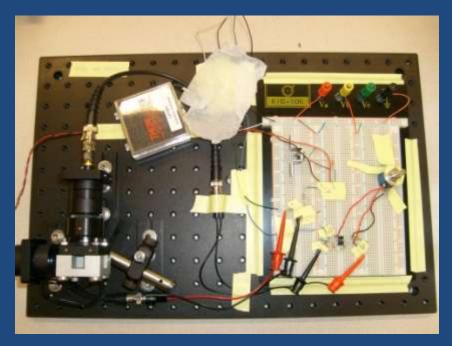
- Example: 222
 Hz sinewave
 sampled at 1
 KHz
- Spectral leakage
 - Longer signal yields more frequency bins
 - Some of the energy leaks into other bins

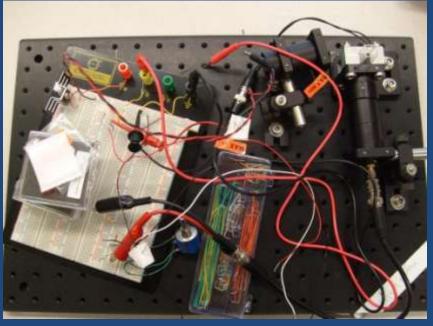


Lab Comments

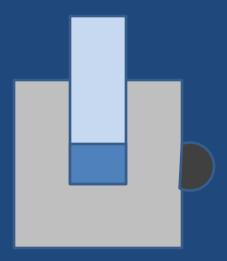
- USB-6212
 - 16 bits, 400 KHz max sample rate
 - Programmable amplifier on the input
 - Full scale sensitivity: $\pm 10V$, $\pm 5V$, $\pm 1V$, $\pm 0.2V$
 - New VI allows photodiode channel sensitivity to be adjusted
 - Possible to lower amplifier gain; compensate with DAQ
 - New VI samples at 500 Hz, decimates to 1 Hz
 - Old VI output 10 samples per second
 - 60 Hz filter in the works
- Amplifier gain
 - Offset voltage temperature coefficient: 20 x 10⁻⁶ V/°C max
 - $-10^8 \times 20 \times 10^{-6} \text{ V/}^{\circ}\text{C} = 2000 \text{ V/}^{\circ}\text{C} \text{ max!}$
 - Reducing gain, increasing DAQ sensitivity may reduce drift
- Take time to make your setup robust
- You should get at least 1 good sample run this week

Neatness Counts





New heating block



- Source of error: measuring heating block temperature instead of sample
- Circuit model for heating block
- Glass vs. plastic cuvette
 - Thermal conductivity of glass >> PS
- Probe sample directly