Rhizopus Raw-Starch-Degrading Glucoamylase: Its Cloning and Expression in Yeast

Toshihiko Ashikari, Norihisa Nakamura, Yoshikazu Tanaka, Naoko Kiuchi, Yuji Shibano, Takaharu Tanaka, Teruo Amachi and Hajime Yoshizumi

Laboratory of Applied Microbiology, Research Center, Suntory Ltd., 1-1-1 Wakayamadai, Shimamoto-cho, Mishima-gun, Osaka 618, Japan Received October 1, 1985

A glucoamylase gene has been cloned from a *Rhizopus* genomic DNA library using synthetic oligonucleotides corresponding to the amino acid sequence of the glucoamylase. Since this glucoamylase gene was not expressed in yeast cells, we have cloned a glucoamylase gene from a cDNA library prepared from *Rhizopus* mRNA. Sequence analysis of both glucoamylase genes revealed that the genomic gene contained 4 intervening sequences and the cDNA gene lacked 145 nucleotides corresponding to the N-terminal region. The glucoamylase consists of 604 amino acids including a putative signal peptide and its molecular weight was calculated to be 65,000. The glucoamylase gene to be expressed in yeast cells was constructed by recombination of both genes. The yeast cells containing this constructed glucoamylase gene secreted the glucoamylase into the culture fluid and grew at almost the normal rate on a medium containing starch as the sole carbon source.

Glucoamylases (EC 3.2.1.3) hydrolyze $\alpha(1,4)$ - and $\alpha(1,6)$ -glycosidic linkages from the nonreducing ends of starch and related maltooligosaccharides to release glucose. These enzymes have been isolated from the culture fluid of a variety of fungi and yeasts, and their properties and biological significance have been studied.1) Generally, fungal glucoamylases are known to exist in multiple forms varying in size. A few distinct forms of Aspergillus glucoamylase are produced by differential RNA splicing events.^{2,3)} On the other hand the multiple forms of Rhizopus glucoamylase are thought to arise from limited proteolysis.^{4,5)} Recently, the genes coding for the glucoamylases of Asp. awamori²⁾ and Asp. niger³⁾ were cloned and it was discovered that their structures were the same.

Glucoamylases are especially useful in saccharifying starch in commercial alcohol production. It is unfortunate for this commercial use that *Rhizopus* produces large amounts of glucoamylase in solid culture but not in submerged culture despite extremely strong hydrolyzing activity toward raw starch compared to other glucoamylases. A strain of yeast which could produce glucoamylase would be very useful in industrial alcohol production, because it could directly convert starch into ethanol. In this report we describe the cloning and the expression of the *Rhizopus* glucoamylase gene in yeast. Several features of the glucoamylase gene are also described.

MATERIALS AND METHODS

- (a) Microorganisms. Rhizopus oryzae SAM0034, a strain producing high-level glucoamylase, was selected from our culture collection. E. coli WA802 (metb-1 lacY galK-2 galT-22 λ^- supE44 hsd-3) was used as a bacterial host. Saccharomyces cerevisiae XS-30-2B (MAT α leu2 his3 ura3 trp1), consturcted in our laboratory, was used as a yeast host and yeast cells were transformed by the method of Ito et al.⁶)
- (b) Amino acid analysis of glucoamylase. Glucoamylase was purified from Rhizopus oryzae by the method of Tsujisaka et al.⁷¹ Amino acid composition and N-terminal sequence of the purified glucoamylase were determined as described previously.⁸¹ Glucoamylase was cleaved by

BrCN and succinylated, followed by digestion with trypsin, and the peptides were purified from the digest and sequenced as described.⁸⁾ The C-terminal residue of glucoamylase was identified by carboxypeptidase A digestion.

(c) Construction of the Rhizopus genomic DNA library. Chromosomal DNA was isolated from fully sporulated Rhizopus oryzae. The spores were disrupted by a Dinomill apparatus (Willy A. Bachofen, Basel, Switzerland) with glass beads $(0.25 \sim 0.5 \, \mathrm{mm})$ in an $0.15 \, \mathrm{m}$ NaCl- $0.05 \, \mathrm{m}$ EDTA buffer at 4° C for 15 seconds and DNA was isolated by the method of Cryer et al.⁹⁾ The molecular weights of the isolated DNAs were estimated by agarose gel electrophoresis to be 1×10^{6} to 10^{7} daltons.

The DNAs were digested with *Hind*III and fractionated by sucrose density gradient centrifugation. A sample of each fraction was analyzed by both agarose gel electrophoresis and dot-hybridization to 14-mer synthetic probes. The strongest hybridizing fraction, containing approximately 4kb DNA fragments, was used to construct the genomic gene library in *E. coli* using pBR322 as a vector.

(d) Construction of the Rhizopus cDNA library. The total cellular RNA was isolated and purified from R. oryzae mycelia by the method of Chirgurin et al. 10) with slight modifications. Thirty grams (wet weight) of mycelia grown on YpSs agar (0.4% yeast extract, 0.1% KH₂PO₄, 0.05% MgSO₄·7H₂O, 1.5% soluble starch, and 2% agar) was suspended in 50 ml guanidium thiocyanate stock solution. After addition of deionized water to a total volume of 100 ml with stirrig at room temperature, 50 ml of phenol-chloroform-isoamylalcohol (20:19:1) was added to the suspension with vigorous stirring with a Bio-mixer (Nihonseiki, Tokyo, Japan). The homogenate was centrifuged for $30 \,\mathrm{min}$ at $1500 \times g$ and the aqueous phase containing the total RNA was pooled. The RNA was recovered from the guanidium thiocyanate homogenate by ultracentrifugation through a dense cushion of cesium chloride and mRNA was purified by oligo-(dT)-cellulose column chromatography as described by Maniatis et al. 11) The cDNA library was constructed by the method of Okayama and Berg¹²⁾ in E. coli WA802 using 15 µg of poly(A) RNA and 4.2 μ g of vector-primer. Approximately 100,000 ampicillin-resistant transformants were obtained.

(e) Other materials and methods. Preparation of E. coli plasmids, transformation, analysis by restriction enzymes, nick translation of probes, and Southern hybridization were done as previously described. 11) The synthetic 14-mer probes were labeled by the methods of Donis-Keller et al. 13) Colony hybridization was carried out by the method of Grunstein et al. 14) The hybridization conditions were 18 hr at 40°C for the 14-mer mixed probes and 65°C for the probe derived from the genomic gene. The nucleotide sequence was found by the dideoxy method using M13mp10 and M13mp11. 15) In vitro mutagenesis was done by the method for oligonucleotide-directed site-

specific mutagenesis as described by Morinaga et al.¹⁶⁾

RESULTS

(a) Chemical synthesis of DNA probes

Some tryptophan containing peptides derived from *Rhizopus* glucoamylase were sequenced. One of these sequences, Thr-Trp-Ser-His-Ala-Ser-Leu-Ile-Thr-Ala-Ser, was used for designing the synthetic oligonucleotide probes. The oligonucleotides, 5'-ACNTGGTCNCAQGC-3', were synthesized by the modified triester method (Q; T or C, N; any base).¹⁷⁾ One of these sequences was specifically hybridized to the glucoamylase gene in the region coding for Thr-Trp-Ser-His-Ala.

(b) Cloning of the genomic glucoamylase gene

The Rhizopus genomic gene library was screened by colony hybridization using the ³²P-labeled 14-mer mixed probes. Among approximately 1000 transformants, clones 39, 83, and 93, which contained an identical 4.3 kb HindIII fragment, were selected and clone 39 was used for further analysis. Figure 1 shows the restriction map of the 4.3 kb HindIII insert of pRGA39 isolated from clone 39. To elucidate the region hybridizing the 14-mer probes, pRGA39 was digested with various restriction enzymes and Southern hybridization experiments were performed. The result indicates that the region hybridized to probes was located on a 0.3 kb fragment between KpnI and DraI sites (Fig. 1). Single stranded M13 DNAs were prepared from M13mp10 and M13mp11 RF DNAs inserted by an 0.8kb BglII-DraI fragment at the SmaI-BamHI sites. Only the M13mp11 single-stranded DNA hybridized to the 14-mer mixed probes, suggesting that the transcription of the glucoamylase gene occurs from the Bg/III site to the DraI site (Fig. 1).

(c) Cloning of cDNA glucoamylase gene

The cDNA library constructed from *Rhizopus* mRNA was screened by the hybridization with a 2.0 kb DraI fragment of the

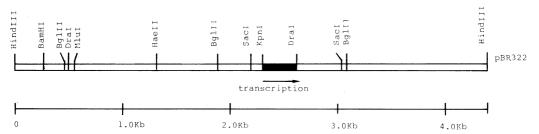


Fig. 1. The Physical Map of the Genomic Glucoamylase Gene.

The restriction map of the 4.3 kb *HindIII* insert of pRGA39 is presented. The closed box indicates the region hybridized to glucoamylase-specific synthetic 14-mer probes. The arrow shows the direction of transcription found by the method described in the text.

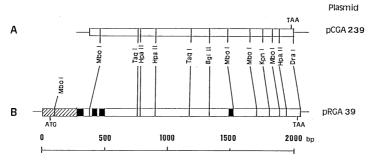


Fig. 2. The Restriction Maps of Glucoamylase Genes.

The restriction sites are shown for the cDNA (A) in pCGA239, and the genomic gene (B) in pRGA39. The shaded boxes represent the region lacking in the cDNA region and closed box represents the intervening sequences. ATG and TAA indicate the initiation and termination codons of the glucoamylase gene, respectively.

Rhizopus genomic glucoamylase gene. Several clones containing glucoamylase cDNA were obtained. One of these clones contained pCGA239, which had the largest cDNA insert (2.0 kb), covering almost the entire coding sequence of the glucoamylase. The restriction map of the glucoamylase cDNA in pCGA239 is shown in Fig. 2 with that of the genomic glucoamylase gene in pRGA39. Comparison of these two maps revealed that both genes had almost the same restriction sites although the gene sizes were different. These results suggested that the glucoamylase gene had at least one intervening sequence.

(d) The nucleotide sequences of glucoamylase genes

The nucleotide sequences of the glucoamylase genes derived from genomic DNA and cDNA are shown in Fig. 3. Comparison of the sequences reveals that the genomic gene contains 4 intervening sequences and the cDNA gene lacks 145 nucleotides coresponding to the N-terminal amino acid sequence. A large open reading frame which started from ATG at position 115, continuing to TAA at position 2160 and interrupting by four intervening sequences was the best candidate for the glucoamylase.

The deduced amino acid sequence corresponds completely to the known amino acid sequence of the peptides from glucoamylase (Fig. 3). For instance, the N-terminal amino acid sequence of the mature glucoamylase, Ala-Ser-Ile-Pro-, was found at residues $26 \sim 29$, suggesting that the glucoamylase contains a signal peptide. The putative signal peptide contains 16 hydrophobic amino acids including N-terminus methionine. The basic amino acid lysine is located at the 9th position from

210 240 277 297
CAG CTT GAT TCA TAC AAT TAC GAT GGC TCT ACT TTT TCA GGA AAA ATT TAT gtaggttgca tataattcaa acattaaaaa aatattaatg Gln Leu Asp Ser Tyr Asp Gly Ser Thr Phe Ser Gly Lys Ile Tyr 341
AGG AAC ATT GCT TAC TCC AAG AAG GTT ACT GTA ATT TAC GCC GAT GGC TCT GAC AAC TGG AAT AAT AAT AAT GCL ya Aan Ile Ala Tyr Ser Lys Lys Val Thr Val Ile Tyr Ala Asp Gly Ser Asp Asn Trp Asn Ash Ash Gly TCT GGA TCA AAT TAC GAA TAC TGG ACA TTC TCT GCC TCC ATT AAT GGT ATC AAG GAG TTC TAC ATT AAG Ser Gly Ser Asn Tyr Glu Tyr Trp Thr Phe Ser Ala Ser Ile Asn Gly Ile Lys Glu Phe Tyr Ile Lys 523 543 563 tactttat gatatttgcc cttatactta attaactaac ccttttttct ctatag TAT GAG GTC
Tyr Glu Val CCC CCC TCA AGC TCT GAG CCA GCT ACT TTC CCA ACT GGT AAC TCT ACA Pro Pro Ser Ser Ser Glu Pro Ala Thr Phe Pro Thr Gly ${\rm Aan~Ser~Thr}$ 860 \$890 CCT CCT GGA AGC GCT ACC GGT TTC ATT GCT GCC Pro Pro Gly Ser Ala Thr Gly Phe Ile Ala Ala ACT CGT GAT GCT GCA TTA ACC Thr Arg Asp Ala Ala Leu Thr 1130 GGT GCT TGG GGA AGA CCT CAA AAT GAT GGA CCT GCT GAA CGT GCT ACT ACT TTC ATT TTG TTT GCT GAC AGT TAT Gly Ala Trp Gly Arp Pro Gln Asn Asp <u>Gly Pro Ala Glu Arp</u> Ala Thr Thr Phe Ile Leu Phe Ala Asp Ser Tyr 1220
TCC TAT GTC ACT GGT ACA CTC AAG CCT GCT ATC TTC AAG GAC TTG GAC TAT GTC GTC AAT GTC TGG
Ser Tyr Val Thr Gly Thr Leu Lys Pro Ala Tle Phe Lys Asp Leu Asp Tyr Val Val Asn Val Trp GAA GAA Glu Glu TTG GAT GTC TCC ACA TTG TTG GCT GCT AAC Leu Asp Val Ser Thr Leu Leu Ala Ala Asn CTT GGT AGT GTT GAT GAT GGA TTC TTC ACT CCT Leu Gly Ser Val Asp Asp Gly Phe Phe Thr Pro 1605 1625 1645 gtaaattaac atgcataaaa gaataagact ataacattac taattcacat tttctactca g ATC CTT Ile Leu 1710 1740 ATC AAC AAA AAC CTT CCA TCT TAC CTT GGT AAC Ile Asn Lys Asn Leu Pro Ser Tyr Leu Gly Asn TTC TTC AAG AAG TTT GAT TCA Phe Phe Lys Lys Phe Asp Ser 2230 2270
AGCTTATTTT CTTTTTCAAA TAAAAACATA TTGATATGTT CATAACATTT TCTTGTTTGT TGTACTGTAA TATGGGTAAC CACATAAGCA TAAACAGCAA 2190

ACTION CONTRACTOR TANAMACTOR CONTRACTOR CONT

Fig. 3. The Nucleotide Sequence for the Rhizopus Glucoamylase Gene.

The intervening sequences are shown in small letters. The predicted amino acid sequence is shown under the nucleotide sequence. (The putative signal peptide is shown by capital letters.) The amino acid sequences found for peptides derived from the glucoamylase are underlined. The nucleotide sequences hybridized with glucoamylase-specific synthetic 14-mer probes are overlined.

the N-terminus of the signal peptide and the signal peptide is cleaved between Ala-Ala at the $25 \sim 26$ th position. These features are consistent with those of other signal peptides.¹⁸⁾

The C-terminal sequence, Ala-Ala, is located just before the stop codon TAA. The 3′-noncoding region is A-T rich and contains the nucleotide sequence AATAAA that has been

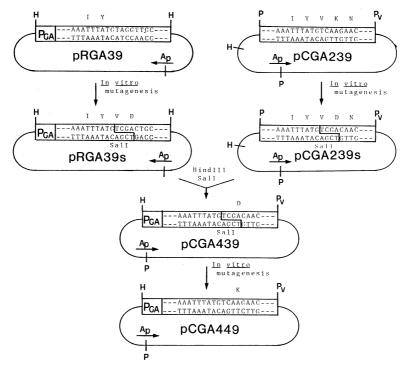


Fig. 4. The Construction of the Glucoamylase Gene to be Expressed in Yeast.

Boxes represented the fragments containing the glucoamylase genes. I, Y, K, N, and D are one letter descriptions of amino acids. SalI sites were created in pRGA39 and pCGA239 by in vitro mutagenesis (see MATERIALS AND METHODS) resulting in pRGA39s and pCGA239s, respectively. pCGA439 was constructed by recombination of pRGA39s and pCGA239s at HindIII and salI sites. The altered amino acid (D) was restored to the original amino acid (K) by in vitro mutagenesis.

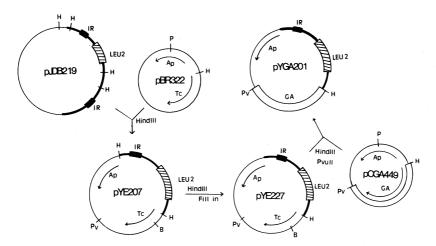


Fig. 5. The Construction of a Shuttle Vector Containing the Glucoamylase Gene.

The restriction sites used are shown. The thin line represents the pBR322 moiety and the thick line represents the yeast DNA moiety. IR indicates the inverted repeat sequence of $2 \mu M$ DNA. The restriction sites P, H, B, and Pv indicates PstI, HindIII, BamHI and PvuII, respectively.

proposed to be necessary for polyadenylation.¹⁹⁾ The glucoamylase gene encodes 604 amino acids and the mature glucoamylase consists of 579 amino acids. The molecular weight of the mature glucoamylase is calculated to be 62,197 daltons which correlates well with the molecular size reported by Takahashi *et al.*⁴⁾

The four intervening sequences identified within the *Rhizopus* genomic glucoamylase gene are short (from 48 to 66 bp) and A-T rich (71 to 77%). These features are similar to those of *Aspergillus*^{2,3)} and *Trichoderma*²⁰⁾ secreted enzymes.

(e) Expression of the glucoamylase gene in yeast

The genomic glucoamylase gene was not expressed in yeast, probably due to the existence of the intervening sequences. The cDNA glucoamylase gene also is not expressed due to the lack of the N-terminal coding sequence. Therefore we constructed a glucoamylase gene which could be expressed in yeast cells (Fig. 4). The resulting recombinant plasmid pCGA449 contains both the 5′- and the 3′-noncoding sequences and the entire glucoamylase coding sequence without the intervening sequences.

To examine the expression of the constructed glucoamylase gene, the shuttle vector pYGA201 was constructed (Fig. 5). pYGA201 consists of the glucoamylase gene from pCGA449, a replication origin derived from yeast 2 μm DNA, and selectable markers (Ap^R for *E. coli* and *LEU2* for yeasts). This plasmid was introduced into *Saccharomyces cerevisiae* XS-30-2B (MATα *trp1 leu2 his3 ura3*). Transformants grew at nearly the normal rate in a medium containing starch as the sole carbon source and secreted the glucoamylase into the culture fluid. These results have already been reported in another paper.²¹⁾

DISCUSSION

The *Rhizopus* genomic glucoamylase gene contains four intervening sequences. The consensus splice junction sequence, GT-AG,²²⁾ is found in these intervening sequences. Other

consensus sequences, TACTAAC²³⁾ and PuCTPuAC²⁾ in the intervening sequences of yeast and fungi, are not found in the *Rhizopus* glucoamylase gene. There were no more than 6 nucleotides in common between four intervening sequences of the *Rhizopus* glucoamylase gene. The mRNA transcribed from the genomic glucoamylase gene in yeast was not accurately spliced due to the difference of splicing systems between *Saccharomyces* and *Rhizopus*, resulting in a failure of the gene to be expressed in *Saccharomyces* cells.

The bias of codon selection for the *Rhizopus* glucoamylase gene was compared with those of filamentous ascomycetes and *Saccharomyces cerevisiae* (Table I). Preference in codon usage for *Rhizopus* glucoamylase gene is not consistent with those of *Aspergillus awamori*,²⁾ *Trichoderma reesei*²⁰⁾ or *Neurospora crassa*.²⁴⁾ These filamentous ascomycetes preferred G and C at the third position of codons. The pattern of codon selection of *Rhizopus* glucoamylase is rather similar to that of *Saccharomyces cerevisiae* codon selection.²⁵⁾ In particular, acid phosphatase,²⁶⁾ one of the secretion enzymes of yeast, is in good agreement with *Rhizopus* glucoamylase.

Rhizopus glucoamylase exists in multiple forms, Gluc1, Gluc2, and Gluc3, differing in molecular size.3) It is thought that Gluc2 and Gluc3 are produced by limited proteolysis of Gluc1 accompanied by the loss of N-terminal peptide fragments. These peptide fragments were isolated as fragment H and L.4) These results suggest that there is a single gene coding for Rhizopus glucoamylase, and this is confirmed by the hybridization experiment. Only one band was detected in the HindIII fragments of Rhizopus DNA when the DNA fragment derived from the genomic glucoamylase gene was used as a probe (data not shown). The N-termini of Gluc1, Gluc2, and Gluc3 were alanine, glutamic acid, and lysine, respectively. Judging from both carbohydrate contents and amino acid compositions of Gluc2 and Gluc3,4,5) the N-termini can be assigned to glutamic acid at the 134th residue for Gluc2 and lysine at the 85th or the 91st

TABLE I. THE CODON USAGE FOR VARIOUS GLUCOAMYLASE GENES AND YEAST PHO5 GENE

The table lists the codon usages in following secretion enzymes: rh, *Rhizopus* glucoamylase gene; as *Aspergillus oryzae* glucoamylase gene (2); sa, *Saccharomyces diastaticus* glucoamylase gene (27) and *Saccharomyces cerevisiae* PHO5 gene (16).

	Glucoamylase PHO5				Glucoamylase PHO5					Glucoamylase PHO5					Glucoamylase PHO5				
***	rh	as	sa	sa		rh	as	sa	sa		rh	as	sa	sa		rh	as.	sa	sa
UUU	8	4	17	8	UCU	34	16	29	9	UAU	13	6	12	7	UGU	2	3	4	10
UUC	21	18	14	19	UCC	15	19	16	5	UAC	22	21	14	25	UGC	1	7	5	0
UUA	6	0	6	9	UCA	11	4	19	6	UAA	_				UGA			_	_
UUG	1	6	19	20	UCG	0	14	9	2	UAG	. —			_	UGG	12	19	11	7
CUU	12	3	5	0	CCU	15	4	15	5	CAU	1	0	6	5	CGU	7	4.	4	5
CUC	10	17	6	0	CCC	4	10	5	1	CAC	4	4	7	3	CGC	2	7	1	0
CUA	0	2	6	4	CCA	4	0	21	7	CAA	9	4	13	12	CGA	1	4	2	0
CUG	0	20	14	2	CCG	0	8	3	0	CAG	2	13	9	2	CGG	0	3	4	0
AUU	16	12	22	13	ACU	36	20	48	16	AAU	20	6	14	9	AGU	8	12	7.	11
AUC	12	11	13	7	ACC	15	39	27	20	AAC	25	19	27	22	AGC	10	23	10	2
AUA	1	1	8	1	ACA	9	5	32	2	AAA	6	0	11	8	AGA	3	1	7	7
AUG	4	3	8	7	ACG	1 -	10	19	0	AAG	25	13	11	16	AGG	0	1	3	1
GUU	13	6	19	9	GCU	42	25	16	13	GAU	15	21	16	20	GGU	28	14	13	22
GUC	18	15	19	16	GCC	7	19	14	14	GAC	12	23	19	21	GGC	6	22	19	4
GUA	4	2	11	2	GCA	8	10	7	2	GAA	11	9	20	23	GGA	12	7	11	1
GUG	0	19	7	1	GCG	0	11	7	0	GAG	6	17	11	2	GGG	0	4	6	2

residue for Gluc3. All three forms of glucoamylase hydrolyze gelatinized starch at similar rates, but only the largest one (Gluc1) is able to adsorb to raw starch and degrade this substrate. It seems likely that the N-terminal region of the *Rhizopus* glucoamylase must be involved in raw starch adsorption and degradation.

The constructed *Rhizopus* glucoamylase gene containing the 5'-flanking sequence and the entire coding sequence without the intervening sequences was expressed in the yeast cells and glucoamylase was secreted into the culture medium as shown previously. These results indicate that the 5'-flanking region of *Rhizopus* glucoamylase gene promoted gene expression and the signal peptide functioned properly in yeast cells. However the expression level of glucoamylase in these yeast cells is not sufficiently high enough to allow the practical production of glucoamylase and ethanol from raw starch. High level expression of gluco-

amylase in yeast and efficient ethanol production from starch materials are now in progress and will be reported elsewhere.

Acknowledgments. We thank Dr. Hiroshi Matsubara and Dr. Sadao Wakabayashi, Osaka University, for sequencing of the glucoamylase. We also thank Dr. Takehiro Oshima for helpful discussions.

REFERENCES

- 1) S. Ueda, Trends Biochem. Sci., 6, 89 (1981).
- J. H. Nunberg, J. H. Meade, G. Cole, F. C. Lawyer, P. MacCabe, V. Schwerckart, R. Tal, V. P. Wittman, J. E. Flatgaard and M. A. Innis, *Molec. Cell. Biol.*, 4, 2306 (1984).
- E. Boel, I. Hjort, B. Svensson, F. Norris, K. E. Norris and N. P. Fiil, *EMBO J.*, 3, 1097 (1984).
- T. Takahashi, Y. Tsuchida and M. Irie, J. Biochem., 84, 1183 (1978).
- T. Takahashi, Y. Tsuchida and M. Irie, *J. Biochem.*,
 92, 1623 (1982).
- H. Ito, Y. Fukuda, K. Murata and A. Kimura, J. Bacteriol., 153, 163 (1983).
- 7) Y. Tsujisaka, N. Hamada and S. Takenishi,

- Proceedings of the Symposium on Amylase (in Japanese), 10th meeting of amylase kenkyu kai, Osaka, Japan, October, 1975, p. 61.
- 8) Y. Tanaka, Y. Fukumori and T. Yamanaka, Biochim. Biophys. Acta, 707, 14 (1982).
- D. R. Cryer, R. Ecdeshall and J. Marmur, "Methods in Cell Biology," Vol. 12, ed. by D. M. Prescott, Academic Press Inc., New York, 1975, p. 39.
- 10) J. M. Chirgwin, A. E. Przybyla, R. J. MacDonald and W. J. Rutter, *Biochmistry*, 18, 5294 (1979).
- 11) T. Maniatis, E. F. Fritsch and J. Sambrook, "Molecular Cloning," Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, 1982, pp. 188 ~ 209.
- H. Okayama and P. Berg, Molec. Cell. Biol., 2, 161 (1982).
- H. Donis-Keller, A. M. Maxam and W. Gilbert, Nucl. Acids. Res., 4, 2527 (1977).
- 14) M. Crunstein and J. Walls, "Methods in Enzymology," Vol. 68, Academic Press Inc., New York, 1979, p. 379.
- 15) J. Messing and J. Vieira, Gene, 19, 269 (1982).
- 16) Y. Morinaga, T. Franceshini, S. Inouye and M.

- Inouye, Bio/Technology, 2, 636 (1984).
- K. Miyoshi, R. Arentzen, T. Huang and K. Itakura, Nucl. Acids Res., 8, 5509 (1980).
- 18) M. E. E. Watson, Nucl. Acids. Res., 12, 5145 (1984).
- 19) M. Fitzgerald and T. Shenk, Cell, 24, 251 (1981).
- S. Shoemaker, V. Schweickart, M. Ladner, D. Gelfand, S. Kwok, K. Myambo and M. Innis, Bio/Technology, 1, 691 (1983).
- T. Ashikari, N. Nakamura, Y. Tanaka, N. Kiuchi,
 Y. Shibano, T. Tanaka, T. Amachi and H. Yoshizumi, Agric. Biol. Chem., 49, 2521 (1985).
- M. R. Lerner, J. A. Boyle, S. M. Mount, S. L. Wolin and J. A. Stertz, *Nature*, 283, 220 (1980).
- 23) C. J. Langford and D. Gallwitz, Cell, 33, 519 (1983).
- 24) M. G. Schechman and C. Yanofsky, J. Mol. Appl. Genet., 2, 83 (1983).
- J. L. Bennetzen and B. D. Hall, J. Biol. Chem., 257, 3036 (1982).
- K. Arima, T. Oshima, I. Kubota, N. Nakamura, T. Mizunaga and A. Toh-e, *Nucl. Acids Res.*, 11, 1657 (1983).
- I. Yamashita, K. Suzuki and S. Fukui, *J. Bacteriol.*, 161, 567 (1985).