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The current state of the art for linear optimization in Flux Balance Analysis has been limited to single
objective functions. Since mammalian systems perform various functions, a multiobjective approach is
needed when seeking optimal flux distributions in these systems. In most of the available
multiobjective optimization methods, there is a lack of understanding of when to use a particular
objective, and how to combine and/or prioritize mutually competing objectives to achieve a truly
optimal solution. To address these limitations we developed a soft constraints based linear physical
programming-based flux balance analysis (LPPFBA) framework to obtain a multiobjective optimal
solutions. The developed framework was first applied to compute a set of multiobjective optimal
solutions for various pairs of objectives relevant to hepatocyte function (urea secretion, albumin,
NADPH, and glutathione syntheses) in bioartificial liver systems. Next, simultaneous analysis of the
optimal solutions for three objectives was carried out. Further, this framework was utilized to obtain
true optimal conditions to improve the hepatic functions in a simulated bioartificial liver system. The
combined quantitative and visualization framework of LPPFBA is applicable to any large-scale
metabolic network system, including those derived by genomic analyses.

© 2010 Elsevier Inc. All rights reserved.

1. Introduction

Metabolic flux analysis (MFA) provides a framework for the
estimation of intracellular metabolic fluxes at steady-state based
on stoichiometric constraints of a metabolic pathway network.
This technique, which has been extensively used for studying the
metabolism of microorganisms (Antoniewicz et al., 2007a, 2007b;
Stafford et al., 2002; Wong et al., 2004; Young et al., 2008), has
been recently applied to characterize and compare different
physiological states in mammalian systems (Banta et al., 2004;
Chan et al., 2003a, 2003b, 2003c, 2002; Ghosh et al., 2006; Lee
et al., 2004; Nolan et al., 2006; Vo et al., 2004). For validation of
the MFA obtained intracellular metabolite fluxes, tracer based
methods that commonly use 13-C labeling is used for quantifying
in vivo fluxes (Maier et al., 2008; Yoo et al., 2008). In order to
obtain a unique solution for the flux distribution in a particular
cell or tissue system, a minimum number of measurements of
rates of uptake and release of extracellular metabolites by the
system is needed. In cases where insufficient measurements are
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available, pathway fluxes have been predicted using linear
optimization for one objective function, such as growth rate for
unicellular organisms (Cox et al., 2006; Khannapho et al., 2008;
Savinell and Palsson, 1992). Mammalian systems, such as
hepatocytes, typically do not undergo cell proliferation, but rather
perform an array of metabolic functions (protein secretion,
detoxification, and energy production), therefore different and
multiple objectives need to be taken into account. Hepatocytes
are the major cell type in the liver with multiple functions
including efficient uptake and subsequent metabolic conversion
of amino acids, carbohydrates, lipids, and vitamins. Subsequently,
these nutrients are either stored or released after biochemical
transformations. These biochemical processes make hepatocytes
the epicenter of the metabolic modulation of intermediary
metabolism in the body, and thus can play an important
role in biotechnological applications that use liver cells, such as
bioartificial liver (BAL) devices. A recent analysis concluded that
several objectives were necessary to profile metabolic informa-
tion from perfused livers (Lee et al., 2004). Another study
(Nagrath et al., 2007), combined both energy and flux balance
based nonlinear multiobjective framework for hepatic systems.
Recently, Bayesian (Knorr et al., 2007) and optimization (Burgard
and Maranas, 2003) based techniques have been developed for
selecting objectives.
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Multiobjective optimization strategies previously used for
MFA, such as weighted optimization and goal programming,
suffer from several limitations. For example, it is often unclear
when to use a particular objective and how to combine and/or
prioritize mutually competing objectives to achieve a true optimal
solution. Furthermore, visualization of the results is not straight-
forward. Importantly, most of the existing MFA methods employ
“hard constraints” for the estimation/distribution and optimiza-
tion of intracellular fluxes in metabolic networks. Burgard and
Maranas (2003) had developed an optimization-based framework
for testing whether maximization of a weighted combination of
fluxes can explain a set of observed experimental data. Their
approach is based on weighted-sum (WS) based optimization and
utilizes weights defined as the coefficients of importance to
quantify the additive contribution of a given flux to an objective
function. The limitations of using WS based approach are:
(1) weights are arbitrary and have no physical meaning; (2) the
spacing of optimal solutions is largely dependent on relative
scaling of weights thus often leads to ill-conditioned problems;
(3) an even distribution of scalar weights in WS does not yield an
even optimal flux solutions; and (4) WS fails to capture the Pareto
optimal solutions where the Pareto frontier is non-convex. Here
we introduce a multiobjective optimization based flux balance
analysis approach, LPPFBA (linear physical programming-based
flux balance analysis), that employs linear physical programming
(LPP) (Maria et al., 2003; Messac, 2000) (Fig. 1A), which enables
the formulation of the optimization problem in terms of
physically meaningful terms and parameters, and addresses the
problems that exist in the previously used strategies by
employing “soft constraints”.

In the LPPFBA approach, first a set of the so-called Pareto
optimal solutions is generated. A solution is said to be Pareto
optimal if there are no other solutions that can better satisfy all of
the objectives simultaneously (Nagrath et al., 2005). In other

words, any improvement in one objective necessitates the
worsening of at least one other objective. In our specific
application, we generate Pareto frontiers of optimal metabolic
fluxes to identify potential solution regions that provide a
qualitative framework to assess the situation, and in particular,
to determine the objectives that are conflicting. Second, we
employ LPPFBA to prioritize the objectives and constraints. In
LPPFBA, attributes of interest for each objective are defined to
delineate degrees of desirability: unacceptable, highly undesirable,
undesirable, tolerable, desirable, and highly desirable. Thus, LPPFBA
completely eliminates the need for iterative weight setting, which
is the object of the typical computational bottleneck in large
optimization problems. Two key advantages of LPPFBA for
metabolic flux optimization are: (1) once the preferences are
articulated, obtaining the corresponding optimal fluxes is a non-
iterative process—in stark contrast to conventional weight-based
methods and (2) it provides the means to reliably employ
optimization with minimal prior knowledge thereof.

In this paper, we present an LPPFBA approach for analyzing the
multiobjective flux analysis of metabolic networks. The developed
approach was then utilized for optimizing the metabolism of liver
cells in the context of bioartificial liver (BAL) development. BALs
are being developed to provide hepatic support to patients with
fulminant hepatic failure (Chan et al., 2003a, 2003b, 2003c, 2002).
One of the major design goals of BAL devices is to maintain viable
hepatocytes that perform a high level of liver-specific functions
(for example, albumin synthesis, urea secretion, cytochrome
p450-mediated detoxification, etc.) (Berthiaume et al., 1996;
Chan et al., 2002; Dunn et al., 1991; Nagrath et al., 2009; Sharma
et al.,, 2010). Obtained Pareto optimal metabolite fluxes were
computed for various combinations of liver specific functions.
Next, we obtained Pareto optimal solutions for tri-objective
combinations of these hepatic functions. Lastly, we obtained the
Pareto solutions for a simulated BAL system where the main goal
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Fig. 1. (A) Characteristics of Linear Physical Programming based multiobjective metabolic network. (B) Pareto frontiers and extreme Pareto points shown for a bi-objective
maximization and minimization problems. (C) Strategy for Linear Physical Programming based multiobjective optimization. (D) LPPFBA visualization window.
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was to operate the BAL at the highest possible level during human
plasma exposure. This analysis exhibited that although lipid and
carbohydrates fluxes may be similar but for hepatocytes amino
acid synthesis, catabolism, is altered/rerouted in optimality
analysis for maintaining hepatic functions

2. Materials and methods
2.1. Flux balance analysis

The stoichiometric coefficients of the metabolic reactions are
collected into a matrix S, where each element s; is the coefficient
of metabolite i in reaction j. S has dimensions of M x N, where M is
the number of metabolites and N is the number of reactions. In
matrix form the mass balance is written as

ax
q=
where each element x; of x is the intracellular concentration of
metabolite i and element J; of | is the net rate of conversion in
reaction j. External metabolite fluxes are generally measured (e.g.,
uptake of glucose, lactate, and amino acids). Because of the very
high turnover of the intracellular pools of most intracellular
metabolites, the time scale of the intracellular metabolic reactions
is short compared to other cellular reactions. Hence, the pseudo-
steady-state assumption is generally applied to the metabolite
mass balances, and thus
Sj=0 @)
When the number of measured quantities is less than the
number of measurements required for the system to be
determined, the computation of unknown intracellular fluxes
requires linear optimization (since infinite number of solutions
exist) with linear bound constraints. Mathematically, this can be
expressed as

s/ (1)

T
M 3)
subject to
suju = *Sm]m (4)
.Ilow S.’u S.Ihigh (5)

where vector c specifies which unknown flux vector elements are
to be maximized (or minimized); vectors Jjo, and Jpgn provide the
lower and upper bounds for the unknown fluxes; J,, and J,
indicate measured and unmeasured fluxes, respectively; and S,
and S, contain the stoichiometric coefficients of measured and
unknown reactions, respectively.

2.2. Hepatocyte metabolic network

A previously described hepatic metabolic network (Chan et al.,
2003b, 2002) includes all of the major intracellular pathways to
account for the majority of central carbon and nitrogen metabolism
found in hepatocytes, namely the tricarboxylic acid (TCA) and urea
cycles, the gluconeogenic and glycolysis pathways, the pentose
phosphate shunt, pathways of entry, transamination, and deamina-
tion of amino acids, protein synthesis, and the major components of
lipid metabolism, including triglyceride synthesis and breakdown
and f-oxidation of fatty acids, in addition to amino acid synthesis
and apolipoprotein degradation. The current hepatic metabolic
network model (Table S1) includes a few additional reactions,
namely those of the 3-phosphoglycerate cycle as it is involved in
glycerol production and glutathione synthesis, which results in a
total of 81 reactions (as compared to 76 reactions in the previous

model) and 47 metabolites (Table S2). Fig. 2 presents the
comprehensive hepatic metabolic network. The rationale for
including glutathione synthesis is that glutathione is involved in
several important detoxification functions of hepatocytes. The
model assumes pseudo-steady-state with no metabolic futile
cycles. These assumptions are discussed in detail elsewhere (Chan
et al., 2003a). Some of the major assumptions are:

1. The model is based on NADPH-generating oxidative branch of
the PPP. This is because of the low demand of nucleotides in
primary rat hepatocytes.

2. We consider only albumin synthesis which is the major
protein produced in hepatocytes and have neglected protein
degradation.

3. Our model ignores compartmentalization of metabolism
between cytosol and mitochondrion and isoenzymes that use
other cofactors.

4. Albumin is a major protein product of hepatocytes and hence
only this protein is considered.

5. The mechanisms of active and passive transport is not included
in our model.

6. The metabolite pools are at pseudo-steady-state with a single
pool in the cell.

2.3. Multiobjective optimization

2.3.1. Definitions

Multiobjective optimization: A multiobjective optimization is a
problem involving several competing objectives and constraints.
The solution of this problem is considered the best solution that
satisfies the conflicting objectives. Other commonly used terms in
the literature for multiobjective optimization are multicriteria
optimization, multidecision optimization, and vector optimization.

Pareto solution: A Pareto solution is one where any improve-
ment in one objective can only take place at the cost of another
objective. A Pareto set is a set of Pareto optimal solutions.

Design parameters: A design parameter is a parameter over
which the designer has direct control. Other terms used in the
literature for design parameters include decision variables, design
variables, or decision parameters.

Design metric: A design metric refers to an objective measure of
a design attribute. Other commonly used terms are objective
functions, design criterion, figure-of-merit, goal, and performance
metric. In the current work, the variable g(x) denotes the vector of
design metrics.

Design constraint: A design constraint indicates the lower or
upper bounds in the design metrics or design parameters.

Anchor value: The value obtained for a particular design
objective if that design metric alone is optimized, given the
bounds on the design parameters.

2.3.2. Mathematical formulation of multiobjective problem P
Mathematically, the multiobjective problem can be stated as
follows:

g1(x)
82(%)
minimize g(x) _ ' (P) (6)
eD
Em(X)

where D={xeR"|h(x)=0, fix)<0, a<x<f}, h:R">R, fiR">F,
ae(RU{— o })", fe(RU{+x})", m is the number of objectives, or
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Fig. 2. Hepatic metabolic network showing the linkage of various metabolites.

criteria, m > 2; r and s are the numbers of equality and inequality
constraints, respectively. For any design parameter x=(x, ..., Xn),
a design metric vector g=(gy, ..., &n) is defined according to the
function g:R"—R". Z={zeR™|z=g(x), xe D} is the set of images of
all points in D. D is called the feasible region in decision space and
Z the feasible region in objective space; (gi(x), ..., gn(x)) are the
coordinates of the image of x in objective space.

2.4. Pareto concept

For the multiobjective problem P, it is highly improbable to
have a single optimal solution x* which minimizes every g;

simultaneously; therefore, the solution is defined in terms of
Pareto optimality in the following sense: a feasible solution for a
multiobjective programming problem is Pareto optimal (non-
inferior and nondominated) if there exists no other feasible
solution that will yield an improvement in one objective without
causing a degradation in at least one other objective. So, xeD is
Pareto optimal if there does not exist yeD, whose criteria vector,
g=g(y), dominates the criteria vector of x, p=g(x), i.e. g <p and
p # q. (For any vectors v and w, v <w implies that v; <w;Vi.)

Fig. 1B presents a scheme of a Pareto set for a bi-objective
linear maximization and minimization problem. If design metric
g1 alone is optimized (maximized), then the optimal value is g}
(shown as point P;). Similarly, if design metric g» alone is
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optimized then the optimal value is g5 (shown as point P,). Here
g7 and g3 are the anchor values for design objectives g; and g,
respectively. The ideal or utopian solution (g}, g5) obtained by the
individual maximization of the objective functions is generally
not a feasible solution of the multiobjective optimization
problem. As seen in Fig. 1B, lines joining points P; and P, defining
the boundary of the feasible space are the efficient Pareto frontier.
That is, for every point on arc P;-P5, it is not possible to improve
both objectives simultaneously. If one objective is improved, it
must be at the expense of the other. Points on the arc are often
referred to as Extreme Pareto points. In view of their stated
characteristics, Pareto points are usually the candidate of choice
in the process of multiobjective optimization. Fig. 1B shows
Pareto frontiers for both maximization and minimization pro-
blems. It shows the shape of frontiers and tradeoffs involved
between two objectives for two separate parameters and condi-
tions of maximization and minimization.

Often several Pareto optimal points are available in cellular
systems, representing alternative designs, from which one can
select the one that offers the best tradeoff among multiple
objectives. This optimization generally involves forming an
aggregate objective function (AOF) (or, some functional aggrega-
tion of the many conflicting criteria). Implicit in this process is the
assumption that this AOF has the ability to indeed yield all the
potentially useful/desirable optimal solutions. The most common
AOF structure is the weighted-sum approach, which involves
forming a linear combination of objectives-minimized subject to
the problem constraints. The algorithm for the linear physical
programming (LPP) based multiobjective FBA is shown in Fig. 1C.

2.5. Linear physical programming lexicon

The first step in the linear physical programming (LPP) lexicon
is to express the preferences with respect to each objective using
different classes. Each class comprises two cases, soft and hard,
referring to the sharpness of the preference. All soft class functions
are integrated in the AOF (that will be minimized). The desired
behavior of an objective function, during optimization, is
described by one of sub-classes, soft (S) and hard (H). These
classes are defined as follows:

Soft
Class-1S Smaller-is-better, i.e. minimization.
Class-2S Larger-is-better, i.e. maximization.
Hard
Class-1H Must be smaller, i.e., g < t; max
Class-2H Must be larger, i.e., & > t min

Fig. 3 presents the relative capacity to express preferences using
linear programming (LP), goal programming (GP), and LPP for a
given objective function, g;. The vertical axis, z; represent what is
minimized in the optimization process. In the LP case, a single
weight, wp, can be increased or decreased to express preference
relative to other criteria. In the GP case, there are two weights, wg,
and w/, and a target value, tcp. In the LPP case, there is flexibility to
choose up to ten target values, and it eliminates the need to deal
with weights entirely, as seen in Fig. 3C (Class-1S) and D (Class-2S).
The effectiveness of LPP comes from its ability to shape the class
function (i.e. z;) to suite the typically complex structure of the
preference. Compared to choosing weights which can be difficult
and undesirable because they are physically meaningless, choosing
target values is preferable because they are physically meaningful.
In both LP and GP, it is usually not clear whether the weights

should be increased by 10% or 100% in order to achieve the desired
optimal result. This difficulty is compounded when there are
several objectives involved. In this regard, LPP distinguishes itself
by operating in a physically meaningful space.

The behavior of the AOF, in the cases of LP, GP, and LPP are
shown as a collection of indifference curves and their three-
dimensional view (Fig. 3A-D). For the LP case, the weighted-sum
of two objectives leads to a simple plane. In two-sided-goal
criteria for GP, there are four intersecting planes whose slopes
depend on the weight-pair of each criterion. In contrast, the LPP
case depicts a surface that comprises 40 intersecting planes.

Soft classes: The soft class functions allow ranges of differing
levels of preferences for each objective to be expressed (Fig. 3C
and D). Based on their classes, the class functions are generated
for all the objectives. These class functions are then minimized for
each objective using a linear programming algorithm. The
qualitative and quantitative depictions of each class are shown in
Fig. 3C and D. Where, the value of the objective i under
consideration, g;, is on the horizontal axis, and the corresponding
class function, z;, is on the vertical axis. A lower value of the class
function is better (i.e., more valuable than) than a higher value,
and a class function of zero is ideal. As would be done in
conventional mathematical programming formalism, preferences
for each criterion are required in LPP, compared to using the terms
minimize or maximize For the soft case, this lexicon comprises
terms that characterize the degree of desirability of up to 11
ranges. The LPP lexicon comprises terms that characterize the
degree of desirability of six ranges for each generic criterion for
Classes 1S and 2S. As an illustration of the LPP lexicon, consider
the case of Class-1S (Fig. 3C), where the ranges are defined, in
order of decreasing preference. The parameters/targets t;} -t;{ are
physically meaningful values that are specified to quantify the
preference associated with the ith objective. These parameters
delineate the desirability ranges within each objective. The shape
of the class function depends on the numerical values of the range
limits (targets). According to the definition of the ideal range, any
two points of the ideal range are of equal value. The class function
will be minimized only until the target value t;] is reached. Below
that point, Class-1S expresses explicit indifference. If a smaller
value of the objective is better, the ideal range does not apply. In
this case, should be set to a value outside of the feasible space in
order to exclude solutions in the ideal range. This will preclude the
possibility of obtaining (incorrect) dominated solutions. A similar
discussion would apply to the cases of Class-2S.

Hard classes: Constraints that are hard and have to be met are
classified as hard. There are hard only two ranges defined for a
hard objective, acceptable and unacceptable. All the soft class
functions become part of the AOF to be minimized, and all of the
hard class functions simply appear as constraints in the LPP
model.

In the next section, the mathematical formulation of the class
function for the soft objectives in a multiobjective setting is
presented. The formulation includes implied intra-criteria and
inter-criteria preferences.

2.6. Constrained multiobjective flux balance analysis framework

This section first presents the procedure for forming the LPP
problem model. The LPP application procedure entails four major
steps:

1) Determining for each objective the appropriate class, i.e.,
which one of the four soft and hard classes applies.

2) Defining the limits of the ranges of differing degrees of
desirability for each objective: the ‘target’-values (see Fig. 3).

(2010), doi:10.1016/j.ymben.2010.05.003
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physical programming weights (LPPW) algorithm to generate
the weights (Table A1).
4) The following linear programming problem is then solved:

2.6.1. Piecewise Archimedean aggregate function

TNsc

dISvdI;rv /= 212 Wlsd'5+w+d+) (7)
1=1s=
subject to

System constraints:

Xmin <X < Xmax 8)
8i=g&i(x) 9)

Goal constraints:

—di <t{ ), di =0, g<tf (foralliinclasses ]S,
1_1,2,“.,nsc, s=2,..,5) (10)
gi+ds =t 1), dx=0, g=ts (foralliinclasses2S,
i=12,..,N%, $=2,..5) (11)
and
g <tjma (foralljinclass1H, j=1,2,.. ,np) 12)
g >timn (foralljinclass2H, j=1,2,..,np) (13)

In the above formulation, x is the decision variable vector of
the objective function gi(x), and ny. and n,. denote the number of
soft and hard criteria, respectively. Next, we outline a simple
algorithm for evaluating the weights that are used in the LPP
model of the class functions. It is important to note that these
weights are related to the class function slopes. Supplemental
data S1 and Table A2 show the quantitative aspects of LPP. In the
LPP implementation of this paper, the final value of the parameter
p was kept constant for all criteria resulting in a more favorable
numerical conditioning. The increase of f§ in the weight-algorithm
loop above was set as 0.01. Then the weights obtained from
the above LPPW algorithm are used to obtain expressions for the
piecewise linear class function of each criterion. To maintain the
linear programming framework, piecewise linear class functions
were implemented using deviation variables (d;,d;}). In the
particular case of Class-4S, for example, it can be shown that
the LP model of the piecewise linear function is as follows:

2.6.2. Piecewise Archimedean aggregate function

min E]
n

d;’d's s;(wrsdls + Wi d+) (14)

subject to
System constraints:

Su=—SmJm (15)
Jiow <Ju <Jhigh (16)
Xmin <X < Xmax (17)

Goal constraints:

—di <tf 4, dif=0, g<ti(s=2,...5) (18)

—dis <tis 1y di

s =

>0, gi<ts(s=2,...5) (19)

lS—

g <tmax(foralljinclass 1H, j=1,2,..., ny) (20)
g >tjmin(for alljin class 2H, j=1,2,...,ny) 21
gj=tja(foralljinclass 3H, j=1,2,...,npy) 22)

Gimin <& <timax (foralljinclass4H, j=1,2,...,ny) 22)

where J,, and J, indicate measured and unmeasured fluxes,
respectively; and S,;, and S, contain the stoichiometric coefficients
of measured and unknown reactions, respectively.

As discussed previously, the use of preferences for different
degrees of desirability for each design metric also aids in
simultaneous visualization of a large number of objectives. This
facilitates the assessment of the effect of preference specifications
on the objectives as well as the complex inter-play of these
objectives (Fig. 1D). Each section is color coded according to the
desirability level and labeled.

3. Results and discussion

Multiobjective optimization is a useful tool with applications
to numerous disciplines and more recently for cellular systems
(Nagrath et al., 2007; Vo et al., 2004) where simultaneous
targeting of several objectives is vital. Therefore, we developed
this approach to optimize hepatocellular function in the context
of a BAL device, in which case the main goal is for the hepatocytes
to function at the highest possible level. Here we focused on a
limited set of critical representative hepatocellular metabolic
processes: urea secretion, albumin synthesis, NADPH synthesis,
and glutathione synthesis. Urea secretion (flux 16 in Table S1) is a
critical detoxification reaction, and is primarily derived from
ammonia and aspartate generated through transamination reac-
tions. Albumin synthesis (flux 47) was used as a marker of liver
specific protein secretion. NADPH is produced by the pentose
phosphate pathway (PPP), and is primarily used in nonproliferat-
ing hepatocytes as a co-factor for cytochrome p450 dependent
oxidation reactions, de novo synthesis of glutathione, as well as
reduction of oxidized glutathione. To increase NADPH production,
the NADPH-generating oxidative branch of the PPP represented in
a lumped fashion as flux 46 was increased. The tripeptide
glutathione (GSH, y-Glu-Cys-Gly) is a free radical scavenger and
is involved in many detoxification reactions. The synthesis of
glutathione is represented by flux 48.

Using LPPFBA, we assessed the sensitivity and geometry of the
optimal region and determined the optimal results using various
preferences and/or prioritization of the four objectives (fluxes 16,
46, 47, and 48) mentioned above. The constraints for the hepatic
metabolic network are listed in Table S2. As described in Section
2, LPPFBA requires characterization of design metrics into
different classes. Here, all four objective functions are maximized
and hence fall in “Class-2S”. As part of this analysis, we first
obtained Pareto frontiers between various bi-objective combina-
tions of liver specific functions (albumin synthesis, urea secretion,
NADPH synthesis, and GSH synthesis). Next, we obtained Pareto
optimal solutions for tri-objective combinations of these hepatic
functions. Lastly, we obtained the Pareto solutions for a simulated
BAL system where the main goal was to operate the BAL at the
highest possible level during human plasma exposure. The
experimentally measured flux data for hepatocytes during plasma
exposure were obtained from Chan et al. (2002).

3.1. Analysis of bi-objective hepatic metabolic network

Pareto frontiers for various sets of bi-objectives were gener-
ated in this section to identify potential optimal solution regions.
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These optimal solutions can provide a qualitative framework to
assess the tradeoffs and robustness of the hepatic metabolic
network for a quad-objective scenario (albumin synthesis, NADPH
synthesis, urea secretion, and GSH synthesis). The representative
results are shown in Fig. 4. These Pareto optimal solutions were
obtained by changing the preferences from higher desirable
values to highly undesirable values. As seen in Fig. 4, all of
these objectives exhibited a tradeoff with each other; for example,
albumin and urea synthesis could not be at their maximal values
at the same time (Fig. 4A). Similarly, there was a tradeoff between
NADPH and albumin synthesis, NADPH synthesis and urea
secretion, glutathione and albumin synthesis (Fig. 4B-D,
respectively). In addition, the impact of changing preferences
(for example favoring albumin synthesis over urea secretion and
vise-versa) varied depending on the objective. In particular, the
tradeoff region or range of Pareto optimal solutions (i.e., how far
the optimal value is from the “anchor value”) for albumin
synthesis was very high compared to NADPH synthesis and urea
secretion. Several other combinations were also tested and all of
them indicated Pareto optimality between various objectives
(data not shown). Fig. 4E compares the Pareto optimal solutions
obtained between albumin synthesis and urea secretion using
weighted-sum, goal programming, and LPPFBA. For all three
equal number of simulations were used. As seen in these figures
LPPFBA has significant advantage over both weighted-sum and goal
programming. This is because mapping of preferences to form an
AOF in LPPFBA results in piecewise smooth hyper surfaces which
leads to an even spread of Pareto optimal solutions for a given even
spread of input preferences without missing any Pareto optimal
solution. This behavior of optimal solution with respect to change in
preference is highly desirable in large-scale mammalian metabolic
network analysis (where tradeoffs between objectives are
ubiquitous). In conventional methods, the spacing of points is
largely dependent on relative scaling thus may lead to ill-
conditioned problems. Importantly, these methods fail to capture
significant number of optimal solutions resulting in an uneven
distribution for even distribution of weights.

Fig. S1 presents the distribution of Pareto optimal fluxes
throughout the tradeoff region, which shows the changes required
in flux values and direction (i.e. increasing or decreasing) as the
objective preference is changed from one objective to another. The
corresponding flux values are presented in Table S3. Fig. S1A
indicates the necessary change in fluxes when going from Pareto
optimal solutions “A” to “B”, in other words, when going from
higher albumin synthesis/lower urea secretion rates to lower
albumin synthesis/higher urea secretion rates. This change requires
increasing gluconeogenic fluxes (1-7), formation of pyruvate from
amino acids (18), aspartate synthesis (37), formation of glutamic
acid (30 and 39), and increasing oxidation of triglycerides (52).
Noticeably, higher urea secretion/lower albumin synthesis neces-
sitates decreased uptake of both glucogenic (proline, 61; serine, 68;
aspartate, 70; threonine, 72; phenylalanine, 74; methionine, 76;
valine, 77; isoleucine, 78; glutamine, 80; and tyrosine, 82) and
ketogenic (lysine, 73 and leucine, 79) amino acids over the lower
urea secretion/higher albumin synthesis case. On the contrary,
cysteine (81) uptake is increased when increasing urea secretion.
Arginine (65) uptake rate was at maximum for both urea and
albumin maximizations. Essentially, the uptake of pyruvate
forming amino acids (alanine, 67; serine, 68; and threonine, 72),
fumarate forming amino acids (phenylalanine, 74 and tyrosine, 82),
and succinyl CoA forming amino acids (threonine, 72; methionine,
76 and valine, 77) was decreased in order to increase urea secretion
since these amino acids play a major role in increasing albumin
synthesis. Also, increasing urea synthesis resulted in increased
gluconeogenesis, which was associated with an increased rate of
glucose clearance and an increase in glycogen synthesis.

Fig. S1B indicates the change in optimal fluxes from C to D
Pareto solutions for the case when NADPH production and albumin
synthesis are considered to be the main objectives and whose
maximization was studied. Noticeably, TCA cycle fluxes
(9 and 10) were higher for the case when albumin was maximized.
Additionally, oxygen uptake and electron transport system flux (60
and 44) were significantly lower at higher NADPH production and
lower albumin synthesis. Moreover, NADPH use for alanine
synthesis in reaction 18 was significantly reduced for the case of
NADPH maximization. Since the tradeoff region for NADPH
synthesis is not large (3.5-3.44) there was not much change in
gluconeogenic fluxes in this scenario. However, since the tradeoff
region for albumin synthesis flux was high (from 0.1 to 0.14),
increasing albumin synthesis required increasing the uptake rates
of oxygen (60), proline (61), asparagine (63), arginine (65), serine
(68), lysine (73), phenylalanine (74), and leucine (79). Interestingly,
histidine (31), which produces glutamate, was decreased for
increasing NADPH production because reaction 38 is proceeding
in reverse direction, which utilizes NADPH.

Fig. S1C presents the flux profiles for Pareto optimal solutions E
and F for the NADPH synthesis/urea synthesis bi-objective scenario.
There was an increase in the tradeoff region for NADPH flux
(1.05-3.36) when compared to the previous bi-objective case of
NADPH/albumin synthesis. As seen in Fig. S1C and Table S3, higher
urea flux necessitated up-regulation of gluconeogenic fluxes (1-4),
nonessential amino acid uptake (glutamate, 39), glucose release (54),
asparagines uptake (63), arginine uptake (65), and aspartate uptake
(70). On the contrary, increasing NADPH production requi-
red up-regulation of the uptake of amino acids that produce
succinyl CoA (methionine: 75) to increase electron transport chain
flux (44) and uptake of amino acids that produce glutamate
(histidine, 75). Interestingly, there is several fold increase in
carboxylation of pyruvate (8) by malic enzyme when NADPH is
maximized.

Fig. S1D presents the flux profiles for Pareto optimal solutions G
and H for the GSH synthesis/albumin synthesis bi-objective scenario.
Higher glutathione production flux upregulated the urea cycle fluxes
(15, 16, and 17), increased serine production (22 and 23), increased
glutamate synthesis (30), and increased gluconeogenesis fluxes (5-6).
Also, there is a significantly reduced synthesis of alanine by alanine
aminotransferase through pyruvate (18). Noticeably, higher albumin
requires increased catabolism of lysine (27), isoleucine (34), and
ornithine (39) with an increased production of glutamate (39 and 40),
aspartate (37), and decreased ketone bodies (5-hydroxy butyrate, 52).
Higher albumin flux also necessitates the increased uptake of amino
acids (proline, 61; asparagine, 63; arginine, 65; alanine, 67; serine, 68;
lysine, 73; phenylalanine, 74; valine, 77; isoleucine, 78; leucine, 79;
glutamine, 80; and tyrosine, 82).

As can be seen from the above results there is a significant
re-routing of flux directions and cycle fluxes when switching from
one objective to another within system constraints. In general,
up-regulation of gluconeogenesis was associated with higher urea
secretion, which, in turn, was associated with higher arginine and
aspartate fluxes. Increasing albumin synthesis required a signi-
ficant increase in the uptake of various amino acids and the
synthesis of some of the gluconeogenic amino acids. Interestingly,
higher glutathione synthesis required an up-regulation in glycine
synthesis. It is important to note that the bi-objective cases
analyses discussed in this section had preferences close to
(although not exactly at) the anchor points.

3.2. Analysis of tri-objective hepatic metabolic network

Next, as part of this analysis, we demonstrate the use of LPPFBA
to perform tri-objective optimization. We studied various prefer-
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Fig. 4. Pareto frontiers for bi-objective hepatic systems. Four major hepatic functions of albumin synthesis, urea secretion, NADPH, and glutathione synthesis were used for
bi-objective optimality in the combinations shown here: (A) Pareto frontier between albumin and urea synthesis. (B) Pareto frontier between NADPH and albumin
synthesis. (C) Pareto frontier between NADPH synthesis and urea secretion. (D) Pareto frontier between glutathione synthesis and albumin synthesis. The blue circles are
the anchor points, black circles are Pareto optimal solutions for optimization and red circles are selected Pareto solutions for which complete set of optimal fluxes are
shown in Table S4. A, B indicates Pareto points for albumin and urea bi-objective system; C, D indicates Pareto points for NADPH and albumin system; E, F indicates Pareto
points for NADPH and urea bi-objective system.; and G, H indicates Pareto points for glutathione and albumin bi-objective system. (E) Comparison of Pareto optimal
solutions obtained by LPPFBA weighted-sum and goal programming for a bi-objective problem of maximization of albumin synthesis and urea secretion. (For interpretation
of the references to color in this figure legend, the reader is referred to the web version of this article.)

ences for two different tri-objective combinations: NADPH produc-
tion, albumin synthesis, GSH synthesis and urea secretion, NADPH
production, and albumin synthesis. The optimal results are
presented in Tables 1 and 2, respectively, and the corresponding
fluxes are in Table S4. For each combination, we examined three
cases, each case favoring one of the three functions. Fig. S2A and B

shows the metabolic profiling for change in fluxes for NADPH
synthesis/albumin synthesis/GSH synthesis scenario and Fig. S2C
and D shows the metabolic profiling for change in fluxes for urea
secretion/NADPH synthesis/albumin synthesis when preferences
are changed from one objective to another. The anchor points
which are obtained by individual optimization of urea, albumin,
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Table 1
Linear physical programming optimization results for a tri-objective system (NADPH synthesis, albumin synthesis, and glutathione synthesis) for hepatic metabolic
network.
Case # Priority Flux t; (HD) t; (D) t3 (T) t, (UD) ts (HUD) Optimal
1 High NADPH 3.504 3.242 2.979 2.716 2.453 3.324
High Albumin 0.143 0.132 0.121 0.110 0.100 0.109
High GSH 14.900 13.782 12.665 11.547 10.430 10.430
2 High NADPH 3.504 3.242 2.979 2.716 2453 3.442
High Albumin 0.143 0.132 0.121 0.110 0.100 0.143
Low GSH 1.000 0.750 0.501 0.251 0.001 4.920
3 Low NADPH 0.100 0.078 0.055 0.033 0.010 0.100
High Albumin 0.143 0.132 0.121 0.110 0.100 0.143
Low GSH 0.100 0.075 0.051 0.026 0.001 0.464
4 High NADPH 3.504 3.242 2.979 2.716 2.453 3.504
Low Albumin 1.00x 1073 753 x1074 5.05x10~4 2.58 x10~4 1.00 x 10> 0.100
Low GSH 0.100 0.075 0.051 0.026 0.001 6.410
5 Low NADPH 0.100 0.078 0.055 0.033 0.010 0.532
Low Albumin 1.00x 1073 7.53 x 1074 5.05x 10~* 258 x107* 1.00 x 10~° 1.00 x 103
High GSH 14.900 13.782 12.665 11.547 10.430 14.859

HUD is highly undesirable, UD is undesirable, T is tolerable, D is desirable, and HD is highly desirable preference values of objective functions.

Table 2

Linear physical programming optimization results for a tri-objective system (NADPH synthesis, albumin synthesis, and urea synthesis) for hepatic metabolic network.

Case # Priority Flux t; (HD) t, (D) t3 (T) t4 (UD) ts (HUD) Optimal
1 High Urea 34.869 31.818 28.767 25.716 22.665 23.724
High NADPH 3.504 3.198 2.891 2.585 2.278 2.278
High Albumin 0.143 0.130 0.118 0.105 0.093 0.130
2 High Urea 34.869 33.125 31.382 29.638 27.895 29.706
Low NADPH 0.100 0.078 0.055 0.033 0.010 0.100
High Albumin 0.143 0.135 0.128 0.121 0.114 0.135
3 High Urea 34.869 33.125 31.382 29.638 27.895 34.845
Low NADPH 0.100 0.078 0.055 0.033 0.010 0.311
Low Albumin 1.00x 103 753 x10~4 5.05x 104 258 x10~4 1.00x 10> 0.001
4 Low Urea 1.000 0.750 0.500 0.250 1.00x10~° 1
High NADPH 3.504 3.329 3.154 2.979 2.804 3.442
High Albumin 0.143 0.135 0.128 0.121 0.114 0.143
5 Low Urea 1.000 0.750 0.500 0.250 1.00x 10~° 4.39
High NADPH 3.504 3.329 3.154 2.979 2.804 3.504
Low Albumin 1.00x 103 7.53 x10~4 5.05x 104 2.58x10°* 1.00x10~° 0.100
6 Low Urea 1.000 0.750 0.500 0.250 1.00x107° 1
Low NADPH 0.100 0.078 0.055 0.033 0.010 0.100
High Albumin 0.143 0.135 0.128 0.121 0.114 0.143

HUD is highly undesirable, UD is undesirable, T is tolerable, D is desirable, and HD is highly desirable preference values of objective functions.

glutathione, and NADPH are 34.579, 0.1404, 14.602, and 3.5014,
respectively.

Table 1 presents the multiobjective optimal solutions for 5
scenarios for the NADPH/albumin/GSH tri-objective case. Case 1
indicates the base case where preferences for all three hepatic
objectives were given based on their anchor points, however, none
of the objectives were given any specific priority, i.e., priority for
each was set as equal to a high value. As seen from the highly
desirable (HD) values for objective functions in Case 1, all
objectives’ highly desirable values are close to their anchor points.
The preference ranges in the LPP optimization for this case were
selected as 3.504-2.45 for NADPH production, 0.143-0.098 for
albumin synthesis, and 14.9-10.43 for glutathione synthesis. The
optimal values of objective functions obtained for this case (Case 1)
are 3.324 for NADPH synthesis (between highly desirable and
desirable), 0.109 for albumin synthesis (between undesirable and
highly undesirable), and 10.431 for glutathione synthesis (between

undesirable and highly undesirable). Next, we present Cases 2-3,
where higher priority is desired for albumin synthesis over
objectives of glutathione and NADPH synthesis. In Case 2,
preferences for preferences for glutathione synthesis were de-
creased significantly. This provides a higher priority for albumin
synthesis and a lower priority for glutathione synthesis. In this
case, we see that the optimal value of albumin (0.143) lies between
desirable and highly desirable as compared to Case 1 where
albumin was between undesirable and highly undesirable values.
Inter-optimality or tradeoff between various objectives is clearly
evident in Case 2 since albumin synthesis increased with a
corresponding decrease in GSH synthesis. To further increase the
albumin synthesis, in Case 3 preferences for both NADPH and GSH
were decreased and of albumin increased. This sets the priority of
albumin high compared to NADPH and GSH. The obtained Pareto
optimal values of albumin synthesis from LPPFBA are now similar
to the highly desirable (HD) preference and the same as Case 2. As
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can be seen from the optimal values of NADPH (0.1) and GSH
(0.464), the obtained values of NADPH and GSH decreased when
compared to Cases 1 and 2 because of low preferences on their
values. In Case 4, higher NADPH is desired and the priority for
albumin and GSH synthesis is very low. To obtain multiobjective
optimal solutions for this scenario compared to Case 1 a low
preference range was assigned to both albumin and GSH synthesis.
The preference ranges for the undesired objectives need to be
lowered in order to achieve a higher value for the desired objective.
This is because highly undesirable values act as a hard constraint
for the objective. Interestingly, optimal values obtained for all three
objectives were close to their highly desirable (HD) preference
values; however, when compared to Case 2, optimal albumin
synthesis was significantly decreased at the cost of a marginal
increase in NADPH synthesis and significant increase in GSH
synthesis. This shows that albumin synthesis is highly sensitive as
compared to NADPH and requires a significant decrease in its
synthesis for other hepatic functions to increase. In Case 5, higher
glutathione synthesis was desired; hence, preference ranges for
GSH were increased significantly towards HD values. As seen in the
obtained optimal values from Table 1, there was a significant
decrease in optimal albumin synthesis (0.001) to increase GSH
synthesis to the optimal value of 14.86. Table S5 presents the flux
values for Cases 3, 4, and 5 with their corresponding profiling in
Fig. S3A and B. Cases 3, 4, and 5 present the scenarios where higher
albumin is desired with lower preference for NADPH and GSH
synthesis, higher NADPH is desired with lower preference for
albumin and GSH synthesis, and higher GSH synthesis is desired
with lower preference for NADPH and albumin synthesis, respec-
tively. As seen in Fig. S3A, going from Case 4 (higher NADPH) to
Case 3 (higher albumin) requires up-regulation in the uptake of
amino acid fluxes (59, 61, 63, 65, 67, 68, 70, 73, 74, and 76-79), and
catabolism of phenylalanine (28). Fig. S3B presents the re-routing
of fluxes from Case 4 to Case 5 (higher GSH). This requires up-
regulation of catabolism of methionine (32), higher electron
transport chain flux (54), and oxygen uptake rate (60).

Table 2 presents the multiobjective optimal solutions for 6
scenarios for urea/NADPH/albumin tri-objective case. Case 1
indicates the base case where preferences for all three were
given based on their anchor points, however, none of the
objectives were given any specific priority. Hence, higher
preferences for all three were given in the optimization, and as
seen from the Highly Desirable value for objective functions, all
objectives’ higher desirability is close to their anchor points. The
preference ranges in the LPPFBA optimization for this case were
selected as 34.87-22.67 for urea secretion, 3.5-2.21 for NADPH
synthesis, and 0.143-0.093 for albumin synthesis. The optimal
values of objective functions obtained for this case (Case 1) are
23.724 for urea synthesis (between undesirable and highly
undesirable), 2.28 for NADPH synthesis (between undesirable
and highly undesirable), and 0.13 for albumin synthesis (between
highly desirable and desirable). Next, we present Cases 2-3,
where higher priority is desired for urea secretion over objectives
of albumin and NADPH synthesis. In Case 2, the desirable
preferences for NADPH synthesis were decreased and urea and
albumin synthesis marginally increased over Case 1. The obtained
multiobjective optimality results for Case 2 clearly indicate the
inter-optimality or tradeoff and inter-play between objectives,
since the optimal value of urea secretion (29.71) increased from
Case 1 solution with a concomitant decrease in NADPH to 0.1.
Interestingly, Case 3 shows the case where preference for albumin
secretion is decreased. In this case, urea secretion optimal values
(between highly desirable and desirable) are close to the anchor
point of urea secretion with a significant decrease in both NADPH
and albumin synthesis. In Cases 4 and 5, the priority to achieve
higher NADPH synthesis is desired over other objectives. As seen

in the table, in Case 4 the preferences of urea were decreased
(1-0.0) and both the NADPH and albumin synthesis preference
ranges were increased to 3.5-2.81 and 0.14-0.11, respectively,
resulting in higher optimal values for NADPH (3.442) and albumin
(0.143) synthesis. In Case 5, still higher NADPH synthesis was
desired with low priority for other objectives. All the objectives
were similar to their highly desirable preference values. Case 6
presents the case where higher albumin synthesis was desired
with low preferences for NADPH synthesis and urea secretion.
Again, the higher optimal albumin synthesis was obtained at the
cost of both urea and NADPH secretion. Table S5 presents the flux
values for Cases 3, 5, and 6 with their corresponding profiling in
Fig. S3C and D. As seen in Fig. S3C, going from Case 5 (higher
NADPH synthesis) to Case 3 (higher urea secretion) requires up-
regulation of gluconeogenic fluxes (1-4), higher urea cycle fluxes
(15-17), lower pyruvate to malate (8), and lower bypass reaction
of 3-phosphoglycerate (24).

To further demonstrate the advantages of applying LPPFBA in
metabolic systems, we compare the Pareto surface obtained using
LPFFBA with weighted-sum (WS) and goal programming (GP)
based MFA for two separate tri-objective systems: glutathione
synthesis, urea secretion, and albumin synthesis (Fig. 5A); NADPH
synthesis, urea secretion, and albumin synthesis (Fig. 5B) of
primary hepatocytes. We ran 50,000 simulations utilizing
different sets of weights using WS and GP based MFA and only
1000 simulations utilizing different set of preferences for LPPFBA.
As seen in Fig. 5A and B, even after using 50,000 set of weights
using WS and GP based MFA very few Pareto optimal solutions
could be obtained. This illustrates that the LPPFBA can predict all
possible Pareto optimal solutions for large-scale metabolic
network systems whereas existing methods can capture only
limited optimal solutions on Pareto surface. This is a noteworthy
advantage of LPPFBA.

3.3. Quad-objective hepatic metabolic network

In the previous sections we presented the application of
LPPFBA for bi-objective and tri-objective systems. In this section,
we present the application of LPPFBA for improving current
hepatic cellular systems using quad-objective (albumin synthesis,
glutathione synthesis, NADPH synthesis, and urea secretion)
optimization. In BAL systems, when hepatocytes are exposed to
human plasma they become steatotic and exhibit severe loss of
hepatic function (albumin and urea synthesis, Chan et al., 2002).
The experimental metabolic fluxes for simulated BAL condition of
hepatocytes exposed to human plasma were obtained from the
literature (Chan et al., 2003a, 2002). The goal was to determine
optimal fluxes for the hepatic metabolic network under the
simulated BAL condition considering all the objective functions
simultaneously, leading to a quad-objective scenario (albumin,
urea, NADPH, and GSH). Table 3 presents the preferences assigned
to the four objectives to create the different scenarios. The
experimentally measured fluxes with their corresponding
intracellular fluxes were used in the “base cases” for all
comparisons. Two separate cases were used as “base case” to
compare the changes in current fluxes from these “base cases” to
the optimized scenarios where a variety of hepatic objectives
were optimized. In one of the “base cases”, intracellular fluxes
were obtained after optimizing for glutathione synthesis (in this
case the other three hepatic objectives were used as measured
fluxes obtained from Chan et al. 2003a). In the second scenario, all
four hepatic objectives were simultaneously optimized, hence, all
four objectives were treated as unmeasured fluxes and other
fluxes were used for optimization to compute the intracellular
fluxes. The corresponding fluxes for these four cases are presented
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Fig. 5. (A and B) Comparison of Pareto optimal solutions obtained by LPPFBA, weighted-sum, and goal programming for two tri-objective cases for hepatic metabolism.

Table 3
Linear physical programming optimization results for a quad-objective system (NADPH synthesis, albumin synthesis, urea synthesis, and glutathione synthesis) for hepatic
metabolic network.

Case # Priority Flux t; (HD) t, (D) t3 (T) t4 (UD) ts (HUD) Optimal
1(base) Measured Urea - - - - - 0.570
Measured NADPH - - - - - 0.012
Measured Albumin = = = = = 9.40 x 10~°
Max GSH - - - - - 9.912
2(base) Mid Urea 30.000 20.000 10.000 1.000 0.100 20.000
Mid NADPH 2.500 1.500 0.500 0.100 0.010 2.444
Mid Albumin 0.100 0.050 5.00x 103 5.00x 1074 5.00x 10~> 0.001
Mid GSH 10.000 5.000 1.000 0.500 0.100 9.889
3 High Urea 34.869 31.818 28.767 25.716 22.665 34.845
Low NADPH 0.100 0.078 0.055 0.033 0.010 0.100
Low Albumin 1.00 x 103 7.53x 1074 5.05x 104 258 x 10~ 4 1.00x10°° 0.001
Low GSH 0.100 0.075 0.051 0.026 0.001 9.456
4 Low Urea 1.000 0.750 0.500 0.250 1.00 x 10~° 1.000
High NADPH 3.504 3.198 2.891 2.585 2.278 3.504
Low Albumin 1.00x 1073 753 x10°4 5.05x 104 258 x 1074 1.00x10~° 0.100
Low GSH 0.100 0.075 0.051 0.026 0.001 6.410
5 Low Urea 1.000 0.750 0.500 0.250 1.00 x 10~> 1.000
Low NADPH 0.100 0.078 0.055 0.033 0.010 0.100
High Albumin 0.143 0.130 0.118 0.105 0.093 0.143
Low GSH 0.100 0.075 0.051 0.026 0.001 0.417
6 Low Urea 1.000 0.750 0.500 0.250 1.00-10°° 8.830
Low NADPH 0.100 0.078 0.055 0.033 0.010 0.737
Low Albumin 0.001 7.53x 104 5.05x 104 258 x10~4 1.00x 1073 0.001
High GSH 14.900 13.596 12.292 10.988 9.685 14.859
7 High Urea 34.869 31.818 28.767 25.716 22.665 22.724
High NADPH 3.504 3.198 2.891 2.585 2.278 2.278
High Albumin 0.143 0.130 0.118 0.105 0.093 0.105
High GSH 14.900 13.596 12.292 10.988 9.685 10.589

HUD is highly undesirable, UD is undesirable, T is tolerable, D is desirable, and HD is highly desirable preference values of design metrics. The base cases include 10
measurements: flux 54=0.5; flux 56=0.38; flux 57=0.83; flux 60=0.12; flux 66 =0.24; flux 67 = —0.13; flux 69=0.006; flux 70=0.13; flux 75=0.016; and flux 81=0.022.
Base case 1 is obtained by optimizing GSH (flux 48). In addition to the 10 measurements, another 3 values were imposed as constraints based on experimental data: flux 16
(urea)=0.57, flux 46 (NADPH)=0.012, and flux 47 (albumin)=9.4 x 10~°. Base case 2 is obtained by quad-objective optimization of urea, NADPH, albumin, and GSH using
LPPFBA.
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Fig. 6. Metabolic profiling of percentage change in Pareto optimal fluxes for 16
solutions of the quad-objective optimization. The % change is taken from a referent
optimal solution that consider 10 measurements to each 16 cases: flux 54=0.5;
flux 56=0.38; flux 57=0.83; flux 60=0.12; flux 66=0.24; flux 67= —0.13; flux
69=0.006; flux 70=0.13; flux 75=0.016; and flux 81=0.022. (A) The reference is
obtained by optimizing GSH (flux 48). In addition to the 10 measurements,
another 3 values were imposed as constraints based on experimental data: flux 16
(urea)=0.57, flux 46 (NADPH)=0.012, and flux 47 (albumin)=9.4 x 10~°. (B) The
flux of reference is obtained by quad-objective optimization of urea, NADPH,
albumin, and GSH using LPP. The preferences for each variable [t5 t; t3 t; t; ] are [30
20 10 1 0.1] for urea, [2.5 1.5 0.5 0.1 0.01] for NADPH, [0.1 0.05 0.005 0.0005
0.00005] for albumin, and [10 5 1 0.5 0.1] for GSH. Only changes up to 100% are
shown.

in Table S6. These cases were a subset of 16 different scenarios
presented in Table S7 (supplementary data). Various sets of
preferences were changed for their corresponding objectives and
the effect of changing preferences on the fluxes was investigated
in the form of a “heat map”. Fig. 6A and B show the distribution of
flux changes for the cases shown in Table 3 in the form of a “heat
map”. In Table 3, the “base case” is indicated as Case 1. The
experimental values of albumin, urea, and NADPH secretion are
indicated with GSH synthesis being computed from the available
measured data. Case 2 of the quad-objective system includes all
the measured fluxes of Case 1; however, all four hepatic
objectives are unmeasured in this case. Hence, Case 2 is a
scenario where we optimized the current measured hepatic flux
data using a quad-objective system. Both Case 1 and Case 2 serve

as base cases or present the fluxes of the current BAL systems.
Again, two heat maps are shown to compare the changes in fluxes
from the two “base cases” to the optimized scenarios for hepatic
objectives.

In Case 3 of the quad-objective system, we examined the
impact of choosing urea synthesis as a priority over the other liver
specific functions of albumin, GSH, and NADPH synthesis. For this
purpose, the preference for urea secretion was increased close to a
highly desirable value, while the preferences for albumin
synthesis, GSH synthesis, and NADPH synthesis were kept far
lower than their corresponding anchor points. We found that the
optimal value for urea secretion (34.85) increased from Case 1
(0.57) and was close to its anchor point. There was a concomitant
increase in NADPH and albumin and synthesis from Case 1.
However, compared to Case 2 there was an increase in urea
secretion (34.86) in Case 3, however, with a significant decrease in
NADPH synthesis. In Case 4, we prioritized NADPH synthesis.
Hence, the preference for NADPH synthesis was increased closer
to the anchor point and all other preferences were decreased. We
found that NADPH synthesis optimal values were close to the
anchor point for NADPH flux (between highly desirable and
desirable) concomitant with a significant decrease in urea
synthesis when compared to Case 2.

In Case 5, we prioritized albumin synthesis over other
objectives. As seen in the table, in Case 5 the preferences of urea,
NADPH, and GSH synthesis were decreased and albumin synthesis
preference range was increased to 0.1426, resulting in a higher
optimal value of albumin (0.1426). In Case 6, we favored GSH
synthesis over the other objectives. As seen in the table,
preference for albumin synthesis has to be significantly decreased
to achieve higher glutathione synthesis optimal values, whereas
decreasing urea and NADPH synthesis is not necessary since it
does not lead to any significant decrease in their optimal values.
This is also confirmed in Fig. 4D and S2D where going from Pareto
optimal solution of higher glutathione synthesis (G) to higher
albumin synthesis (H) does not require a significant change in
urea and NADPH synthesis.

In Case 7, preferences for all four objectives were the same
(highly desirable) and therefore none of them was given any
specific priority. In this case, all objectives were close to their
anchor points. The preference ranges in the LPP optimization
for this case, were selected as 34.87-22.67 for urea secretion,
3.5-2.28 for NADPH, 0.143-0.09 for albumin, and 14.9-9.69 for
glutathione syntheses. The optimal values of objective functions,
i.e., desired fluxes obtained for this case (Case 7) are 22.92 for urea
synthesis (between undesirable and highly undesirable), 2.23 for
NADPH synthesis (between highly undesirable and undesirable),
0.11 for albumin synthesis (between tolerable and undesirable),
and 10.59 for glutathione synthesis (between tolerable and
undesirable). All objectives optimal values were less than their
individual priority case, thus clearly illustrating the inter-
dependence and tradeoff among the various objectives.

Now, we quantitatively profile the fluxes of various metabolites
under various optimal conditions in several cases based on the
relative changes indicated in heat maps. Table S7 presents the flux
values for Cases 1-7 with their corresponding profiling presented
as a heat map in Fig. 6A. The plasma exposed hepatic fluxes for the
current BAL system are shown in Column 1 of Table S7. If high urea
synthesis is desired (Case 3) in the BAL then this necessitates a
significant increase in gluconeogenic fluxes (2-4), with a con-
comitant decrease in TCA cycle fluxes (9,10, and 12), increase in
urea cycle fluxes (15-17), and a decrease in catabolism of
glucogenic amino acid (serine, 19). Another key observation is that
higher urea secretion in the simulated BAL requires a significant
decrease in catabolism of ketogenic amino acids (leucine, 35). As
seen in the table, the increase in fluxes is much higher when
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priority is more for urea secretion than the other objectives.
Notably, there is a significant decrease in oxygen uptake (60) and
electron transport chain fluxes (44 and 45) when higher priority is
for urea synthesis. The other evident factor is that uptake of
glucogenic amino acids is higher (serine, 68; glycine, 69; and
histidine, 75) when higher priority is to achieve higher urea
synthesis over other objectives. In Case 4 we give higher preference
to NADPH synthesis over other objectives. This is achieved using an
increase in conversion of pyruvate to malate (8), decrease in TCA
cycle fluxes, an increase in uptake of ketogenic amino acids (lysine,
73 and leucine, 79). The trends or changes in fluxes in moving from
“Case 1 to Case 3” and “Case 1 to Case 4” in this quad-objective
case are similar to the trends when moving from Case F to E in the
bi-objective scenario (Fig. C). However, there are some major
differences because of constraints in other objectives (albumin
synthesis and glutathione synthesis). In quad-objective Case 3 and
Case 4 the preference of albumin synthesis is low and this results in
differences in actual flux values. The other important differences
are the decrease in oxygen uptake, lipid uptake (53), lipid stored
(58), and fatty acid oxidation observed in Case 4 which were not
significant in Case E of the bi-objective.

To move from “Case 1” to “Case 5”, i.e,, to high albumin
synthesis, requires glucogenic fluxes (2-4) and urea cycle fluxes
(15-17) to be decreased significantly with a concomitant decrease
in ketone body production (52 and 71) and triglyceride lipolysis
(53). There is also a decreased catabolism of essential amino acids
which are both glucogenic and ketogenic (tryptophan, 25;
phenylalanine, 28; and isoleucine, 34) and an increased uptake
of glucogenic (61 and 74-78) and ketogenic (lysine, 73 and
leucine, 79) amino acids. Notably, in Case 5, i.e. of high albumin
synthesis, there is an increased uptake of pyruvate forming amino
acid (alanine, 67) and o-ketoglutarate forming amino acids
(proline, 61 and arginine, 65) which is only evident under this
condition of high albumin synthesis. In comparing Case 5 with
1-An of the bi-objective scenario (Fig. 4A), again there is a
decrease in urea secretion in Case 4, because of higher preferences
for NADPH and glutathione synthesis over urea secretion. In Case
1-A, the values of two optimized objectives, urea secretion and
albumin synthesis, were 29.7 and 0.136, respectively, and for the
two non-optimized objectives, NADPH and glutathione synthesis,
were 0.19 and 3.42, respectively. However, in Case 5, the values of
optimized objectives for urea secretion, NADPH, albumin, and
glutathione synthesis were 1.0, 0.1, 0.143, and 0.42, respectively.
This results in decreased urea cycle fluxes, higher fatty acid
oxidation (41), and decreased glucogenic fluxes in Case 5.

To move from “Case 1” to “Case 6", i.e. to high gluathione
synthesis, necessitates higher glucogenic amino acids (68, 72, 75,
76, and 80) and lower ketogenic amino acids (73 and 79). Also,
there is an increased uptake of amino acids relevant to urea cycle
fluxes such as aspartate(70) compared to Case 1 but decreased
arginine and asparagines uptake when compared to both Case 1
(base BAL case) and Case 5 (high albumin synthesis); but, there is
a significant increase in amino acids involved in the synthesis of
glutathione (glycine, 69 and glutamine, 80).

Case 7 presents the results where equal priority was assigned
to all four objectives. As can be seen from the heat map, moving
from Case 1 to Case 7 necessitates most of the fluxes to be
increased. Significant increase in fluxes of amino acids forming
pyruvate (serine, 19), acetoacetylCoA (tryptophan, 25), and
o-ketogluatrate (glutamine, 40) is required to simultaneously
increase the fluxes of various objectives. In summary, to increase
the hepatic function in BAL from its current state of Case 1 to the
case where all four major hepatocyte functions are increased
necessitates increases in glucogenic fluxes, TCA cycle fluxes, and
increased uptake of both glucogenic and ketogenic amino acid
fluxes. Interestingly, the increase in hepatic function also

necessitates decreased lipid synthesis and storage fluxes. This is
in concurrence with the experimental results of stimulated BAL
where lipid storage and synthesis decreased hepatic function.

Fig. 6B presents the profiling if Case 2 is used as the base case and
metabolite changes are computed based on this base case. The
difference between Base Cases 1 and 2 is essentially between the
exclusion of measurements for urea, albumin, and NADPH syntheses.
Base Case 2 optimizes the hepatic function using the existing
measurements of amino acids and lipid uptake. The respective values
of equally prioritized optimal hepatic objectives for Case 2 using
LPPFBA are urea synthesis (20.0), NADPH synthesis (2.44), albumin
synthesis (0.001), and GSH synthesis (9.89). As seen in the heat map
in Fig. 6B, the flux changes to achieve various objectives when Base
Case 2 is used as reference case both increased and decreased
significantly from their current state. This is in contrast to Fig. 6A
where most of the changes were in the direction of increasing
uptakes. Interestingly, to move from Case 2 to Case 7, i.e. to increase
the hepatic functions in simulated BAL we need to decrease
glucogenic fluxes (1-4) and increase the TCA cycle fluxes (12-15).
Importantly, pyruvate is required to increase the synthesis of alanine
(18) rather than using it directly as a substrate in the TCA cycle to
compensate for the increased demand of alanine by other hepatic
functions. Notably, TCA cycle flux from succinyl CoA to oxaloacetate is
increased by increasing the synthesis of succinyl CoA from methio-
nine (net succinyl CoA flux is 4.37 in Case 7 compared to 0.012 in
Case 2). There is net increase in uptake of various amino acids
(proline, 61; serine, 68; glycine, 69; aspartate, 70; 73-80) required in
Case 7 to increase the hepatic function in simulate BAL system.

Numerous studies abound in which biological systems have been
shown to exhibit the property of optimality. Moreover it is a well
known fact that mammalian systems perform an array of regulatory,
metabolic, homeostatic, and phenotypic functions thus they exhibit a
tradeoff between proliferation and differentiation, cellular functions
and growth, cellular functions and robustness, and growth and
proliferation. However, most of the current frameworks are not
suitable for handling various biological objectives simultaneously.
Thus, there has been a continued struggle in understanding the
crosstalk and correlation of the cellular objectives in metabolic
networks. We present a novel soft constraints approach which
explains the effect of one objective over another and could decipher
the basis behind the selection of optimal metabolic network fluxes for
hepatic metabolic network system. Hepatic system in BAL is among
the most complex metabolic network system because of the
requirement of maintenance of several objectives (maximizing ketone
body synthesis, minimizing triglyceride storage, maximizing fatty
acid oxidation, maximizing albumin synthesis, maximizing urea
secretion, maintaining anti-oxidative stress enzyme homeostasis,
and bile transport). Using our approach we show the specific routing
of fluxes needed for BAL systems for the cases where one or many of
these objectives are desired to be maintained. The analysis presents
an experimentally viable strategy for enhancing functionality of BAL
systems.

4. Conclusions and summary

Mammalian systems perform several different functions in
nature and hence, optimization of such systems may involve more
than one objective as the goal. For example, hepatocytes perform
several different functions as the key component of BAL systems,
and these functional objectives are potentially conflicting. As seen
above, higher albumin synthesis changes the uptake of various
metabolites in such a manner that necessarily decreases urea
secretion. In order to investigate the tradeoffs between these
conflicting objectives and to explore available design options, one
needs to formulate the optimization problem with multiple
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objectives (vector optimization). Vector optimization obtains a
Pareto optimal solution that satisfies the strict constraints
imposed by multiple objectives. However, most of the current
algorithms suffer from several disadvantages, such as: requiring a
priori selection of weights or targets for each of the objective
functions which are inadequate in capturing desired preferences;
providing a single Pareto solution; inability to generate proper
Pareto points for non-convex problems (e.g., the weights
method); inability to generate sensitivity information for tradeoff
and decision making; and no inherent capabilities for design
exploration. LPPFBA captures the designer’s preferences a priori in
a mathematically consistent manner using preference functions.
The application of LPPFBA does not require specifying weights for
each objective function. Rather, the ranges of differing degrees of
desirability for each objective function are specified. A clear
advantage of the LPPFBA approach is that it is a strategy that
allows one to obtain conditions where tradeoff of all the desired
objectives could be observed in their physical space.

Another advantage of LPPFBA is its ability to deal with multiple
objectives with ease. As seen in this paper, BAL systems have many
objectives and as can be seen from the quad-objective scenario,
working in physical space allowed us to analyze optimal conditions
easily and obtain various desired optimal solutions. As seen in Fig. 3,
using linear programming for this quad-objective problem would
have necessitated specifying four weights and no target values,
using goal programming would have necessitated 8 weights and
four target values; however, LPPFBA requires no specification of
weights and only requires target values (20). Specifying the target
values is much easier since these are specified in physical space
which is always a known space for the designer. Another significant
advantage of LPPFBA is that it facilitates optimization of poorly
scaled problems. An example of such problems in metabolic
networks is the maximization/minimization of two fluxes of
different magnitudes, such as the minimization of albumin (on the
order of 10~°) and NADPH synthesis (on the order of 10').

In summary, in this paper, a constrained multiobjective formula-
tion LPPFBA to analyze large scale linear metabolic networks is
presented. The LPPFBA approach provides a new effective tool to
obtain Pareto optimal solutions. The incorporation of LPP into the
standard Flux Balance Analysis method enables an unambiguous
formulation of an aggregate objective function that facilitates effective
multiobjective flux balance analysis for large-scale problems. The
presented LPPFBA approach initiates a meaningful step towards
analyzing optimality in natural and perturbed metabolic networks
(Segre et al., 2002). Importantly, the presented methodology could be
employed in various metabolic networks that invariably have
multiple objectives (ranging from physiological to design objectives)
to be optimized. The combined quantitative and visualization frame-
work presented in this paper sets the stage for the development of
true optimal solutions for large scale genomics based metabolic
network systems. In the context of BAL, the results presented in this
paper illustrate that BAL design using constraints based multi-
objective optimization can result in an increase in overall hepatic
functions by modifying various metabolite fluxes from its current
simulated state during BAL operation. The results presented in this
paper have the potential to improve the hepatic function by using
optimal pre-conditioning medium in BAL devices. We are currently
investigating the optimal fluxes obtained through multiobjective
optimization experimentally by using hormonal supplements, in-
ducers, and transfection of primary hepatocytes in our laboratory.

Supplementary data

The algorithm details for LPPFBA are presented as part of the
supplementary data for the interested readers.
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Appendix A
A.1. Generation of Pareto points using LPPFBA

This section develops a simple Linear Physical Programming
based Pareto frontier generation method. In LPPFBA approach,
preferences regarding each cellular objective can be expressed by
providing numerical values that are associated with ranges of
differing desirability. In order to obtain the Pareto optimal
solutions, preference values have to span the objective space, to
generate all the combinations of actual preferences that can result
in corresponding Pareto points. We generate Pareto points in a
region where a particular objective function is small by simply
expressing small pseudo-preference values for that objective
function. In a similar fashion, we can generate Pareto points in a
region where a certain objective function is large by simply
choosing large pseudo-preference values for that design metric.
The steps for Pareto generation are presented below:

Step 1—Definition of the objective space of interest: First a
hypercube that defines the region of interest in the objective
space is generated. In particular, the minimum and maximum
values associated with each design metric are defined. For the ith
objective function, gimin and gma, respectively denote the
associated minimum and maximum objective function values in
the Pareto frontier, or in the desired region of investigation;
where it is to be noted that the region of investigation must be a
subset of the Pareto frontier. For the ith objective function, we
also define

di = gi,max_gi,min (24)
Step 2—Tradeoff matrix construction: Define the tradeoff matrix
G, as follows:

S1min 812 - &IN r
in - r:
G= g?l gz,?mn ) gZ'N _ 2 (25)
8n1 N2 8N, min Y

where N is equal to the number of objective functions, ng. In the
tradeoff matrix G above, the ith row, r;, represents the set of
objective function values that are obtained when g;=g; min-

Step 3—Diagonal translation of AOF surface: The generation of
the Pareto points involves translating the AOF surface across
the objective space. A pseudo-preference translation vector is
formed as

St =78 min+ (1=7;) &imax (26)
where

N

> yi=1, 0<y<1 27

i=1

The parameter 7y; varies between 0 and 1, and the ith
component of the translation vector varies between the minimum
and maximum values of the ith objective function. The number of
values of y; is dictated by the resolution with which we wish to
generate the Pareto frontier. We let n, the point-density parameter
(which represents the resolution of the Pareto frontier) denote the
number of y; values for each objective function. Accordingly, the 7;
increments are 1/(n—1). Fig. S1 depicts the scenarios for two and
three soft objective function cases, with n=6. In the case of two
design metrics, we have a total of 6 translation vectors, which will

(2010), doi:10.1016/j.ymben.2010.05.003

Please cite this article as: Nagrath, D., et al., Soft constraints-based multiobjective framework for flux balance analysis. Metab. Eng.



dx.doi.org/10.1016/j.ymben.2010.05.003

16 D. Nagrath et al. / Metabolic Engineering 1 (11i) nna—am

yield 6 Pareto solutions. In the case of three objective functions,
we have 21 translation vectors yielding 21 Pareto solutions. The
AOF surface is shifted through the objective space. With each
shift, an optimization is performed resulting in a Pareto point. In
essence, translating the AOF surface in the objective space
generates the entire Pareto frontier.

Step 4—Offset in diagonal translation of AOF surface, and its
magnification: In Step 3, we showed how the AOF surface could be
translated, with the intent of generating the Pareto frontier.
However, to avoid missing any Pareto solution if hypercube is too
small we need following adjustments. First, we can offset the
translation trajectory by replacing it with another that is parallel to
the original. Alternatively, we can magnify the box size so as to
overlap all regions of the objective space. First, we define the box
size as

a;=d;/ng (28)

where ng is a real positive number that defines the relative size of the
hypercube of interest and the AOF. By letting n, be a number less than

Table A1
Linear physical programming weights algorithm.

Steps Action

1. Initialize:

2
p=11, wi =0, w;=0, z =smallpositive number (say 0.1)

i =0, s =1, ng.=4# of soft criteria

2. Set i=i+1

3. Evaluate, in sequence,
2, f, e, Wi, owh, Wi, Wi, W

4. Set s=s+1

5. If Wi is less than some chosen small positive number (say 0.01),
then increase f and go to step 2

6. If s# 5, go to step 3

7. If i # ngc, go to step 2

‘i’ values correspond to soft criteria.

Table A2
Mathematical preliminaries.

or equal to two when there is no offset, we can ensure that all Pareto
points can be generated. Second, we define the offset vector as

S{ = Ofidi, —“1<o;<1 (29)

which is used to offset the translation trajectory, as discussed above.

Step 5—Formation of pseudo-preference vector: The pseudo-
preference is vector as follows. As discussed above, we directly
use these values of preference input in the LPP algorithm to
generate Pareto points. We define

S =-(m-1)F, np=1,..5 (30)
and
11 3
0 _ - -2 .
pi_{o N 1}(11 31)
which yield the pseudo-preference vector as
g’
&i2
P;=< &3 =($§+S{+S§’>E+P? (32)
8ia
&is
where
E={1 1 1 1 1} (33)

The variable S is utilized to implement an additional offset of
the translation trajectory. Also following constraints have to be
satisfied in order for the pseudo-preferences to effectively impact
the solution:

d:
S +57] < 5 34)
which leads to the requirement

1 np-1 1 np—1
- § + 4nd sotis5+ 4nd (35)

See Tables A1 and A2

Concept Formulation
1. F=z(t)=z(t;) Vi 2<s<5), z'=0
2. 2=7-712<s<5), z'=0

3. OVO rule enforcement

or, equivalently

P =Pe—12"'3<s<5), ne>1, f>1

2> Mme-12"'3<5<5) (e>1) @)

where ny. denotes the number of soft criteria and f will be used as a convexity parameter

4. convexity requirement Define

>4 2= e
fo =ti -t 1, Fe=ti—tis, Q<s5<5)

i

The magnitude of the slopes of the class function of the ith criterion is

s
wi =2°/ty, wi=2°/t; (2<s<b5)

. S
Whin = n‘ilgn<wi5 Wis> >0, {

where

2<S<5)
i: soft criteria

+ gt + o —wo S =wi =
Wis =Wis =W 1y Wis =W 1y, Wi =Wy —0{

2<s<5)
i: soft criteria
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Appendix B. Supporting information

Supplementary data associated with this article can be found
in the online version at doi:10.1016/j.ymben.2010.05.003.
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