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Abstract: Multi-voxel pattern analysis (MVPA) was used to analyze blood-oxygen level dependent
functional magnetic resonance imaging (BOLD fMRI) data, which were acquired as human subjects
received brief vibrotactile stimulation of their hands and feet. Support vector machines trained and
tested on the whole brain fMRI data were able to accurately decode the body site of single touches,
with mean performance of 92% in a two-way discrimination task (chance performance 50%) and 70%
in a four-way discrimination task (chance performance 25%). Primary and secondary somatosensory
areas (S1 and S2) alone decoded the touched body site with high accuracy. S1 was more accurate at
decoding touches closely spaced on the body surface (different fingers of the same hand) whereas S2
and S1 were equally accurate at decoding widely spaced touches (hand vs. foot). The hand and foot
regions of S1 (Slhand and Slfoot) were separately examined in a two-way classification task. Slhand
was better able to decode the hand of stimulation (left vs. right), and S1foot was better able to decode
the foot of stimulation. In addition to S1 and S2, vibrotactile responses were observed in a region of
visual cortex, areas MST and STP (MST/STP) in lateral occipito-temporal lobe. MST/STP was able to
accurately decode the hand but not the foot of stimulation, supporting the idea of a role for MST/STP

in eye-hand coordination. Hum Brain Mapp 00:000-000, 2009.
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INTRODUCTION

Traditional neuroimaging analyses use information
about the sensory stimulus or behavioral state of the sub-
ject to calculate a measure of activation in a single brain
voxel at a time. Recently, techniques have been developed
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to measure distributed patterns of activity across the brain,
referred to as multi-voxel pattern analysis (MVPA)
(Norman et al., 2006). With MVPA, the traditional analysis
is reversed and measurements of brain activity are used to
decode the sensory stimulus presented to the subject or
the mental or behavioral state of the subject (Cox and
Savoy, 2003; Haynes and Rees, 2006; Kamitani and Tong,
2005; Kriegeskorte et al., 2006; LaConte et al., 2005).

Most distributed pattern analysis studies have focused
on decoding visually-presented stimuli. Visual cortex is
anatomically the largest of the early sensory cortices, and
even simple visual stimuli evoke activity in many visual
areas (Grill-Spector and Malach, 2004). This distributed
representation makes visual cortex an ideal laboratory for
MVPA, because it provides many active voxels across
which to pool information. However, it raises the ques-
tion of whether other sensory modalities whose cortical
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representations are smaller or less distributed than visual
cortex are amenable to MVPA. We performed two experi-
ments to investigate whether MVPA could be used to
decode individual stimuli presented in a different sensory
modality, namely the somatosensory system.

In both experiments, a simple vibrotactile somatosensory
stimulus (touch) was delivered to different locations on the
body surface. In the first experiment, widely separated
touches were delivered to the left or right hand or foot of
the subject. In the second experiment, closely spaced
touches were delivered to three fingers on the right hand
and to the right foot. Our analyses focused on three
regions of the somatosensory network: primary somatosen-
sory cortex (S1), secondary somatosensory cortex (S2), and
a region of lateral occipital-temporal cortex, MST/STP, that
has traditionally been labeled as visual association cortex
but also responds to touch (Beauchamp et al., 2007; 2008;
Blake et al., 2004; Hagen et al., 2002; Ricciardi et al., 2007).

Most MVPA studies have used blocked designs, in
which stimuli from the same category are grouped. Block
designs are problematic in the somatosensory system,
where adaptation is pronounced both peripherally and
centrally (Leung et al., 2005, Tommerdahl et al., 2005).
Rapid event-related designs are an efficient way to present
many different stimuli while minimizing adaptation. We
developed a simple technique to analyze single trials of
somatosensory stimulation presented in a rapid event-
related design using support vector machines (SVMs), a
supervised learning method that performs efficiently at
high-dimensional classification tasks like those found in
fMRI (Cox and Savoy, 2003; LaConte et al., 2005).

METHODS

Subjects were recruited and informed consent was
obtained in accordance with the University of Texas Com-
mittee for the Protection of Human Subjects. Subjects were
scanned using a 3 tesla whole-body MR scanner (Phillips
Medical Systems, Bothell, WA). Seven subjects participated
in experiment 1, and eight subjects participated in experi-
ment 2. In both experiments, vibrotactile somatosensory
stimuli were delivered by five piezoelectric benders. In
experiment 1, the five benders were attached to the left
palm, the right palm, the sole of the left foot, the sole of the
right foot, and the right hip (Fig. 1A). In experiment 2, the
benders were attached to the thumb (D1), the third (middle)
finger (D3), and the fifth (pinky) finger (D5) of the right
hand (adjacent fingers were not stimulated because of me-
chanical constraints introduced by the benders); the right
foot; and the right hip (Fig. 1B). A similar rapid event-
related design was used for both experiments (Fig. 1C).
Each 5-min scan series contained 150 two-second trials (cor-
responding to the MRI repetition time, TR, of 2 sec) with
10 hip target trials, 40 fixation baseline trials with no soma-
tosensory stimulus, and 25 of each of the other four benders.
Trial ordering was counter-balanced so that each trial type

was equally likely to be preceded by any other trial type,
and experimental power was maximized by jittering (ran-
domizing) the interval between two trials of the same type
(Dale, 1999). Six scan series were collected from each subject.
There was no task during hand or foot stimulation, other
than to maintain visual fixation on central crosshairs. Dur-
ing hip stimulation trials, subjects were required to make an
eye movement to a visually presented target. This ensured
that subjects remained alert and attentive throughout the
experiment. Because hip trials were analyzed separately
(and not used for the classification analysis) any brain activ-
ity related to the eye movement responses could not contrib-
ute to classification performance.

A finite impulse response model was used to fit the MR
time series in the context of the general linear model using
the AFNI program 3dDeconvolve (Cox, 1996). The average
response to each trial type in each voxel was determined
with nine individual tent functions that modeled the entire
BOLD response from 0 to 16 sec post-stimulus, accounting
for overlapping responses from consecutive trials without
any assumptions about the shape of the hemodynamic
response (Glover, 1999). An F-test was used to find active
voxels, defined as those in which the tent functions for the
hand and foot stimulation trials accounted for a significant
fraction (P < 107°) of the variance.

Classifier Training and Testing

Separate classifiers, as implemented in SVMlight (Joa-
chims, 1999) were constructed for each subject using the
3dsvm command in AFNI. Complementary analyses with
a different package, LibSVM (Chang and Lin, 2001), gave
very similar results. Within each subject, the SVM was
trained using one set of data from the subject. Then, the
SVM was tested on additional data not used for training.

The input to the SVM consisted of a matrix of pattern
vectors, Xy,i. X had N rows corresponding to the number
of active voxels, with y corresponding to the trial type and
i corresponding to the trial index of that trial type. Because
the feature dimension N was high, a linear kernel was
used to lower the computation time (LaConte et al., 2005;
2007). Separate classifiers were constructed for each pair of
stimuli and combined using a decision directed acyclic
graph (Platt et al., 2000).

In each subject, six scan series were collected, each con-
taining a random sequence of somatosensory stimuli. This
allowed the use of leave-one-out cross-validation to assess
classification performance. Within each subject, six differ-
ent SVMs were constructed, each trained on a different set
of five scan series collected from the subject. Then, each
SVM was tested on the single left-out scan series not used
for training. Arranging the samples in this way avoids
splitting samples from one run into both training and test
sets which may be problematic due to dependency among
successive samples within each run (Haxby et al., 2001).

Because the BOLD response to brief somatosensory stimu-
lation was relatively punctate (Fig. 6A), to estimate the
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Figure 1.

Methods used for somatosensory multivoxel pattern analysis. A.
Somatosensory stimuli were delivered by five piezoelectric bend-
ers. In experiment |, the benders were located on the palm of
the right hand (R), the palm of the left hand (L), the sole of the
right foot (D), the sole of the left foot (S), and the right hip (H).
B. In experiment 2, the benders were located on the right thumb
(T), the right middle finger (M), the right fifth pinky finger (P), the
right hip (H), and the right foot (D). C. During the course of an
MRI scan series, brain volumes were acquired (shown schemati-
cally by single brain slices) every 2 sec. Each acquisition corre-
sponded to a single stimulation trial in which a single body site
was stimulated, shown by a letter corresponding to the body plan
shown in (A). Some trials (not shown) contained target bender
stimulation or fixation baseline with no somatosensory stimula-
tion. D. Using the MR data, an activation map was constructed of
voxels responding significantly more (P < 10™°) to somatosensory
stimulation than to fixation baseline. A lateral view of a partially
inflated left hemisphere is shown, yellow color shows active areas
(Argall et al, 2006). E. Over the course of a scan series, 150
brain volumes were acquired. The three black traces show the
image intensity over the course of a scan series in three active
voxels selected from the yellow voxels in (C). F. The time series

response to individual trials we made the simplifying
assumption that the image intensity in a voxel at a given
time reflected only the somatosensory stimulus delivered
two TRs (4 sec) previously; this meant that the estimated
response to a single trial contained small contributions from
previous trials. This did not introduce bias into the classifier
for two reasons. Most importantly, all training trials were

from all active voxels (E) and the stimulus ordering (C) were used
to train an N-dimensional support vector machine. For illustration,
a simplified training dataset is shown, with only two voxels and
two stimulus categories (right hand and left hand). Each symbol
shows the normalized MR image intensity during a single trial.
The red triangles show the MR image intensity in all right hand
stimulation trials and the blue triangles show the intensity in all
left hand stimulation trials. The solid line shows the separating
hyperplane W'X; + wy, = 0 calculated by the classifier. The
dashed lines show the margin boundaries WX + wo = *1. Tri-
als falling between the margin boundaries were used as support
vectors (indicated by circles). An unknown test trial is classified as
“right hand” if it falls below the solid line and “left hand” if it lies
above the solid line. G. Result of the experiment | classifier
when tested on a different scan series not used for training. The
actual stimulus ordering presented to the subject is shown in the
top row in all black, body part abbreviations as in (A). The classi-
fier prediction of the stimulus ordering is shown in the bottom
row: green for correct classification, red for incorrect classifica-
tion. Performance of the classifier in this scan series was 86% cor-
rect (P < 102®). [Color figure can be viewed in the online issue,
which is available at www.interscience.wiley.com.]

from different five-minute scan series (separated by 30 sec—
30 min) from the trial being classified, preventing BOLD
spillover between testing and training trials. Any BOLD
response spillover could only hurt classification perform-
ance (by providing a less accurate estimate of the true
response), and not help classification performance (by intro-
ducing a classification signal into neighboring trials, as
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would occur if training and testing was performed within a
single scan series). Second, first order counterbalancing was
used when designing the stimulus sequence, and the stimu-
lus sequence for each scan series was randomized inde-
pendently, ensuring that there were no systematic order
effects that could help classification performance.

The image intensity used for classification was obtained
from the adjusted MR time series, which had regressors of
no interest removed to reduce temporal variation. The
regressors of no interest included a mean and linear trend
for each scan series (accounting for slow drifts in the MR
time series); head motion estimates from the image regis-
tration algorithm; and the estimated hip trial responses.
For two-way classification, estimates of the response to the
unclassified trial types were also considered to be regres-
sors of no interest. To the extent that noise from the
regressors of no interest remained in the MR time series,
classification performance will be impaired, resulting in an
underestimate of classifier performance.

Additional Analyses

To identify voxels for classification, a leave-one-out proce-
dure was used to identify voxels that responded to somato-
sensory stimulation (P < 10”°) in the five scan series used
for training each classifier. Data in the left-out scan series
was not used to construct the activation map for the corre-
sponding classifier to avoid introducing bias. For further
analysis, the active voxels were grouped into different
regions of interest (ROIs) based on anatomical and func-
tional criteria using the same leave-one-out procedure (see
Fig. 2). The primary somatosensory cortex (51) ROI was cre-
ated from all active voxels in and near the central sulcus,
postcentral gyrus and postcentral sulcus. The secondary
somatosensory cortex (S2) ROI was created from all active
voxels in and near the parietal operculum. A visual associa-
tion ROI was created from all active voxels in and near pos-
terior superior temporal sulcus, middle temporal gyrus, and
inferior temporal sulcus. Because this brain region contains

S1foot

51

the medial superior temporal area (MST) and the superior
temporal polysensory (STP) areas, we labeled it the MST/
STP ROI Two additional ROIs were created from subsets of
voxels in S1. The S1foot ROI was created from all contiguous
voxels on the vertex and medial face of the hemisphere that
showed a significantly greater response to foot than to hand
stimulation (P < 0.05). The StThand ROI was created from all
contiguous voxels near the so-called hand knob (Yousry
et al., 1997) that showed a significantly greater response to
hand than to foot stimulation (P < 0.05). To study the effect
of ROI size on classification performance, permutation test-
ing was used (Haynes and Rees, 2005b). For a given ROI
size s, s voxels were randomly selected from the ROI and
used to train and test a classifier. This process was repeated
100 times (with different pools of s randomly selected vox-
els) to give the average performance of the ROI at size s.
Across subjects, the performance was averaged at size s and
the between-subjects variance was used to calculate the SD.
This process was then repeated across values of s.

RESULTS

In each subject, somatosensory stimulation activated
somatosensory cortex in the postcentral gyrus and parietal
operculum and regions of visual association cortex in lat-
eral occipitotemporal lobe (Fig. 1D). The response in these
areas was used to train a classifier, which in turn was
used to decode the body site of somatosensory stimulation
for individual trials not used for training. The classifier
prediction across all trials in a single scan series is shown
in Figure 1F. The classifier successfully predicted the cor-
rect body site for stimulation for 85% of the trials (shown
in green) and incorrectly classified 15% of the trials (shown
in red). Because classification was performed on each trial
separately, this level of prediction accuracy was highly
unlikely to be due to chance. For 100 hand and foot trials
in the example scan series, the chance likelihood under the
binomial distribution of at least 85 correct trials was P <

S2 MST/STP

Figure 2.

Regions of interest (ROlIs). Regions of interest were defined
individually in each subject. Colored voxels responded signifi-
cantly more to somatosensory stimulation on the hands and
feet than to fixation baseline (P < 10~°). Different colors indi-
cate different ROls. S| (green), primary somatosensory cortex;

Slfoot (blue), foot sub-region of Sl; S2 (yellow), secondary
somatosensory cortex and associated areas; MST/STP (orange),
areas MST and STP. [Color figure can be viewed in the online
issue, which is available at www.interscience.wiley.com.]

e 4 0



+ Distributed Representation of Touch ¢

107 (success probability per trial of 25%). For the same
subject, five additional classifiers were trained and tested,
producing a total classification across six scan series of
462 correct and 138 incorrect (77%); the chance likelihood
of this performance was vanishingly small (P < 10~%°). In
every one of seven subjects, decoding performance was
much greater than chance, with a mean of 68 * 3% SEM
across subjects. Changing the ratio of training to testing
data (from five scan series for training and one scan series
for testing to three scan series for training and three scan
series for testing) did not change classification accuracy.

We also examined the ability of separate sets of classi-
fiers to perform two-way discriminations between the left
and right hand of stimulation, and the left and right foot
of stimulation. Across subjects, the mean classification per-
formance was 91 * 2% SEM for two-way hand decoding
and 85 * 1% for two-way foot decoding (both P < 107%
under the binomial distribution with success probability
per trial of 50%).

Having shown that MVPA across all active areas could
successfully decode the body site of stimulation, we
wished to determine if different brain areas differed in
their decoding ability. Classifiers were separately trained
and tested using only the voxels in each of three ROIs: S1,
52, and MST/STP. The four-way decoding performance
across subjects was 60 * 1% for the S1 ROL 60 = 1% for
the S2 ROI; and 30 * 0.4% for the MST/STP ROI (Fig. 3A).
The scores of the S1, S2, and MST/STP ROIs were entered
into a one-factor ANOVA, which revealed a significant
effect of area (F(2,18) = 51, P < 1077).

To study distributed representations in somatosensory
cortex, we created two additional ROIs consisting of voxels
in the foot region of S1 (Slfoot) and voxels in the hand
region of S1 (Slhand), as determined by their anatomical
location and preference for foot vs. hand stimulation. The
ability of both ROIs to perform two-way classification (left

A. 4-way hand/foot

lll s “l

S2 MSTISTP MIS  Slpang STigy

B. 2-way hand

aocuracy (%)

vs. right) was tested (Fig. 3B,C). Slhand was better at pre-
dicting side of hand stimulation than side of foot stimula-
tion (75 vs. 54%, P < 0.001). S1foot was significantly better
at predicting side of foot stimulation than side of hand
stimulation (73 vs. 60%, P < 107%).

In a previous study, MST significantly preferred hand
stimulation to foot stimulation, perhaps because of a role
in eye-hand coordination (Beauchamp et al., 2007). We
hypothesized that the relatively poor MST/STP perform-
ance in 4-way classification might reflect differential per-
formance on hand and foot classification. Therefore, the
ability of MST/STP to classify hand stimuli (left vs. right)
and foot stimuli (left vs. right) was also separately tested.
MST/STP classification performance was significantly
greater for hand classification than for foot classification
(62 vs. 53%, P < 0.001).

To avoid assumptions introduced by predefining regions
of interest, we trained additional classifiers with whole brain
data. Because a linear SVM was used, the decision boundary
can be mapped directly to image space (LaConte et al.,
2007). This provides an assumptions-free map (without pre-
defined ROIs) of voxels that contain significant information
about the body site of stimulation. As shown in Fig. 4, vox-
els with high feature space weights were found in S,
Slfoot, and S2, similar to the functional activation maps
obtained from the traditional univariate methods.

To study how classification performance changed with
ROI size across all subjects, classifiers were trained and
tested with sub-ROIs consisting of from 1 to 70 voxels ran-
domly selected from S1, S2, and MST/STP (Fig. 5A-C,
respectively). The accuracy with one voxel was low but
performance increased as more voxels were added to the
ROL. The increase had a rapid initial phase followed by a
slow, nearly linear component, Wthh was f1t with a sum
of two exponential functions y = ae’™ + ce™. The function
produced a good fit (mean, r* = 0.996), with the slow lin-

C. 2-way foot D. 3-way finger

100, 10,

=0

=

[

MS Sy St Al 31 32 MST/STP

Figure 3.

Classification performance. A. Performance for four-way classifica-
tion (right hand, left hand, right foot, and left foot). The mean per-
formance of the classifier when classifying single trials in a scan se-
ries not used for training, averaged across eight subjects (error
bars shows the SEM). The gray bar shows the performance when
the classifier was trained and tested on voxels in all ROls; colored
bars show performance when classifier was trained and tested

only on voxels in a single ROI (S, S2, MST/STP). Chance perform-
ance was 25% (dashed line). B. Accuracy of two-way classification
(left hand vs. right) in three ROls. C. Accuracy of two-way classifi-
cation (left foot vs. right foot) in three ROls. D. Accuracy of
three-way classification in experiment 2 (thumb vs. middle finger
vs. pinky finger). [Color figure can be viewed in the online issue,
which is available at www.interscience.wiley.com.]

* 5



¢ Beauchamp et al. ¢

Figure 4.
Support vector weight maps. Map of the support vector weights (|weights|>10 colored yellow)
assigned to each voxel in an ROI-free analysis, for the same subject as shown in Figure 2. Note
the high weights for voxels in S| (left), SIfoot (middle), and S2 (right). [Color figure can be
viewed in the online issue, which is available at www.interscience.wiley.com.]

ear component fit by the first exponential and the rapid
initial phase fit by the second exponential. The number of
voxels required to reach 75% of the rapid initial maximum
was calculated as N; = —2In2 - Averaged across subjects,
8.3 voxels was required to reach 75% of the initial maxi-
mum, with no significant difference between areas accord-
ing to an ANOVA (F(2,21) = 0.9, P = 0.4).

The results of experiment 1 demonstrated that MVPA
could be used to decode somatosensory stimuli widely
separated on the body surface (left and right hand and
foot). To determine whether MVPA could also be success-
ful in a more difficult somatosensory classification task, in

A.S1

accuracy (%)

B.

experiment 2 touches were delivered to closely spaced
locations on the body surface (different digits on the same
hand and the foot).

In every one of eight subjects, decoding performance was
much greater than chance, with a mean of 56 * 4% SEM
across subjects (chance performance of 25% for 4-way
decoding). As a more rigorous test, we measured decoding
performance for 3-way decoding of different fingers on the
same hand. Performance was good for finger decoding, with
a mean of 68 * 3% SEM across subjects (chance performance
of 33%). Subdividing the active voxels revealed significant
differences in decoding performance between ROIs (Fig. 3D;

C. MST/STP

S2

10 20 30 40 50 60 70
number of voxels

10 20 30 40 50 60 70
number of voxels

P 10 20 30 40 50 60 70
number of voxels

Figure 5.

Relationship between region of interest size and classification
performance. A. Classification accuracy for subsets of voxels
from SI. Two-way classification (left hand vs. right hand) was
performed using randomly selected subsets of voxels. The y-axis
shows the classification accuracy for an ROl containing the num-
ber of voxels shown on the x-axis. The center gray line shows
the mean performance across subjects, the shaded area shows
*1 SEM across subjects (the color of the shaded area corre-

sponds to the color used to illustrate the corresponding ROl in
Fig. 2). The initial rise in the accuracy curve was fit with an ex-
ponential function. The vertical bar in each curve shows the
number of voxels required to reach 75% of the peak of the ex-
ponential function. B. Classification accuracy for subsets of vox-
els from S2. C. Classification accuracy for subsets of voxels
from MST/STP [Color figure can be viewed in the online issue,
which is available at www.interscience.wiley.com.].
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F(4,39) = 7.3, P = 0.0002). The best performance was found
in S1 (61 = 4% for the S1 ROI) and S2 (50 = 3%).

The MVPA analysis used multivariate information from
many voxels to successfully classify individual stimulation
trials. Traditional univariate methods examine the average
BOLD response to different trial types averaged across
voxels in an ROI Could classification be performed with
the BOLD response to individual trials in an ROI? First,
we examined the easier classification task of experiment 1.
Figure 6A shows the average response to left hand and
right hand touches in left hemisphere S2 of a single sub-
ject. The response, averaged across all trials, was signifi-
cantly greater for right hand than left hand touches. Next,
we measured the response to each individual trial in left
hemisphere S2 (Fig. 6B). Although on average the BOLD
signal change was greater in right hand than left hand tri-
als, the distributions of the signal changes were largely
overlapping. The optimal classification boundary was cal-
culated as the average of the contralateral and ipsilateral
response means, weighted by their variance. Because of
the large variance in the individual trial responses, many
trials were wrongly classified by the boundary. The uni-
variate classification performance was calculated by creat-
ing a boundary from training runs, and then measuring
accuracy on testing runs, to ensure an unbiased compari-
son with the equivalent leave-one-out analysis used for
MVPA. The univariate S2 classification performance was
66%, much less than the 95% accuracy achieved with
multivariate analysis for left S2 in this subject. A similar
analysis for left S1 showed univariate accuracy of 66%,
less than the 92% accuracy for MVPA in the same ROL
Next, we examined the more difficult classification task of

% signal change

200 e

"RH

LH

experiment 2. In left S2 of a single subject the average
response to D1, D3, and D5 touches was similar in ampli-
tude (Fig. 6C) and the distributions of the individual trial
responses were almost completely overlapping (Fig. 6D); a
similar pattern was seen in S1. Classification accuracy for
the univariate analysis was 43% for left S2 in this subject
and 47% for S1, much less than the MVPA accuracy of
55% for S2 and 69% for S1.

DISCUSSION

For single, two-second trials of somatosensory stimula-
tion, MVPA was able to decode the body site of somato-
sensory stimulation at levels far above chance perform-
ance. Two-way decoding performance of hand stimulation
was particularly accurate, with a mean of 92% perform-
ance, similar to performance levels reported in two-way
decoding tasks with visual stimulation (e.g., 80% accuracy
for an orthogonal orientation decoding task in (Haynes
and Rees, 2005a)). As in visual studies, increasing the diffi-
culty of the classification task decreased classifier perform-
ance (Kay et al., 2008). However, even for closely spaced
touches on the same hand, performance was still well
above chance (68% compared with 33% chance perform-
ance). Also similar to MVPA studies of visual decoding,
accuracy increased sharply as more voxels were included
in the analysis, with the increase slowing as the number of
voxels increased beyond 10 to twenty (Haynes and Rees,
2005a).

In a visual MVPA study, V1 and V2 were both able to
accurately decode stimulus orientation (Kamitani and

C. D.

-

t

IR L]

LI ILIIII*III I
frmmes

10

b1 D3 D5

L
9]

D1 D3

Figure 6.

Classification performance with univariate analysis. A. The solid
blue line shows the BOLD response averaged across all trials to
right hand (RH) and left hand (LH) touch in the left hemisphere
S2 of an individual subject in experiment |. The duration of each
response is 16 sec; the small black bar on the x-axis shows the
stimulus duration of 2 sec. B. Each blue symbol show the BOLD
response in a single trial of right hand (RH) touch (left column
of symbols) and left hand (LH) touch (right column) in left S2
(same subject as A). The solid black lines show the mean
response to RH and LH touch. The optimal classification bound-

ary is midway between the two means (dashed line). This
boundary correctly classifies all RH trials above it and all LH tri-
als below it (66%, green ellipses) and incorrectly classifies all RH
trials below it and all LH trials above it (34%, red ellipses).
C. The BOLD response, averaged across all trials, to thumb
(D1), middle finger (D3), and pinky finger (D5) touch in the left
hemisphere S2 of an individual subject in experiment 2. D. Indi-
vidual trial responses (blue squares) and means (black lines) in
S2 to single finger touch. [Color figure can be viewed in the
online issue, which is available at www.interscience.wiley.com.]
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Tong, 2005). In the present study, S1 and S2 were able to
decode the body site of stimulation with high levels of
accuracy. Receptive fields in S1 are small and highly soma-
totopic, whereas receptive fields in S2 are much larger and
less well-organized (Nelson et al., 1980). This may corre-
spond to the dissociation in classification accuracy observed
between the experiments. In experiment 1, in which the
stimuli were widely separated on the body surface, S2 and
S1 classified the stimuli with similar accuracy (both 60%).
In contrast, in the 3-way finger decoding task of experi-
ment 2, the stimuli were closely spaced on the body sur-
face and S1 was more accurate than S2 (61 vs. 50%, P =
0.01). S1 and S2 both contain multiple subdivisions
(Eickhoff et al.,, 2006; Kaas et al.,, 1979) and in future
experiments at higher resolution it will be important to
study the ability of these subdivisions to discriminate
somatosensory stimuli.

Previous studies have reported responses to somatosen-
sory stimuli in “visual” cortex (Amedi et al., 2001; Sathian
et al, 1997). In particular, tactile responses have been
reported in a region of lateral occipital-temporal cortex
that contains area MST and the possible human homolog
of area STP (Beauchamp, 2005; Beauchamp et al., 2007;
2008 ; Blake et al., 2004; Hagen et al., 2002; Ricciardi et al.,
2007). Previous MVPA studies have shown that MST and
nearby areas can decode the direction of motion, but not
the orientation, of visual stimuli (Kamitani and Tong, 2005;
Kamitani and Tong, 2006). Here, we extend these findings
by showing that fMRI activation patterns in MST/STP are
able to decode information about the hand of somatosen-
sory stimulation. Inactivation of monkey MST interferes
with visually-guided hand movements (Ilg and Schumann,
2007) and transcranial magnetic stimulation of human
MT/MST reduces reaching accuracy (Whitney et al., 2007).
Although visual signals provide an accurate initial target-
ing signal during reaching movements, determining
whether a target has actually been touched is most easily
accomplished by the somatosensory system. Consistent
with this idea, MVPA of area MST/STP was able to deter-
mine the location of hand stimulation (left vs. right) with
performance far above chance. However, MST/STP was
not able to decode the finger of touch for fingers on the
same hand, suggesting that tactile inputs into MST/STP
are not highly specific, perhaps signaling only that a touch
has occurred. Decoding performance in MST/STP was also
poor for foot touches, consistent with a role in eye-hand
coordination. Although eye-foot coordination is important
in some tasks, such as directing a ball with the foot, these
tasks may be subserved by other brain areas.

Building on the previous literature (Haynes and Rees,
2006; Kamitani and Tong, 2005; Kriegeskorte et al., 2006;
LaConte et al., 2005; Norman et al., 2006), we performed
MVPA on individual trials presented in a rapid event-
related somatosensory stimulation design. The ability to
classify single trials has several important advantages.
First, it results in a large testing and training set, important
for good classification performance (Mitchell et al., 2004).

Second, it allows for real-time designs that provide feed-
back to the subject or make adjustments in the task dif-
ficulty (LaConte et al., 2007). Third, it is a necessity for
correlating behavior and information content on a trial-by-
trial basis (Wagner et al.,, 1998). In the somatosensory
modality, event-related designs are particularly critical
because there is a great amount of adaptation both periph-
erally and centrally (Deuchert et al., 2002). Taken together,
these studies illustrate how MVPA allows a closer investi-
gation of the function of different cortical areas by examin-
ing their information content, above and beyond simple
fMRI activation maps of single voxels responding to a sen-
sory stimulus (Kriegeskorte and Bandettini, 2007).
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