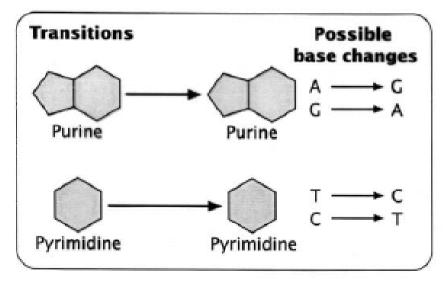
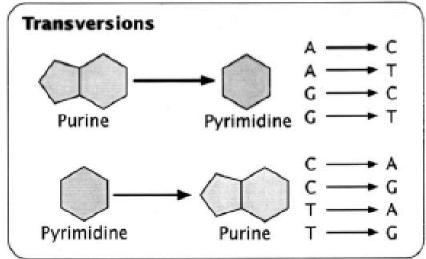

9. Mutationen

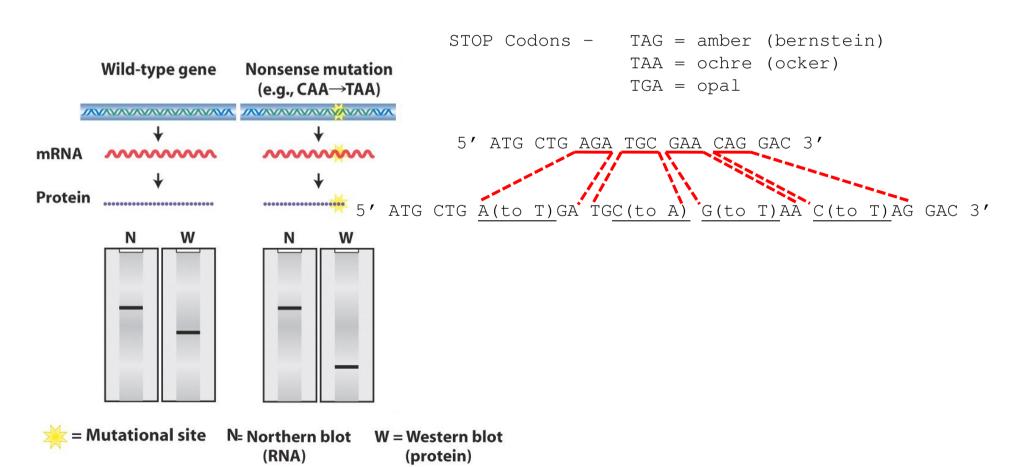
Konzepte:

- Vorwärts-/Rückwärts-Mutationen
- Somatische Zellen oder Keimzellen
- Loss-of-function/gain-of-function
- Mutagenese


1. "Loss-of-function"-Mutationen treten häufiger auf als "gain-of-function"-Mutationen. Sind Sie mit dieser Aussage einverstanden? Warum?



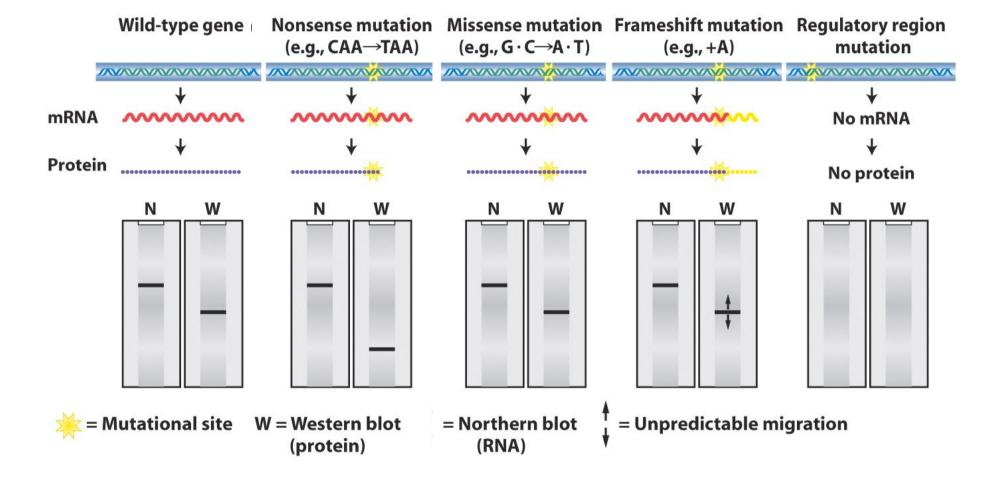
2. <u>Definieren Sie die Begriffe "Transition" und "Transversion" und geben Sie Beispiele.</u>


Table 14-2 Point Mutations at the Molecular Level

Type of mutation	Result and examples
At DNA level	
Transition	Purine replaced by a different purine, or pyrimidine replaced by a different pyrimidine:
	$A \cdot T \longrightarrow G \cdot C \longrightarrow G \cdot C \longrightarrow A \cdot T C \cdot G \longrightarrow T \cdot A T \cdot A \longrightarrow C \cdot G$
Transversion	Purine replaced by a pyrimidine, or pyrimidine replaced by a purine:
	$\begin{array}{cccccccccccccccccccccccccccccccccccc$

- a) Was ist eine "Nonsense"-Mutation?
- b) Welchen Einfluss haben "Nonsense"-Mutationen auf die Länge der mRNA?
- c) Welchen Einfluss haben "Nonsense"-Mutationen auf die Länge und Funktion des kodierten Proteins?
- d) Die folgende Sequenz entstammt dem kodierenden Strang eines Gens. Listen Sie alle möglichen Punktmutationen auf, die zu einer "Nonsense"-Mutation führen würden. 5' ATG CTG AGA TGC GAA CAG GAC 3'

4. Welche Typen von Punktmutationen kennen Sie?


Table 14-2 Point Mutations at the Molecular Level

Type of mutation	Result and examples		
At DNA level			
Transition	Purine replaced by a different purine, or pyrimidine replaced by a different pyrimidine:		
	$A \cdot T \longrightarrow G \cdot C \longrightarrow G \cdot C \longrightarrow A \cdot T C \cdot G \longrightarrow T \cdot A T \cdot A \longrightarrow C \cdot G$		
Transversion	Purine replaced by a pyrimidine, or pyrimidine replaced by a purine:		
	$\begin{array}{cccccccccccccccccccccccccccccccccccc$		
Indel	Addition or deletion of one or more base pairs of DNA (inserted or deleted bases are underlined):		
	$\begin{array}{c} AAGACTCCT \longrightarrow AAGA\underline{G}CTCCT \\ AAGACTCCT \longrightarrow AAACTCCT \end{array}$		

4. Welche Typen von Punktmutationen kennen Sie?

Table 14-2 Point Mutations at the Molecular Level

Type of mutation	Result and examples		
At protein level			
Synonymous mutation	Codons specify the same amino acid:		
= Stille Mutation	$ \begin{array}{ccc} AGG \longrightarrow CGG \\ Arg & Arg \end{array} $		
Missense mutation Conservative missense mutation	Codon specifies a different amino acid Codon specifies chemically similar amino acid:		
= Neutrale Mutation	$ \begin{array}{ccc} AAA & \longrightarrow AGA \\ Lys & Arg \\ (basic) & (basic) \end{array} $		
	Does not alter protein function in many cases		
Nonconservative missense mutation	Codon specifies chemically dissimilar amino acid:		
	UUU → UCU Hydrophobic Polar phenylalanine serine		
Nonsense mutation	Codon signals chain termination:		
	CAG → UAG Gln Amber termination codon		
Frameshift mutation	One base-pair addition (underlined)		
	AAG ACT CCT \longrightarrow AAG A \underline{G} C TCC T		
	One base-pair deletion (underlined)		
	$AA\underline{G}$ ACT CCT \longrightarrow AAA CTC CT		

5. Wie kann der Phänotyp einer Mutante zum Wildtyp-Phänotyp revertieren?

Reverse Mutationen

Exakte Reversion $AAA \rightarrow GAA \rightarrow AAA$

Äquivalente Reversion revertiertes Codon kodiert gleiche As

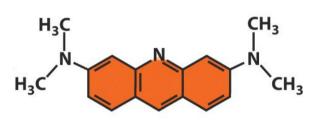
Intragenische Suppressormutationen Frameshift an anderer Stelle

"Second site" Missense-Mutation, die die Wildtyp-Konformation des Proteins wieder-

herstellt

Extragenische Suppressormutationen Mutationen in tRNA-Anticodonloop, so dass

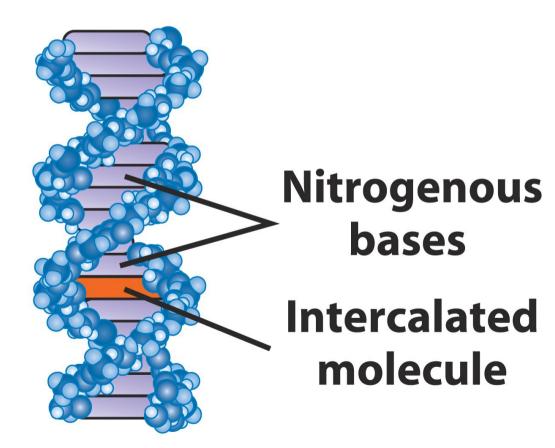
trotz Mutation die richtige As eingebaut wird


Nonsense-Suppressoren

Missense-Suppressoren

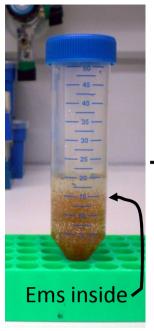
- 6. <u>Beschreiben Sie für jedes der folgende Mutagene, zu welchen DNA-Schäden und zu welchen Mutationen es führt.</u>
- a) Acridinorange
- b) Ethylmethansulfonat (EMS)
- c) 2-Aminopurin (2AP)
- d) UV-Licht

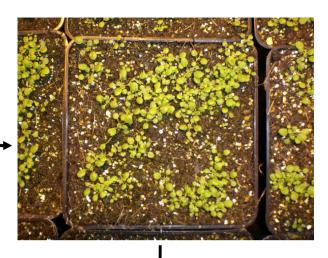
Acridinorange


interkalierende Substanz, führt zu Nukleotidinsertionen oder -deletionen

Acridine orange

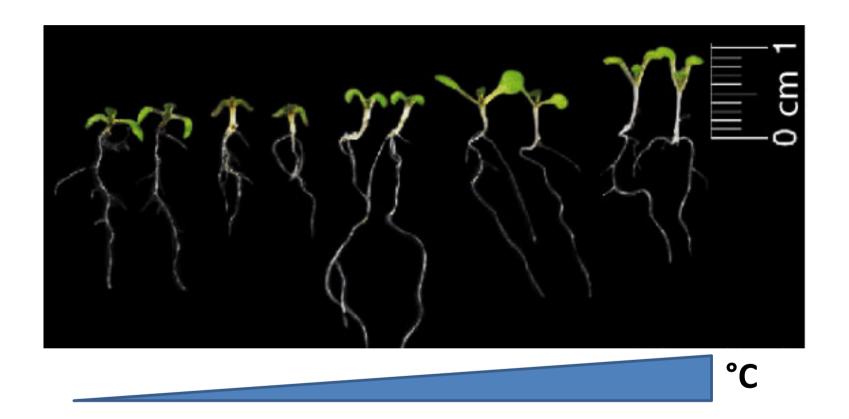
Inseriert zwischen benachbarte Basen

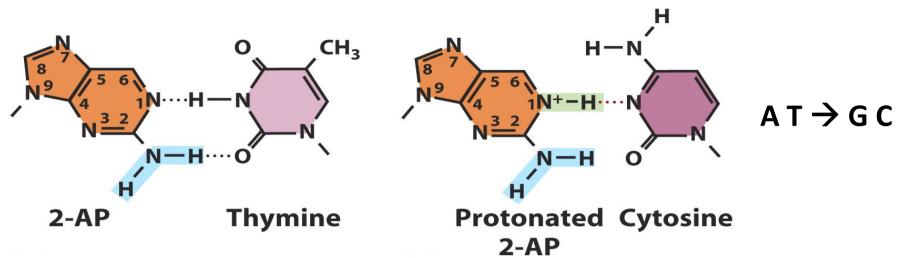

- → stört die 3-D Struktur der Helix
- → verursacht Einzelnukleotid-Insertionen/–Deletionen während der Replikation

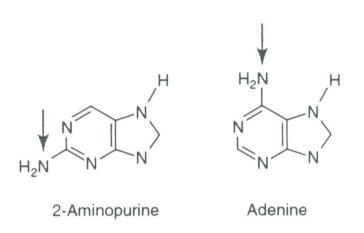


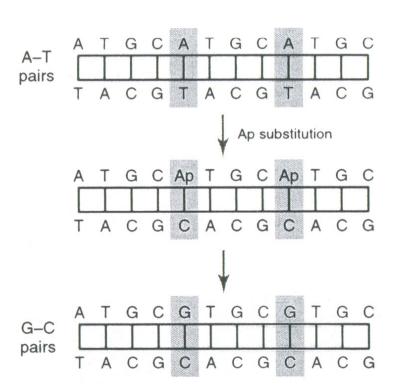
 $GC \rightarrow AT$

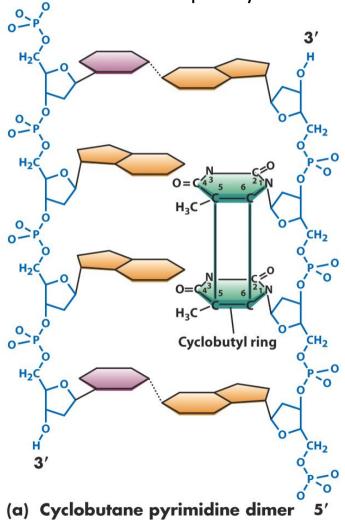
Ems Mutagenese bei A. thaliana

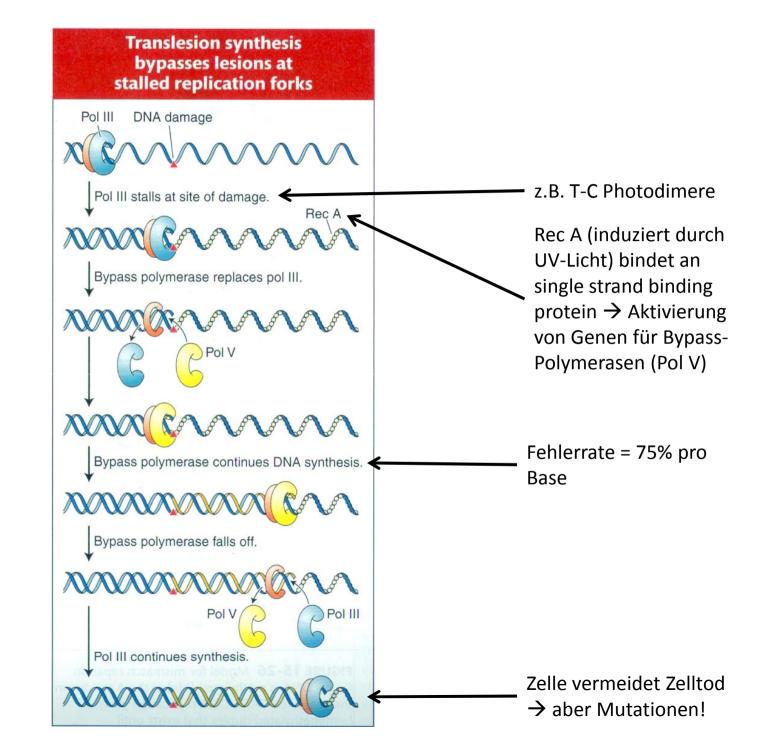




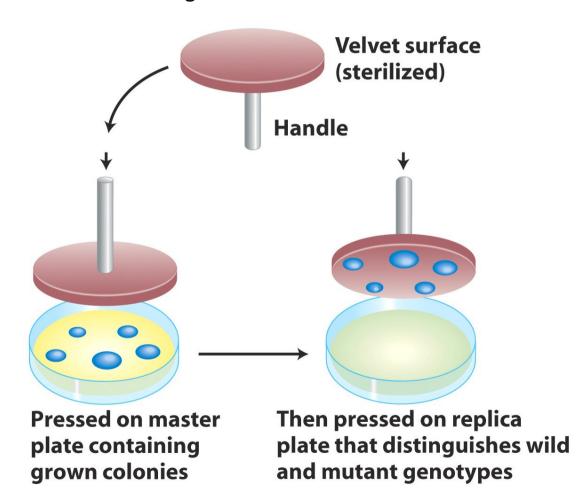


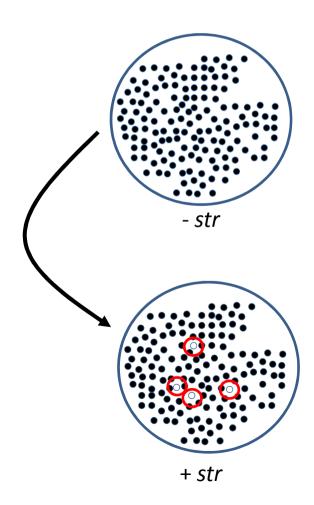

Wachstumsreaktionen auf hohe Temperaturen in Arabidopsis thaliana

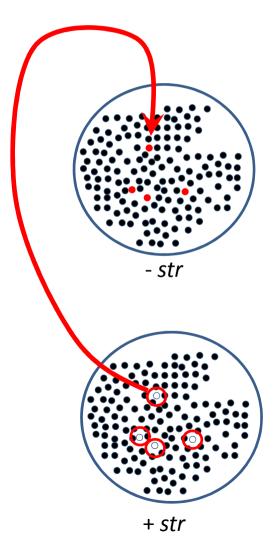

Basenanalog, inseriert statt A und kann neben T auch mit C paaren



- → praktisch = Deletion einer Base
- → DNA Pol III kann nicht weiterlesen
- 5′ → SOS Repair System → hohe Fehlerrate!

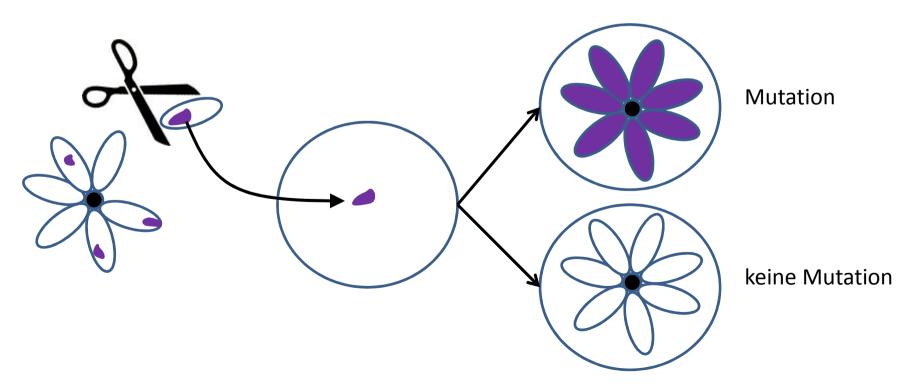



SOS Repair System *E. coli*

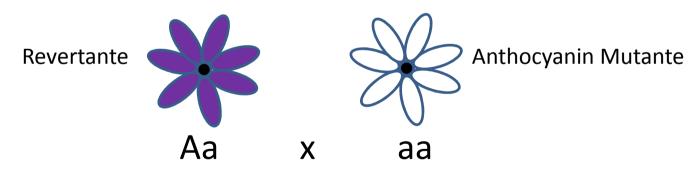

- 7. <u>Sie besitzen einen *E. coli*-Stamm, der aufgrund der Gegenwart des *str^R*-Gens resistent gegen Streptomycin ist. Sie möchten nun Mutanten konstruieren, die aufgrund von Punktmutationen im *str^R*-Gen suszeptibel gegenüber Streptomycin sind. Wie gehen Sie vor?</u>
 - 1. Mutationen induzieren → z.B. Ems-Behandlung von str^R-E.coli-Stamm
 - 2. Auf Agar ausplattieren
 - 3. Replikaplattierung

- 7. <u>Sie besitzen einen *E. coli*-Stamm, der aufgrund der Gegenwart des *str^R*-Gens resistent gegen Streptomycin ist. Sie möchten nun Mutanten konstruieren, die aufgrund von Punktmutationen im *str^R*-Gen suszeptibel gegenüber Streptomycin sind. Wie gehen Sie vor?</u>
 - 1. Mutationen induzieren → z.B. Ems-Behandlung von str^R-E.coli-Stamm
 - 2. Auf Agar ausplattieren
 - 3. Replikaplattierung


- 7. <u>Sie besitzen einen *E. coli*-Stamm, der aufgrund der Gegenwart des *str^R*-Gens resistent gegen Streptomycin ist. Sie möchten nun Mutanten konstruieren, die aufgrund von Punktmutationen im *str^R*-Gen suszeptibel gegenüber Streptomycin sind. Wie gehen Sie vor?</u>
 - 1. Mutationen induzieren → z.B. Ems-Behandlung von str^R-E.coli-Stamm
 - 2. Auf Agar ausplattieren
 - 3. Replikaplattierung
 - 4. Identifizierung suszeptibler Kolonien


- 8. <u>Eine bestimmte Pflanzensorte besitzt normalerweise das Pigment Anthocyanin, welches purpurfarbene Blüten bedingt. Das Allel A ist essentiell für die Anthocyanin-Synthese, das rezessive Allel a dagegen führt in einer Homozygote zu einer Pflanze, welche kein Anthocyanin enthält. Es gibt ein weiteres Allel a^u, welches in hoher Frequenz zu A revertiert.</u>
 - a) Welche Phänotypen würden Sie in Pflanzen des Genotyps 1) a^u/a^u, 2) a^u/a und 3) A/a^u erwarten?

b) Wie können Sie bestätigen, dass es sich bei den Reversionen tatsächlich um Mutationen handelt?


$$A/a^u \longrightarrow WT$$

- 8. <u>Eine bestimmte Pflanzensorte besitzt normalerweise das Pigment Anthocyanin, welches purpurfarbene Blüten bedingt. Das Allel A ist essentiell für die Anthocyanin-Synthese, das rezessive Allel a dagegen führt in einer Homozygote zu einer Pflanze, welche kein Anthocyanin enthält. Es gibt ein weiteres Allel a^u, welches in hoher Frequenz zu A revertiert.</u>
 - a) Welche Phänotypen würden Sie in Pflanzen des Genotyps 1) a^u/a^u, 2) a^u/a und 3) A/a^u erwarten?
 - b) Wie können Sie bestätigen, dass es sich bei den Reversionen tatsächlich um Mutationen handelt?
- Zellen aus dem Farbsektor entnehmen und *in vitro* Pflanze kultivieren \rightarrow somatische Zellen

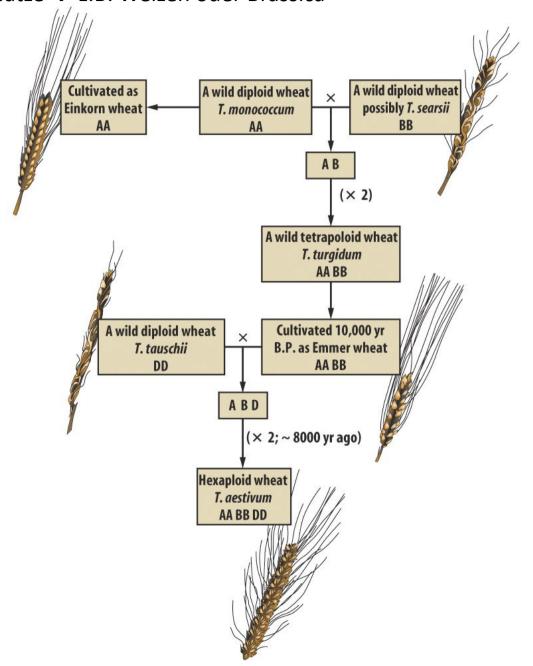
- 8. <u>Eine bestimmte Pflanzensorte besitzt normalerweise das Pigment Anthocyanin, welches purpurfarbene Blüten bedingt. Das Allel A ist essentiell für die Anthocyanin-Synthese, das rezessive Allel a dagegen führt in einer Homozygote zu einer Pflanze, welche kein Anthocyanin enthält. Es gibt ein weiteres Allel a^u, welches in hoher Frequenz zu A revertiert.</u>
 - a) Welche Phänotypen würden Sie in Pflanzen des Genotyps 1) a^u/a^u, 2) a^u/a und 3) A/a^u erwarten?
 - b) Wie können Sie bestätigen, dass es sich bei den Reversionen tatsächlich um Mutationen handelt?
- Zellen aus dem Farbsektor entnehmen und *in vitro* Pflanze kultivieren \rightarrow somatische Zellen
- Revertante Pflanze mit a/a Anthocyanin Mutante kreuzen → Keimzellen

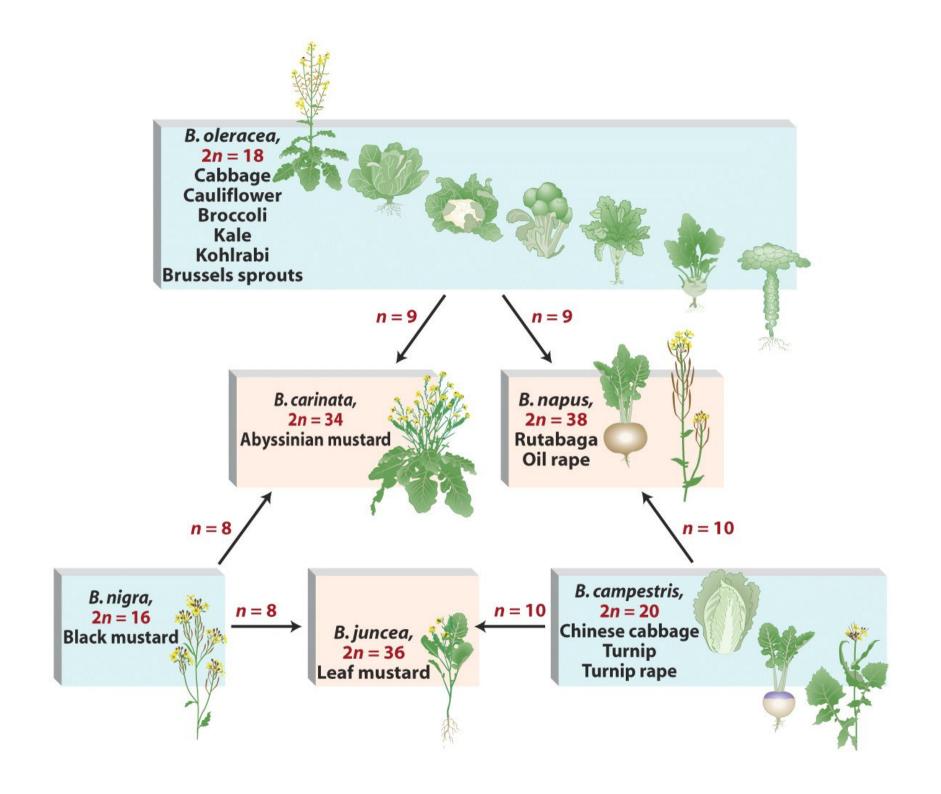
F1 Aa:aa

Keimzellen 1:1

9. <u>Definieren Sie folgende Begriffe:</u>

- a) Monoploidie
- b) Euploidie
- c) Autopolyploidie
- d) Allopolyploidie
- Ploidie → Anzahl homologer Chromosomensätze in einer Zelle


Monoploidie


→ einfacher Chromosomensatz (z.B. Fungi, männl. Bienen)

Euploidie

- → Vervielfachung oder Reduzierung kompletter Chromosomensätze
- \rightarrow Aneuploidie: z.B. 2n+1 \rightarrow Trisomie 21
- → Autopolyploidie : Vervielfachung kompletter, arteigener Chromosomensätze
- → Allopolyploidie: Vervielfachung kompletter, aber aus verschiedenen Arten stammender Chromosomensätze

Allopolyploidie: Vervielfachung kompletter, aber aus verschiedenen Arten stammender Chromosomensätze → z.B. Weizen oder Brassica

Summary of common DNA repair mechanisms

Repair System Type of Damage Repaired

Mismatch Replication errors, including

mispaired bases and

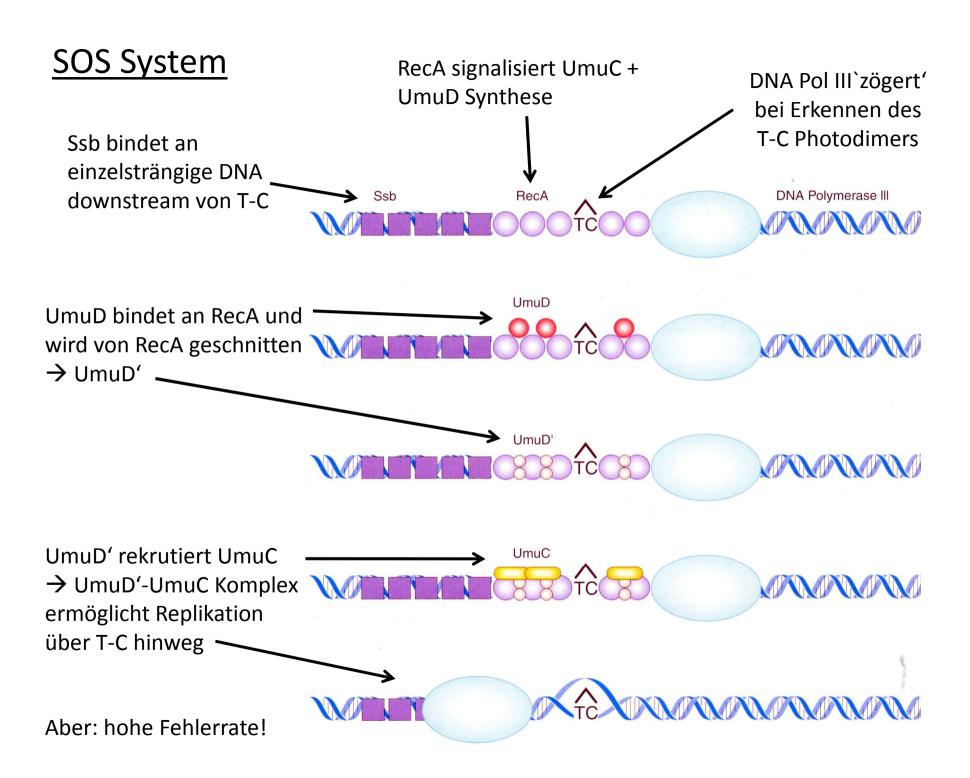
strand slippage

Direct Pyrimidine dimers; other

specific types of alterations

Base-excision Abnormal bases, modified

bases, and pyrimidine dimers


Nucleotide-excision DNA damage that distorts the

double helix, including

abnormal bases, modified

bases, and pyrimidine dimers

Example	Type of lesion repaired	Mechanism
Superoxide dismutase	Prevents formation of oxidative lesion	Converts peroxides into hydrogen peroxide, which is neutralized by catalase
Alkyltransferases	O-6-alkylguanine	Transfers alkyl group from <i>O</i> -6- alkylguanine to cysteine residue on transferase
Photolyase	6-4 photoproduct	Breaks 6-4 bond and restores bases to normal
Photolyase	UV photodimers	Splits dimers in the presence of white light
uvrABC-encoded exonuclease system	Lesions causing distortions in double helix, such as UV photoproducts and bulky chemical additions	Makes endonucleolytic cut on either side of lesion; resulting gap is repaired by DNA polymerase I and DNA ligase
AP endonucleases	AP sites	Makes endonucleolytic cut; exonuclease creates gap, which is repaired by DNA polymerase I and DNA ligase
DNA glycosylases	Deaminated bases (uracil, hypoxanthine), certain methylated bases, ring-opened purines, oxydatively damaged bases; and certain other modified bases	Removes base, creating AP site, which is repaired by AP endonucleases
GO system	8-oxodG	A glycosylase removes 8-oxodG from DNA; another glycosylase removes the A from 8-oxodG-A mispairs, leading to re-creation of an 8-oxodG-C pair, and the first glycosylase then removes the 8-oxodG
Mismatch repair system	Replication errors resulting in base-pair mismatches	Recognizes newly synthesized strand by detecting nonmethylated adenine residues in 5'-GATC-3' sequences; then excises bases from the new strand when a mismatch is detected
Recombinational repair SOS system	Lesions that block replication and result in single-stranded gaps Lesions that block replication	Allows replication bypass of blocking lesion, resulting in
	Superoxide dismutase Alkyltransferases Photolyase Photolyase uvrABC-encoded exonuclease system AP endonucleases DNA glycosylases GO system Mismatch repair system Recombinational repair	Superoxide dismutase Prevents formation of oxidative lesion Alkyltransferases O-6-alkylguanine Photolyase UV photodimers UV photodimers Lesions causing distortions in double helix, such as UV photoproducts and bulky chemical additions AP endonucleases AP sites DNA glycosylases Deaminated bases (uracil, hypoxanthine), certain methylated bases, ring-opened purines, oxydatively damaged bases; and certain other modified bases GO system Replication errors resulting in base-pair mismatches Recombinational repair Recombinational repair Recombinational repair sult in single-stranded gaps

