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Stoichiometric and Constraint-based Modeling

5.8 Conclusions

of application. Parentheses denote partial applicability

- b For the realistic case of equivalent sets of EPs and EFMs.

 terization of large-scale systems. We anticipate that the field will move towards

Stoichiometric and constraint-based modeling provides powerful methods for the ‘
characterization of, in particular, metabolic networks. It can form a basis for moy, |
detailed dynamlcal modeling of such systems However, none of the approache
we discussed is able to adequately address all the potential applications of SNy
(table 5.2). ,

Table 5.2 Approaches for stoichiometric network analysis, their requirements, and fielq;

' Constraints incorporated
Approach Stoi- Ther- Quasi - Reac- Opti- Com- Flux

chio- mo- steady tion mality puta- dis-
metry | dyna- state capa- tional tribu-
mics ' cities costs tion(s)
Graph theory ()¢ (+) - - - Low None
CRs ‘ - - - - - Low None
Kernel matrix - + - + - - Low All
MFA + (+) + (+) - Low Single
FBA + . o+ + + + Low Single
MOMA -+ + + + + Medium  Single
EFMs/EPs + + + - - High All
Applications

Func- Opti- Reac- Reac- Path- Net- Ro-

tional mal tion tion way work bust-

path- . opera- impor-  cor- length func- ness

ways tion tance rela- .tion

tions

Graph theory - - D) &) ) ) )
CRs - - - - - - -
Kernel matrix -~ -, - (+) - +) -
MFA - - (+) - - - -
FBA - + o) - - + )
MOMA - + @ - - + W
EFMs/EPs® + +- + + + + +

& Graph-theoretical methods use only connectivities and, possibly, directions.

Hence, the methods for tackling a specific problem have to be carefully selected
More specifically, FBA and related approaches are most suitable for finding partic-
ular flux solutions even in genome-scale networks. Pathway analysis delivers a mu-
titude of structural and functional aspects but is, in very large networks, hampered
by combinatorial complexity. Despite such limitations, we expect the importance
of SNA for systems biology to increase, particularly for an effective initial charac-

closer connection of the analysis of network structures in metabolism and reguls:
tion, which requires the development of new or modified theoretical methods.

Modeling Molecular Interaction Networks
with Nonlinear Ordinary Differential
Equations : |

Emery D. Conrad and John J. Tyson '

Cellular processes, like growth, division, motility, and death, are controlled by
complex networks of interacting macromolecules (genes, mRNAs, and proteins).
These networks are sets of chemical reactions that convert reactant species into
product species at rates that depend on reactant concentrations and, often, on
the concentrations of other molecules (enzymes, inhibitors, transcription factors).
To a first approximation, a reaction network can be described mathematically
by a set of nonlinear ordinary differential equations that track the effects of
these simultaneously occurring reactions. To gain some insight into the dynamical
possibilities of such networks, we explore a set of increasingly more complicated
network motifs, describing their effects in terms of signal-response curves. From
our collection of simple functional motifs (buzzers, fuses, toggle switches, and a
variety of oscillators) we can create realistic models of control systems actually

employed by cells. As an example, we discuss the DNA-damage response pathway
in mammalian cells.

N

6.1 Introduction

Molecular biologists often rely on suggestive cartoons to capture the complex
interactions between many molecular components in functional networks of genes,
proteins, and metabolites. In such cartoons (for example, figure 6.1), icons represent
the interacting molecules and solid arrows their chemical transformations, for
example, synthesis, degradation, phospho;ylation? dephosphorylation, binding, and
dissociation. Enzymatic and other indirect effects (such as allosteric activations
or inhibition) are often represented by dashed arrows. These cartoons (or “wiring
diagrams”) are useful in summarizing many experimental observations, in capturing
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the way biologists think about molecular mechanisms, and in suggfzsting new
experiments to test or extend this molecular understgnding of cell physiology.

P53t -
i

Figure 6.1 Example wiring diagram (reproduced fron} ’(Cilib.erto et al.,k2()f05ﬁ, Wlth
permission). Intracellular proteins (p53, Mdm2, etc.? participate in-a petword Ob? e?}ca
reactions (solid arrows), such as synthesis, degradation, phosphorylatlon,‘ an uh.lqm.n‘m.
tion. Dashed arrows represent catalytic or regulatory effects on a r‘eactlon.. This wiring
diagram is a hypothetic mechanism (Ciliberto et al., 2005) for the mtelfact\lonsl\!z(eitheen
p53, a transcriptional activator involved in cell cycle arrest and gpo.pjcomg, aundf m2, a
protein involved in degradation of p53. Mdm?2 catalyzes tl.le ubiquitination o §53.7 and
polyubiquitinated p53 is rapidly degraded. Two feedl:?a.ck' signals govern the behavior of
the reaction network: (1) p53 stimulates the synthesis of Mdm?2 in the cytoplasm, and
(2) p53 ‘indirectly inhibits the transport of Mdm? into the nucleus. In response to DNA

- damage, the degradation of Mdm?2 in the nucleus is upregulated. (IR = ionizing radiation)

. Although most cell biologists use molecular wiring diagrams i'n these informal
ways, we would like to pursue the idea that a reaction ne’swork is fundamentally
a complex dynamical system and that its wiring diagram instructs how the c.on-
centrations of all the interacting components will change over time as the chefxllce.Ll
reactions play out within the cell. From this point of view, the next que'stlon is
how best to capture the dynamics of the network in mathematical form, in order
to analyze and simulate its behaviors and ultimately to use the mo‘del to ansvx.rer
real physiological questions. For the purposes of this chapter, we. will use 'no.nhn-
ear ordinary differential equations (ODEs) to represent the dynamical properties of
reaction networks. i . ; o

- Realizing a reaction network as a system of ODEs is-based on two assumptions.
First, that our system is a “yell-stirred” chemical reactor, so that componfent
concentrations don’t vary with respect to space. This is a reasonable assumption
for cell-free extracts, but it hardly seems appropriate for an intact cell. Whether
it is a good approximation or not depends on the time and space scales involved-
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In box-6.1, we show that molecular diffusion is sufficiently fast to mix proteins
throughout a yeast-sized cell in less than a minute. If we are interested in cell cycle
processes (time scale = hours) or circadian rhythms (period = 1 day), then the
“well-stirred” assumption is justified. If we are interested in membrane oscillations
(time scale = seconds), then the “well-stirred” assumption would not be advisable.
~ When spatial information is required, then partial differential equations (PDEs)
would be indicated. We will not discuss modeling by PDEs in this chapte_r, but note
that, before one can appreciate the special properties of nonlinear PDE models (see

chapter 9 of this book and Murray (2002b)), one must first master the principles
in this chapter. - :

Box 6.1: How fast is molecular diffusion?

Given the typical diameter of a cell to be 10~ c¢m and a typical diffusion constant for
a protein in aqueous solution to be D=10""cm? /s, we can calculate the average time
for a protein to diffuse across a cell to be: t = 5—%——_—%—’:7);—; = 5s. If diffusion is 10-fold
slower in cytoplasm, then the average time to cross a ceﬁ is roughly 1 min. These are
expected “mixing times” for macromolecules in cells. Metabolites (small molecules)
will mix on a faster time scale.

The second basic assumption is that the variables (chemical concentrations) are
continuous functions of time. This assumption is valid if the number of molecules
of each species in the reaction volume (the cell or subcellular compartment) are
sufficiently large (say, thousands of molecules each, at least). For concentrations
greater than about 10 nM, we are safe using ODEs (see box 6.2).

Box 6.2: How many molecules of a regulatory protein in a cell?

A spherical cell of diameter 10™° m has a volume of roughly 0.5.x 107 m® =5 x
107*® L. Given a typical concentration of a specific regulatory protein to be 10 nM,
we calculate 1}0_’3m—°1 x 6 x 10?8 molecules 5 . 13-13 q=3,000 molecules g,
reaction volume containing 3,000 molecules, we are justiﬁecll in using ordinary differ-
ential equations to describe changes in a continuous variable X (¢) = concentration of
species X. Were the concentration to drop below 1 nM, we would need to reformulate
the model in terms of stochastic variables to capture,the effects of molecular noise in
the dynamical system.

. If the total number of molecules of any particular substance, say, a transcription
factor, is less than 1,000, then a stochastic differential equation or a Monte Carlo
model would be more appropriate (Rao et al., 2002; McAdams and Arkin, 1999).
Stochastic modeling is much more difficult than ODEs and requires a preliminary
understanding of the deterministic dynamical system. For this reason, it makes sense
to limit this chapter t6 ODE modeling and leave the harder stuff to chapter 8.

Granted these two simplifying assumptions, then ordinary differential equations
are a very useful language in which to ‘express mathematically the dynamical
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consequences of a molecular interaction network. By applying a set of simple
rules, we can express an arbitrarily complex reaction network as a set of coupled
differential equations. The computer can then keep track of all the complex
interweaving interactions in the network and tell us with great precision whay
are the consequences of the mechanism that purports to describe some aspect of
cell physiology. In this sense, kinetic modeling by differential equations is a tog]
for hypothesis testing (see chapter 1). If the mathematical consequences of the
mechanism do not agree with observations, we must search for the problems in our
hypotheses. If the consequences agree with the observations, then we can have some
confidence that we are on the right track to understanding the mechanism.

We assume the reader has no familiarity with how to do kinetic modeling
of chemical reactions beyond some vague (and possibly regretful) memories of
the Michaelis-Menten equation. We start with the basic idea of using a simple
rate law to describe how fast a chemical reaction proceeds and~show how to
estimate kinetic rate constants for isolated reactions from data. Then we assemble
a few simple reactions (for protein synthesis, degradation, phosphorylation, and
dephosphorylation) into modules for ‘chemical buzzers, switches, and oscillators,
These reaction motifs can then be linked together to form more complicated and
realistic control systems, Writing the differential equations describing these systems
can be largely automated, and solving the equations can be fully automated (see
chapter 16). Fitting the results to experimental data and estimating rate constants
are difficult tasks, which are the subjects of active research (chapter 11). We shall
touch on all these issues in what follows.

6.2 Basic Building Blocks

16.2.1 From a Wiring Diagram to a Set of ODEs

To get from a wiring diagram to a set of ODEs, we must think about a network as
"a dynamical system whose state is changing from one moment of time to the next.
We assign to each species (or icon) in the diagram a single state variable, X(t)
‘= the concentration of species X. The collection of values of all these variables
{X1(t), X2 (t), X5(t), ..} at any point in time constitutes the state of the system.
Then, for each molecular species, we write a differential equation that describes how
its concentration changes over time due to its interactions with the other spe01es in
the network. For example, for species X, we write ‘

% = synthesis — degradation — phosphorylation .

+ dephosphorylation — binding + release, etc. (6.1)
The rate of each reaction (synthesis, degradation, etc.) must be represented by a

kinetic rate law, which will have one or more rate constants -associated with it. By
assigning specific values to these rate constants, we fine-tune gener_al rate laws to
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particular reactions. The set of all rate constants needed to describe the reactions
in a molecular interaction network is called the parameter set {p1,ps,...pm} of the
model. :

In this paradigm, the dynamical consequences of a reaction network are deter—
mined by a system of nonlinear ordinary differential equations,

ix; | o :
dtz = E(-Xla XZ) ---,Xn§p17p2> "’7pm)7 7= 1) 27 777' (62)

The ODEs are nonlinear because the rate laws on the right-hand sides of equa-
tion 6.2 are often nonlinear functions of the state variables. Notice that the ODEs
tell us how each state variable is changing with respect to time; they do not tell
us the value of X at any specific time t. To solve the differential equations is to
find these functions, X;(t), for each species. (i) in the network. Each function cor-
responds to a measurable property of the system, tlie time course of species 7. In
order to solve equation 6.2 for the time courses X;(t), we must first prescribe a set
of initial conditions {X;(0), X2(0), ..., X,(0)}. The combination of rate equations,
initial conditions, and parameter values is called a well-posed initial value problem

(IVP), and its solution is guaranteed by a famous theorem stated informally in
box 6.3.

Box 6.3: Existence and uniqueness theorem

Given very weak conditions on the smoothness of the rate laws on the right-hand side
of equation 6.2, conditions that are usually satisfied by realistic models of reaction net-
works, the initial value problem has one and only one solution {X1(2), X2(2), ..., Xn(t)}
for all 0 < ¢ < co. By running time backwards, we can also find a unique prehistory
of the system (for —oo < ¢t < 0).

Box 6.4: Linear and nonlinear differential equations
If the F3’s in equation 6.2 are linear functions of the variables, X1, X, ..., Xn, then
much can be said about the dynamical characteristics of the reaction system. The
good news is that the solution can be expressed analytically in terms of exponential
functions, exp(A;t), and harmonic functions, sin(w;t + ¢;). The bad news is that the
dynamical possibilities of a linear system are very impoverished. In general, there can
be only a single steady state solution, and all other solutions either approach this
. steady state as t — oo or they blow up (some X; — oo as t — 00). Linear systems
show none of the interesting dynamical behaviors (multiple steady states, limit cycle
" oscillations) to be described later in this chapter. The interesting dynamical features
depend crucially on nonlinear dependencies of the Fj’s on the X;’s.

We can imagine three types of “solutions” of a system of ODEs.

1. Analytical. Under very special circumstances (see, for example, box 6.4), it is
possible to write the solution of a set of ODEs in terms of elementary functions,
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such as Xy(f) = Xa(0)e=t, Xa(t) = Xo(O)[ + 0.5sin(kst)], Xa(t) = - Where
kg, ks, ... are rate constants and X1(0), X2(0), ... are initial values.
2. Numerical. Tt is always possible to solve a well-posed IVP numerically on g

computer. In principle, we can write N
< X (t+ At = X(t) + Fy(X1(2), Xa(t), o Xn (1)) - At (6.3)

for each i. By starting at X;(0) and taking sufﬁciently’ small steps, At, we <j,an “walk
along” the time course to any time ¢ in the future (or in the.past). In practice, th.ere
are much more sophisticated, efficient, and accurate numerical schemes for walking
along the time course (see chapter 16). : .

3. Qualitative. Whereas numerical integration of the ODEs gines us quantitative
information about the solution (which is necessary if we are trying t.o account for
quantitative experimental data), sometimes we are more ir}terested 1n\sfmswers to
qualitative questions, like, “What will the network do if I wait for7 7aL sufficiently long
time?” (that is, characterize the solutions—the “stable attractors —o:f the ODES ag
t — o0) or “How will the long-term behavior of th? network change if I double the
rate of synthesis of protein X7” (that is, characterize the depéndence of the stable

(

To explore the examples that we will present, we suggest Fhat the re‘adefr doxx/tnload
XPPAUT or one of the other tools for simulating dynamical systems listed in the
api’/f;ff (;f our qualitative methods dep}end on identifying.anc‘l characterizing the
steady state solutions of equation 6.2. A steady state solution 1s.a set .of constants
{X3,X35,...,X5} for which the net rate of change of every varl%xbl\e is zt?ro, jchat
is, Fy(X5,X5,.,X;) =0foralli=12..,n A steady .state is a‘spem.al time-
invariant solution of the ODEs, where the reactions producing and consuming each

species perfectly cancel each other. Steady states can be either stable or unstable. |

Stable steady states attract all nearby solutions,  whereas unstablg steady states
repel some nearby solutions as time increases. ,

6.2.2 Constant Synthesis

For starters, let’s consider a constant rate of synthesis of some macromole(?ule, Which
can be described by the initial value problem %‘ = k1; X(0) = Xo . In this case, t’he
differential equation is simple enough that we can guess the solution of the initial
value problem: X (¢) = Xo + kit. The numerical value of the raYte co?stant must.be
estimated from experimental data. For example, from observations Qf a?cumulatmg
cyclin in a frog egg extract (figure 6.2), we estimate ﬂ}&t k= ilnM/mm. . S

X(t) = Xo+ kit is an example of an explicit, analytical solution. The uniquenes

part of the theorem in box 6.3 assures us that once we have guessed a solutio.n t: ‘
the initial value problem, it is the only solution. We can sleep soundly at night; |

assured that we have not overlooked some other solution of this dynamical system-
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Figure 6.2 Experimental data used to estimate kinetic rate constants. a) Accumulation
of cyclin (filled circles) in a frog egg extract; degradation of cyclin in interphase cells
(open squares; (Felix et al., 1990)) and in metaphase cells (filled squares, from (Tang
et al., 1993)). b) Formation of dimers of Cdkl and cyclin B in an extract for which the

initial concentration of Cdkl monomers was approximately 100nM (Kumagai and Dunphy,
1995).

T

Once we have the solution, we can ask, “What happens to X(¢) as t — 00?”
Well, it appears that the concentration of X grows without bound. We get this
undesirable result because there is no term to counteract the growth rate in the
differential equation. :

6.2.3 Linear Degradation

Biochemical molecules naturally experience decay-or degradation, and the rate at
which this happens depends on how much of the melecule is present. In math-
ematical terms, £ = —kyX, X(0) = Xo. The unique solution to this initial
value problem is X (t) = Xoe™*2%. An interesting property of exponential decay
is that X disappears with a constant half-life, ¢, /2, defined by X(t1/3) = %Xo.
For linear degradation, t;/ = 1%23 From the data on cyclin degradation in fig-
ure 6.2, we see that cyclin is disappearing with a half-life of about 10 minutes,
hence ks = 0.07 min‘l. , :

At this point, the reader should consider what happens when we combine a
constant rate of synthesis with linear degradation. That is, what is the analytical
solution of the initial value problem: 9% = k; — kp X; X(0) = X? From the exact

: , dt
solution, show that X (t) — k1/kz as t — oo, for any X > 0.

6.2.4 Autocatalytic Production

Autocatalysis is a process whereby a molecule activates its own production, ei-
ther directly or indirectly through intermediates. In molecular .biology, important
examples include DNA. synthesis and ribosome biogenesis. The simplest equation
expressing autocatalysis is % = ko X. This is identical to the equation of the pre-
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. . - - __ k
vious subsection, except for a difference of sign. The solution is X (1?2 = }ioe 2t
In this case, the solution grows with a constant doubling time, ta = Z=. We'll see

more complex, indirect autocatalytic effects when we discuss feedback, later in the

chapter.
6.2.5 Dimérization

Another fundamental reaction in biochemical networks is dimeﬂ.zatz:on, where twg
species combine to form a complex. Examples include enzymes bmdmg substrates,
and the successive steps in the formation of hemoglobin, a four subumt heteromey
?(Oéz,gz). According to the Law of Mass Action, dimerlzatlo.n proceeds' a’g a Tate
proportional to the product of the concentrations of the two binding .spemes. Hence,
we can express C binding X, forming the complex M, by the following scheme

reaction C +X —M
‘initial concentrations Co Xo 0
extent of reaction -M -M M

concentrations at a later time  Co— M Xo—M M

1
%)= k3C'X = kS(CO - M)(Xo - M) > [k3] = M (6.4)

where we've chosen to write C(t) and X(¢) in terms of M(t) so tl'lat we have a
single, solvable equation for the unknown function M (). The notation [ks] means
“the units of k3z.” ‘ _ o ‘ .

Now, guessing & solution to this. equation requ.lrejs a bit m;\);e 1mfggloax e
suppose that we receive a mysterious letter claiming that M(t) = G x,e=er o
where a = k3(Co— Xo), solves the initial value problem, when M (O) =0, e?s in
the scheme above. We can verify this claim by differentiating and doing & bit of

algebra: .

: i CoXo(l.—- e—“t)> _ aCoXo(Co — XO)eQ—at ) (6.5)
dt \ Co— Xoe™®t (Co — Xoe™o%)
and \ .
Xo(1 —e™o%) Gl —e™®
ke(Co— M)(Xo = M) = ksColl = G, omat) X0l = Gy~ Xpemen Xoefat)
_ aCpXo(Co — Xo)e™** (66

(Co — Xoe—at)2

Remember that once we have a solution (even if it comes in the mail), it is the only

solution we ever need (thanks to the existence and uniqueness theorem in box 6.3)-

. CoXo(l—e™®) . _X,),
Notice from the analytical solution, M t) = —210—3(5(0_::“_’ where o = k3{Co Xo)

that, if Co > Xo, then o > 0 and M(t) — Xo as t — oo .On the otilljz
hand, if Cy < Xo, then @ < 0 and M(t) — Cp as t — o0. In either case,
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asymptotic concentration of the complex is the initial concentration of the subunit
in short supply. In principle, this conclusion is incorrect, because we have neglected
dissociation of the complex (M — C -+ X, with some rate constant k_s).’

In order to estimate the rate constant from the data in figure 6.2b, we notice that
Co = 100 nM and Xy = 40 nM (why?). Considering that it takes about 3 minutes
for M(t) to reach 20 nM, we can solve M (3) = 20 for o: '

. : _ =3 . ’
_ 400001 e S

3
M) 100 — 40e—32
= 200 — 200e~3% = 100 — 40e 3> ; (6.8
= g= e = a=%1n§ min™1 " (6.9)
Therefore, we estimiate that k3 = 735 In $nM ™ 'min™ = 2.6 x 10~*nM 'min~*.

6.2.6 Michaelis-Menten Kinetics

The diagram in figure 6.3a represents the enzymatic transformation of substrate X
into product P. Michaelis and Menten (1913) and Briggs and Haldane (1925) first
explored the elementary reaction mechanism (figure 6.3b) for this process. Assuming
that the total enzyme concentration Er is much less than the initial substrate
concentration, Xo, they showed that the rate of the enzyme-catalyzed reaction can
be written as: 45 = —4& = ‘—Ié?ﬁ_%x, where K, = k"k—'l"kz is called the Michaelis
constant. Note that [K,] = nM. A rigorous derivation of the Michaelis-Menten rate
law can be found in (Murray, 2002a), and in (Segel, 1988).

a) by |
X— P ' -

Figure 6.3 Michaelis-Menten kinetics. a) Enzyme E catalyzes the conversion of sub-
strate X into product P. b) Michaelis-Menten mechanism for an enzyme-catalyzed reac-
tion: E binds the substrate X to form a complex C; in the complex, E converts X to P;

once the conversion is done, E dissociates from P and is free to bind another molecule of
substrate. -

Among other things, the Michaelis-Menten rate law can be used to reduce the
number ‘of variables which describe a typicai enzymatic conversion process, such as
phosphorylation or dephosphorylation. This reduction is often useful when trying to
understand the dynamic possibilities of a network using analytical and qualitative
methods. On the other hand, one must keep in mind the assumption (Er < Xp)
so that the rate law'is applied in a consistent fashion.
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Il . 6.3 Simple Networks and Signal-Response Curves — 2) | ' b . 0 o
I _ The basic rate laws just described can be combined to form reag‘uf)n motifs tha.t are S ix, X,
B ’ commonly found in biochemical networks. These motifs have specific characteristics < v < 3 % , X,
‘i“;“ o that dominate their behavior within larger networks. , In order to build some ‘ A , —E/k— S O 1!
‘1‘ : " dynamical intuition that may be useful in understanding larger, more realistic o : ! .
E |
|

L . macromolecular networks, we first explore the properties of some common network Figure 6.5 Hyperbolic signal-response curve (see text).

motifs.

We can determine the stability of the steady state graphically by plotting ¢Z2 .

6.3.1 Synthesis and Degradation X

as a function of Xp. Noting that trajectories lie along the x-axis, we see that for
ax . : : . .
Our first motif is simultaneous synthesis and degradation (figure 6.4a), described by ' % > 0 (that is, wherever the curve 1s a’g;ve the x-axis), the solution, Xp(t),
ur : s . . - “gional” moves to the right along the x-axis and for 222 < 0 (where the curve is below the ‘
X — kS — ko X, with X (0) = 0. In'this equation, we might think of S (“signal”) as . ; ) dt Ve, i‘
at o £ mRNA encoding protein X. Notice that [f] = [kz] = min™". x-axis), the solution moves to the left. The curve crosses the x-axis at Xp s, the -
t;l; coxicix.ltratlfo:hf; SIDE which wes posed as a problem earlier in the chapter, is steady state. The stability of the steady state is then obvious because Xp(t) moves ‘ |
x j ° ukllglzlo eikzt) N,oti ce that as £ — oo, e~ Ft — 0, and our solution tends towards Xp s along the x-axis (figure 6.5¢). This method of determining stability 1%‘;
= == - . ’ ? . . . . . i
(t) ke X. — S Notice also that k1S — kaXss = 0, 50 Xsq is the can be applied to any single-variable system. ‘
towards the value. 5 —h ’g ff © t1c | equation asl, describ ezf earlie7r Our assumption of linear kinetic rate laws implies that X7 is much less than the
steady state solution of the di erential &q ’ Michaelis constants of both the kinase and the phosphatase. If this is not the case, i
» then we should use Michaelis-Menten rate laws. il
2 b o ‘
). ¢ . a) : b)
S Slope = k/k, E,
. . ? i
S : X —_ XP 1
i Iy
Figure 6.4 A signal-response relationship. a) Signal S stimulates the synthesis of protein E ‘;
X. b) Linear response of steady state protein concentration to signal strength. P ‘
If we think of S as an input signal (mRNA concentration) and X as the response | 1 : k, Eg ‘ i
(protein concentration), then this motif at steady state generates a linear signal- I By ... g
response curve, as depicted in figure 6.4b. a Figure 6.6 Sigmoidal signal-response curve (see text). |
i nd Dephosphor lation ' ‘ ) | ' !‘
6.3.2 Phosphorylation and Dephosphory In this case (figure 6.6a), the governing ODE is }
Now suppose X is phosphorylated and dephosphorylated as depicted in figre 6-.53' dX = kExX | kEp(Xr-X) (6.10) ‘
| : Choosing to model both the forward and reverse steps using simple linear kmetlcs% | - K+t X Kt Xp—X° : |
it o dXp _ _ i 1 centration o ) : ) |
A we write “52 = k.S (X7 — Xp) — ks Xp, where X7 is the total con where X7 — X = Xp, Ex and Ep are the total concentrations of kinase and

ﬁ"hj both phosphorylated and unphosphorylated forms of X (so that X7 — Xp = X),
it s and S is the concentration of the protein kinase. (The concentration of the protein }

phosphatase (taken to be constant in this equation), and K1 and K2 are the ‘

, i
iy O 1. -1 Michaelis constants. At steady state, we have i
i ' _ phosphatase is absorbed into the value of kz.) Nétice that [k;] = nM™ min, : ‘ ‘ il
‘\L“H‘ [ks] = min~". Solving #£2 = 0 results in a single steady state solution, Xpss = , ’ kiExkX  koEp(Xr —X) (6.11) i
/| |

‘F \“ ch/%-?’ which is a hyperbolic function of S_(seé figure 6.5b). This is called 2 K4 X Kppt+Xr—X
g 2/k1 . : ‘ i

hyperbolic signal-response curve.
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or, after simplifying and scaling the relevant variables, _

urz(Jo +1— z) = ug{l — z)(J1 + z) (6.12> |

where z = X/ X, u1 = k1 Ex, us = k2Ep, J= K1/ X, Jo = ng/XT. Using
the quadratic formula, we can solve this equation for z as a function of ul', Us , J%’
and Jo. We get = G(u1,u2, J1, Jo), where the Goldbeter-Koshland fugctlon, G, is
deﬁned'as

2U1J2

B+ B2—4(u2—u1)u1J2

G(ul,uz,.fl, -]2)\= (6.13)
where B = ug — uz + upJ1 + u1Ja (see Goldbeter and Koshla?nd (19?1)). In terms
of the original variables, Xss 1s 2 sigmoidal function of the input signal EK (S§e
figure 6.6b), and so we call this a sigmoidal signal-response Curve. The sigmoid
becomes more and more switch-like as J; and Jo become much less than 1 N

To confirm the sigmoidal character of the Goldbeter-Koshland function, 1t. is
easier to think of u; as a function of £ than x as a function‘of Up. Rear‘rangmg
equation 6.12, we find that u; = uz erffz .1=2  Ag a function of z, this curve

x

crosses the z-axis at £ = 1 and z = —J; and has vertical asymptotes at z =’0
and z = 1+ Jo. For 0 < Jy, Jp < 1, the curve must have the shape illustrated in
figure 6.6b.

We can prove the stability of the steady state byv the same grgphical methods
used for the case of linear reaction kinetics, but we omit the details. -

6.4 Networks with Feedback

6.4.1 What Is Feedback?
Biochemical reaction networks commonly contain feedback 100;)3, for which the
output of one reaction affects the progress of an upstream reaction. Fe,edbacl.c can
be characterized as positive or negative, depending on the net effect f)f the 1n1?er-
actions. When reaction networks have intertwined feedback loops, their dynamical
properties can be exceedingly complex (see chapter. 1 and chapter 2). ] .

" We start our investigation of feedback loops with two-component ’»mt/eract.l(?ns
(figure 6.7), which can be categorized as negative fe‘edl?ack (6.72 a.,nd b); p;)fsnévoef
feedback (6.7c), or mutual antagonism (6.7d). Ma_,thema.t;%ll_y speaking, t;l{e e .ecthe
species X; on the rate of change of another speges X;, —d?:‘ = F;(X1, ,h ?), Sii o
partiél derivative —a% The sign of this derivative qetermlnes whether the teet -
is positive or negative. Naturally, this partial derivate need not be con.s afn o
may change sign based on the state and on parameter values, so classifying Vf i
effect isn’t always unambiguous. A chain of such effects makes a feedbagk loop i

starts and ends with the same species.
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Figure 6.7 Three types of feedback are possible between two components: a) and b) are
negative feedback, c) positive feedback, d) mutual antagonism.

6.4.2 Negative Feedback

We start with a simple example of negative feedback (figure 6.8). The phosphory-
lated form of Y activates the degradation of X, and X is the kinase that phospho-

rylates Y. In this case, we need at least two differential equations to characterize
the system: ’

X u

@ k1S — koYp X ‘ (6.14)
d¥p _  ksX(Yr-Yp) _ _kiBYp 615
dt Knz+Yr —Yp Kna+Yp ’

where ¥ = Y7 — Yp is the concentration of the unphosphorylated form of Y,
[X} = [Yp] = [S} = [E] = IlM, UC]_] = [k)g] = [k}4] = min_l, [kz] =M - min’l,
and [Kpms] = [Kma] = nM. The equation for X is constant synthesis (proportional -
to S) minus degradation (proportional to Yp - X). The equation for Yp is just
the case studied in the subsection 6.3.2. We know how each of these differential
equations behaves in isolation, but what happens when they are coupled together?

6.4.3 Phase Planes, Vector Fields, and Nullclines

As described earlier, at any point in time %y, the network must reside in a particular
state, (X (t0), Y (t0)), which is just a point in the two-dimensional state space of the
system of ODEs. For the case of a two-species network, the state space is called
the. phase plane. At each point in the phase plane, the differential equations define
a vector that tells us which direction and how far the dynamical system will move
over the next small increment of time, At. We can think of the phase plane as
covered with little vectors, like the hair on the head of a new military recruit. This -
collection of vectors is called the vector field. A solution to the ODEs is just a curve
that starts at some initial point and follows the vector field.

The vector field in the phase plane is conveniently characterized by the X- and Y-
nullclines, the curves for which the corresponding species’ time derivative is exactly
zero. Along the X-nullcline, the vector field points north (N) or south (S) because
dx
A+

= 0 (that is, no change in the east-west direction). Along the Y-nullcline,




a) v b)
08 |
S

i 0.6

- K X LA Yp
; ) ? 04
Y ——YP

0

Figure 6.8 Example of negative feedback. a) Wiring diagram. b) Phase portrait,
Dashed curves: nullclines given by equations 6.16 and 6.17; solid curves: trajectories of
equations 6.14 and 6.15. Parameter values are k1 = k2 = ks = ks =1, 8 = Kpz =
Kma = 0.1, Yo = 1, and E = 0.5. In b), trajectories spiral into a stable steady state a
the intersection of the nullclines.

the vector field points east (E) or west (W) because % = 0 (no change in the
north-south direction). In the region between the nullclines, the vector field adopts
one of four characteristic compass directions (NE, SE, SW, or NW). Wherever the
nullclines intersect, the pair of ODEs has a steady state solution (both % =0and

ay _
2 ),
dt
In the above example for negative feedback, the nullclines are:
. S .
X-nullcline: k1S =koYpX = Yp = X (6.16)
2
Yp-nullcline: ks X(Yr —Vp) _ _kaEYp
i ' Kms+ Yr—Yp  Kpu+Yp
' Kps K :
=  Yp=Yr-GksX, kyB, =22 0% (6.17)
Y YT

where G is the Golbeter-Koshland function defined by equatlon 6. 13 These curves
are easily plotted on the phase plane (figure 6.8b) along with representative tra-
jectories that point out how the system evolves with time given several different
initial conditions. The X-nullcline is a hyperbola, while the Y p-nullcline is a sig-
moidal curve with the switch point at X = ,‘C‘BE %’T—"i—ggﬁ Of particular note is
how all trajectories seem to be sucked into the steady state. When this is the case,
we call the steady state locally and globally stable. It is possible to be locally stable
but not globally stable or to be locally unstable, as we shall soon see.

6.4.4 Positive Feedback

Figure 6.9 presents a simple example of positive feedback, where species X activates
species Y (via phosphorylation) and the phosphorylated form of Y promotes the
synthesis of X.
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Figure 6.9 Example of positive feedback. Wiring diagram.

One possible set of equations to describe this network is

ax

7 = kiS+kYp— ks X (6.18)
d¥p _ kX(Yr-Yp) _ ksEYp ' (6.19)
dt Kpas+Yr—Yp Kus+Yp :

where [X] = [Yp] = [S] = [E] = nM, [k1] = (k2] = [ks] = [ka] = [ks] = min~?,
and [Koma] = [Kms) = nM. For this system of equations, the X-nullcline is ¥p =
(k3/k2)X — k1.8 and the Y p-nullcline is Yp = Yr - G(ke X, ks B, Kima/ Y7, Kms /Y1)
(plotted in figure 6.10a). Notice that as we increase or decrease S, the X-nullcline
moves down or up, and there is a range of S values, S € (S.1,Se2), for which
the nullclines intersect in three places. The points at the end of this range, where

the system changes from one to. three steady states, are called saddle-node (SN) .

bifurcation points. For Sy < S < Seq, we say that the system is bistable.

ST R b)

1
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06 |
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° I e . . i
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Figure 6.10 Example of positive feedback. a) Phase portrait. b) One parameter bi-
furcation diagram. Solid curves: stable steady states; dashed curve in between: unstable
steady states. For Sex < S < Sc2, the control system is bistable. Parameter values are
ki=ka=1,ks =08, ks =1.2,8=0.2, Kinz = Kme = 0.05, Yr = 1, and E = 0.5. In a),
trajectories move away from the unstable steady state (in the center) to one of two stable
steady states.
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A good way to visualize this bifurcation behavior is to plot a one parameter
bifurcation diagram with S on the abscissa and either the X or YP concéntration
for each steady state on the ordinate, as in figure 6.10b. In general, this is 2 compact
way to visualize how the dynamics of a system depend on its parameters. In thig

- particular case, the system exhibits hysteresis as the parameter .S passes back and

forth through the region of bistability. That is, for low S, the system is at.rest in the
lower steady state (which is globally attracting). As S increases, the control system
remains at this lower steady state, even after passing into the region of bistability
because the lower steady state is stable with respect to small perturbatioris. Finally,
as S increases past the upper bifurcation point (Se2), the system abruptly shifts
to the upper stable steady state. Now, if S were to decrease, the control system
would remain in the upper steady state until S falls below the lower critical value,
S.1. Only then will the system switch back to the lower steady state. This non-
reversibility is called hysteresis. =

6.4.5 Mutual Antagonism

Mutual antagonism is a situation where an increase in either species means a
decrease in the other, as in figure 6.11. Here, X phosphorylates Y, so more X

" implies less Y. Further, Y degrades X, so more Y means less X. The equations for

this module are:

% = WS — (B + kaY)X o (620)
&Y  kB(Yp-Y) kXY (621)
dt  Kps+Yr—Y Kmn+Y " .

where Y = Y + Yp is constant, and the dimensions of the variables and rate
constants are as before. In this case, the X-nullcline is now a hyperbola Y =
El—%;——;;;X, which is similar to the negative feedback case. The Y-nullcline is ¥ =
Yo - G(k3sE, ks X, Km3s/Yr, Kma/ Yr), which is a switch function that turns off as X
increases. As. in the case of positive feedback, there may be multiple intersections
of the nullclines and a region of bistability for the parameter S (see figure 6.123,),

Figure 6.12b shows a one-parameter bifurcation diagram for this system.

S -
v X .
YPi:Y

E

Figure 6.11 Example of mutual antagonism. Wiring diagram.
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Figure 6.12 Example of mutual antagonism. a) Phase portrait. b) One parameter
bifurcation diagram. Parameter values are k1 = k2 = k3 = kg = 1, k; = 0.1, S =0.125,
Kmz = Kma = 0.05, Yr = 1, and E = 0.25. In a), trajectories move away from the
unstable steady state (in the center) to one of two stable steady states.

Nl

Recently there have appeared a number of interesting experimental studies of
bistability in macromolecular regulatory networks: in the MAP kinase signaling
pathway of frog eggs (Ferrell Jr. and Machleder, 1998; Xiong and Ferrell Jr., 2003),
in the activation of MPF in frog egg extracts (Sha et al., 2003; Pomerening et al.,
2003), in the lactose utilization network of bacteria’ (Ozbudak et al., 2004), and in
artificial genetic networks (Gardner et al., 2000).

6.5 Networks That Oscillate

There are three simple motifs that generate oscillatory behavior: activator-inhibitor,
substrate-depletion, and delayed negative feedback.

6.5.1 Activator-Inhibitor . -

In figure 6.13, R stimulates its own production by phosphorylating E, and Ep also
stimulates the production of X. (Think of Ep as the active form of a transcription
factor.) As X increases, it promotes degradation of R. This negative feedback loop
between X and R can cause oscillation (figure 6.14a). The equations for this system.

are
d
d;i'% = koEp + k1S — kXR (6.22)
X
Cil_t ksEp — ks X (6.23)

where B, = Er - G(ksR, ke, &5, Kp%). The X-nullcline is X = (ks/ks)Ej and the
R-nullcline is X = (koFEp+k1S)/koR. The phase portrait (figure 6.14a) clearly shows
the tendency of the vector field to drive trajectories in a circulatory pattern. For
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appropriate values of the parameters, the control system exhibits a closed trajectory,

sed tr Box 6.5: Cyclic AMP oscillations in Dictyostelium
called a stable limit cycle. As the system rotates around the limit cycle, R()

Cyclic AMP binds to 2 membrane receptor; which activates adenylate cyclase, the

m | and X (t) oscillate periodically in time. The classic example of activator-inhibitoy _ enzyme that catalyzes the synthesis of cyclic AMP from ATP (this is the positive
j H ‘ oscillations in cell bioldgy is the cyclic AMP signaling system of the cellular slime fee‘?)azwll‘;oﬁ_ P;.Om?:mi the auzocatalytlc Pl”O]SUCtLOI} ?f cyclic AMP). Meanwhile,
i . . L . 1 1987): see box 6.5. 4 cyclic inding to the receptor promotes phosphorylation and desensitization of
‘\‘\‘ : mold, chtygstelwm discoideum (Martiel and GO dbeter, 1987); the receptor (this is the negative feedback. loop, the desensitized receptor being the
| \“ “inhibitor” that shuts off autocatalytic production of cyclic AMP). Next, cyclic AMP
i ! -7y is hydrolyzed to 5-AMP, which allows the receptor to slowly regain its sensitivity.
; " e —> X > " Only then can there be a new burst of cyclic AMP synthesis.
I ! ’
‘i:‘ ‘ ’ S EP — > E ’II )
R 1 i ’ . .
111‘ N ! ' ; ‘ 6.5.2 Substrate-Depletion
i RO ' v |
i“‘i‘ ‘ ~—— R i’ 1 ' . . . ‘ ,
| i : _ L | ~ In the substrate-depletion motif (figure 6.15), substrate X is converted by enzyme
¥ ‘il‘} ) Figure 6.13 An activator-inhibitor oscillator. Wiring diagrar. ‘ E into product R in a process which is autocatalytically amplified by R-dependent
< i“@ | phosphorylation of E. This positive feedback loop leads to an' explosive production
Al . _ of R which depletes the pool of the substrate, X. Naturally, once X is depleted, the
H : : a) b) : production of R ceases and the degradation of R reduces its. concentration below
| \“‘ ‘ . ‘ ‘ : , ‘ the level necessary to sustain the positive feedback loop. At this point, the pool
‘ ‘1‘3{“ S ' “ ' ' Y ‘ .~ . of X begins to replenish. When X builds up sufficiently high, thepositive feedback
1 “ 1 ur et ) ‘ ‘ : loop reengages, and a new burst of R synthesis commences.
\“ “‘\ 1:2 i . /__/,,.- o ‘
A, 08 * . 4 . .
| X S S  EP==E.
sl 08| o .’ N q : ! ) ’ 1 N
| ° » SH1E SH2 ‘ Figure 6.15 A substrate-depletion oscillator. Wiring di&gra,m.
e %o h o2 o o 08 1 .
3 S , : . .
e * Figure 6.14 An activator-inhibitor oscillator. a) Phase portrait, b) One parameter | The differential equations for the model in figure 6.15 are
“‘“\!; bifurcation diagram. Parameter values are ko = k1 = ka = ks = ks = ks = 1, ks = 0.5, | ax - ‘
i : S = 0.5, Kms = Kms = 0.1, and Er = 1. In a), trajectories spiral in towards a limit cycle = k8 —(kg+ koEp)X (6.24)
;“““i‘i o surrounding the unique unstable steady state. In b), the min and max values of R on the ] g}i _ ) . ‘
‘“““‘;‘\“\‘\““‘;“‘J‘\‘\‘; 1irr(1:11tscyc1e oscillation are plotted in the region between the two Hopf bifurcations, Sm » o - (k(’) +hoE)X — kR . (6.25)
‘ji‘ o ’ arn H2-. h
[ : R T
: . where E, = Er - G(kaR, ks, KT”;&: Eff} The X-nullcline is X = W—Efv and the
. - ko
As we increase or decrease the'signal strength, S, the R-nullcline shifts up or R-nullcline is X = —"2B_ Again, the phase portrait (figure 6.1063,) shzc,ows a cir-
down, and though there is always only one steady state (one intersection of the (ko +ko) B,

culatory pattern around the steady state, and for a suitable choice of parameters,
the system executes a stable limit cycle oscillation. In this case, the X-nullcline
shifts upward (downward) as .S increases (decreases). As before, the one-parameter

nullclines), the stability of the steady state changes as we change S. For Sg1 < §<
Sp2, the steady state is unstable and surrounded by a limit cycle. The boundary

Iy : points, Sg1 and Sg, are c.alled Hopf b'ifurcation points. ‘Figu;e 6'1410 plots the bifurcation diagram shows two Hopf bifurcations and oscillatory solutions in be-
”iw one-parameter bifurcation diagram for this system, along with the amplitude of the tween (figure .6.16b). Substrate-depletion oscillations are common in biochemical
A oscillatory solution where it exists. networks (see table 6.1). '

I ' ‘
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a) b)

Figure 6.16 A substrate-depletion oscillator. ‘a) Phase portrait. b) One parameter
bifurcation diagram. Parameter values are kg = k1 = ke = ks = ks = 1, kg = 0.1,
S =1, Kms = Kma = 0.1, and Er = 1. In a), trajectories spiral in towards a limit cycle
surrounding the unique unstable steady state. In b), the min and max values of X on the
limit cycle oscﬂlatlon are plotted in the region between the two Hopf bifurcations.

Table 6.1 Examioles of substrate-depletion oscillators. : N
. Example Substrate Activator Reference
Frog egg Cyclin B MPF ' (Tyson, 1991)
Glycolysis  F6P+ATP FDP+ADP- (Selkov, 1968)
Calcium Ca?t in ER® Ca?t in cytosol - (Dupont et al., 1991)

Ecosystem  Prey Predator _ (Maynard-Smith, 1974)

¢ ER = endoplasmic reticulum.

6.5.3 Delayed Negative Feedback

In figure 6.17, we present an example of delayed negative feedback. In this scheme,
R phosphorylates E, which then binds to C to form X, and X is the active complex
that degrades R itself (closing the negative feedback loop). This motif is derived
from components of the cell cycle regulatory mechanism,in eukaryotes, where R is
MPF (mitosis promoting factor), E is APC (anaphase promoting complex), C is
Cdc20, and X is a complex of APC and Cdc20 v

The corresponding set of equations is

% = BS—kXR o (6.26)
dEp _ ksR(BEr —Ep)  kiQFp
dt " Kpxr+Er—Ep Kpp + Ep
. —ks[Ep(Cr — X) — KaX] ‘ - (6.27)
X lBs(Cr — X) — KuX] )

dt
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Figure 6.17 A negative feedback oscillator. Wiring diagram.

where Er = E + Ep is the total concentration of the APC, @Q is the (fixed)
concentration of a phosphatase, and Cr = C + X is the total concentration of
Cdc20. Having left the familiar territory of two-variable systems and phase plane
portraits, we must now rely on numerical and qualitative results.

Table 6.2 Parameter values for the delayed negative feedback oscillator.

«

Parameter Description Value Units

k1 15%_order rate const 1 min~?

ke 2"4_order rate const 1 oM min~?!
k3 1%%-order rate const 1 - min~*

k4 1%t-order rate const 1 min~!

ks 2"4_order rate const  0.01 oM™ min~?
Kmk Michaelis constant - 1 aM

Komp : Michaelis constant 1 nM

Kq Equilibrium constant. ' 50 nM

S ‘ Signal 0.3 ‘oM

Q Phosphatase concen. 100 nM

Er Total APC concen., 100 nM

Cr . Total Cdc20 concen. 1 ‘oM

Using the parameter values in table 6.2 and S as the control parameter, we can

-compute a one-parameter bifurcation diagram (figure 6.18a) using numerical tools.

In this case, there are two critical values of S at which the system undergoes Hopf
bifurcations, with oscillatory solutions in between, 0.2 < S < 0.4 (roughly). A
typical oscillation for S in this range is plotted in ﬁgure 6.18b.

Small amplitude oscillations due to a “pure” negative feedback loop have recently
been observed by Pomerening et al. (2005) in frog egg extracts (see box 6.6). A
long negative feedback loop on PER-protein synthesis seems to play a major role
in circadian rhythms, as described in chapter 2.
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f“‘ﬂ’ll - ‘ & kss3 — kgs53[p53] — k¢ [Mdm2nuc|[p53] j
| \“M i v +kr[p53U] . 629) |
\ Vst ¢ _~|HB d[p53U] : ,
il - —5— = Fs[Mdm2nuc][p53] - k- [pS3U] — kys3[p53U]
i | el by Mdm2oc|p53U] + k pS3UT] - (6.30)
‘ H“‘\"‘: o d[p53UU]
WM‘H“ = = ks[Mdm2nuc][p53U] ~ k:[p53UT]
! H:l‘\ DU 0.’05 D’.‘l !l.l15 0',2 D.IZS 0’.3 U.’35 OIA 0485 0.5 ﬂD n 1'0 ) C;D 4’0 o ’
| l | | s _ time —(kgs3 + Kass) [p53UU] (6.31)
NW : Figure 6.18 A negative feedback oscillator. a) One parameter bifurcation diagram. d[Mdm2cyt] o ks2[p53tot]™ s
| H\H b) Simulation for § = 0.3. See table 6.2 for parameter values. Definitions: u. = R/Q, dt . = Ps2 W — kg [Mdchyt]
b “‘“‘H““ v= Ep/Er, w=X/Cr. In a), the min and max values of v on the limit cycle oscillation skph © ,
a1t lotted in the region between the two Hopf bifurcations. S N
| are plotted in the réglon etween the two Hopf bifurcations | _ | T T o5t [M§m2cyt] +k (?eph[MdmzPCyt] (6.32)
AV ’ ) dIM ‘ . ) N
‘L*“‘! Box 6.6: Negative feedback oscillations in frog egg extracts ) oh + [P33¢ot] 2 N yt
:‘ ’1\‘!“‘ Frog egg extracts are convenient preparations in which to observe the negative feed- , —Kkgeph [Mdm2Pcyt] — ki [MdmZPcyt]
“h‘“;h back loop involving MPF and APC, although the native regulatory system also 4k [M dm2 ] .
i ﬁ“}‘} ) includes a substrate-depletion oscillator involving phosphorylation of MPF" (see ta- : d[Mdm2nuc] ° nuc W (6.33)
: ‘ii‘i\‘u ble 6.1). By clever experimental techniques, Pomerening et al. (2005) have knocked Sl (ki [Mdm2P syt] — k, [Mdm2nye])
‘ \1\;“” out the substrate-depletion oscillator in a frog egg extract, revealing the negative feed- dt Y ¢
RN ' back oscillator in its (presumably) unadulterated state. They observed “pure” negative —kg2[Mdm2nyc] E (6.34)
il feedback oscillations in their preparations. In the absence of the self-amplification of ’ d_[m_d_a_m_l k IR] ‘ [DNA dam] o
4 MPF activity provided by the substrate-depletion motif, the pure negative feedback dt dam[IR] — Krep [P,53tot] Jana -+ [DNA ] (6.35)
P oscillations are of considerably smaller amplitude and drive ambiguous transitions . na dam
“j“:“ into and out of mitosis. It seems that the positive feedback mechanism is important where v |
‘ “H‘i; : » to amplify the negative feedback oscillations and give unambiguous signals to nuclei . IDNA ‘i
‘;wf‘\‘ to enter and leave mitosis. kg = kyp+ > [D?qain} ] kgz 6 3‘6) ‘
i . : + N
RE - . dam dam. , . ‘
L i [P33¢ot] = [p33] + [p53U] + [p53UT] (6.37)
“\ 6.6 A Multiple—Feedback Network: p53 and Mdm2 | ' [Mdm%ot] = [Mdm2ey] + [MdmZPcyt] + 5 - [Mdm2nuc]  (6.38)
. ratio .
, x Veyto -
il Transcriptional activator p53 is involved in cell cycle arrest and apoptosis (pro- Vratio = ;/th_plasﬁ (6.39)
) . . . nucleus
i grammed cell death). In normal cells, the level of p53 is kept low by Mdm2, which IRl = im ch,e 14 — L
. - = ose of ‘
promotes degradation of p53. The transcription of Mdm2 is activated by p53, cre- I8 PO eo mezmg radiation - (6.40)
ating a negative feedback loop (p53 — Mdm2 —| p53). When a cell/is subjected » The network contains a long negative feedback loop (p53 — Mdm2¢yt —
to environmental stress causing DNA damage or oncogene activation, the activity ‘ Mdm2Pyt — Mdm2nuc —| p53) and a long positive feedback loop (p53 — PTEN
} of Mdm?2 is weakened, allowing accumulation of p53 in the nucleus. Recently, it —| PIP3 — Akt — Mdm2P oyt = Mdm2yuc —]| p53). The positive fee dback loop
i “‘ : has been observed (Lahav et al., 2004) that pd53 and Mdm?2 undergo one or more is shortened to p53 —| Mdm2Pcﬁ — Mdrn2m;c —| p53
i . . . °
“‘H oscillations in response to ionizing radiation (which causes double-stranded breaks A simulation of this network (figure 6.19) compares very favorably with the
‘ L of DNA), in an apparent attempt to repair the damage. Ciliberto et al. (200?) experimental observations of (Lahav et al., 2004). As the radiation dose increases
i “j‘ have proposed a simple mechanism (figure 6.1), including both negative and pos- (ﬁgure 6.19d), the number of pulses of p53 increases. The reason for this curious
l\‘a ‘\ ] . tive feedback, which quantitatively reproduces this behavior. The equations for the “digital” response of p53 to DNA damage is made clear by the one-parameter
‘F i “network in figure 6.1 are _ : . : bifurcation diagram in figure 6.20, where we plot system respomse, [p53int], as

a function of the extent of DNA damage, measured by k... The positive feedback
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Table 6.8 Parameter values for p53—Mdm2 network

Rate Constants (min™")
ksss = 0.055  kisz = 0.0055  kass =8

kf=88 k=25 Kl = 0.0015 ,
keo = 0.006 Ky = 0.01 k= 0.01

kpn = 0.05 kgepn =6 ki = 14% _

ko =05 Kogam = 0.18  krep = 0.017

Other Constants (dimensionless)
Js2 = 1.2 Jpr = 0.01 Jine =1
Jdam =02 Vratio = 15 m=3

18 r P53t
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Figure 6.19 Simulation of gamma-irradiation experiment»(xfeproduced fro1:1.1 (Ciliberto
et al., 2005), with permission). At the beginning of the .simulatlon, the syste.m is at stea%dy
state. (A) Between time 10 and 20, the control system is exposed to a transient da.maglrkllg
agent, which induces two large amplitude oscillations in p53¢qt and Mdm2nuc. (B) The
" oscillations of the two cytoplasmic forms of Mdm2 have a smaller amplitude compared t0
Mdm2,c concentration in panel (A). (C) The oscillations are initiatec? as a consequence
of kgo increase, which is induced by irradiation. As the damage is repaired, kqo decreases
back to its basal value. (D) The number of pulses increases with the amou.nt of.da'magé. In
the simulation, we count the number of oscillations as a function of the irradiation time.

In panels A through C irradiation time = 10 min.

in the network creates multiple steady states (the S—shapéd curve at kgg & 0.01),
but the negative feedback loop makes the upper steady state unstable. The unstable
upper steady state is surrounded by stable limit cycle oscillations of [p534¢] and
[Mdm2¢¢]. The region of stable oscillation is bounded above (at kg & 0.853) by
a Hopf bifurcation, and below (at k42 = 0.0135) by a saddle-node-loop bifurcation.
For a broad range of values of kg2, that is, of DNA damage, the system responds
with pulses of p53 and Mdm2 of fixed amplitude and period, exactly as observed by
Lahav et al. (2004). As the damage is repaired, k4o drops toward kgo =2 0.01, and
the oscillations disappear abruptly as kqs crosses the saddle-node-loop bifurcation
point.

P83y

Figure 6.20 Bifurcation diagram (reproduced from (Ciliberto et, al., 2005), with permis-
sion). Recurrent states (steady states and limit cycles) for p53tst are plotted as functions
of kg2, the degradation rate of Mdm2nuc. The solid line represents stable steady states,
the dotted line unstable steady states. Black dots are the maxima and minima of the
stable limit cycles. The grey solid line represents P53tot as a function of k4o from the
simulation shown in figure 6.19. Notice that in figure 6.19 k4o is a variable (see equations),
while here it is a parameter (all other equations and parameter values as in table 6.3).
When the qualitative behavior of the system changes, it is said to undergo a bifurcation.
In the p53/Mdm2 model there is a saddle-node (SN) bifurcation at ks2=0.0018 and a
saddle-node-loop (SNL) bifurcation at kg2=0.0135. Before the SNL bifurcation there is
only one stable steady state, with low p53 (“p53 OFF"); after the SNL the steady state

becomes unstable, surrounded by a stable limit cycle. The family of stable limit cycles -
disappears at a Hopf bifurcation at k42 =0.8532 (not shown on the diagram).

A somewhat different model of p53/Mdm?2 oscillations in response to ionizing
radiation has recently been published by (Ma et al., 2005).
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6.7 Conclusions ‘ _ . -

How are cell biologists to make reliable connections between molecular interaction
networks and cell behaviors, when intuition fails in all but the simplest cases? In

this chapter, we propose to make the connection by translating the reaction network .

into a set of nonlinear differential equations that describe how all the interacting
species are changing with time (figure 6.21). '

The Dynamical Perspective -

Molecular Mechanism

l

Kinetic Equations

!

Vector Field

|

Sté'bie Attractors

l_

Physiological Properties

SOrBr gy M (5 B S

a

Figure 6.21 A dynamical perspective on molecular cell biology. To make a connection |

between molecular mechanisms and cell physiology, we convert the mechanism into a set
of kinetic equations, by standard principles of biochemical kinetics, and view the kinetic

equations as defining a vector fleld in the state space of the dynamical variables. The |
vector field has attracting solutions (steady states and oscillations) that correspond to |
characteristic physiological responses of the cell. The dependence of these attractors on -

kinetic constants (hence, on genetics and environment) are robustly captured in bifurcation
diagrams.

The differential equations define a vector field in the state space of the network.
The vector field points to certain stable attractors, which can be correlated with
long-term, stable behavior of the network and of the cell it governs. Transitions
from one stable attractor to another represent the responses of the cell to specific

perturbations (signals). A natural way to describe the signal-response properties of |
. a regulatory network is in terms of a one-parameter bifurcation diagram, which effi

ciently displays the stable attractors (steady states and oscillators) and transitions
between attractors as signal strength (the “parameter”) varies.

We have illustrated these ideas with simple examples of linear, hyperbolic, and
sigmoidal sienal-response curves, of bistable switches based on positive feedback

4.7 Conclusions
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or mutual inhibition, and of limit cycle oscillators based on substrate depletvion
activator-inhibitor interactions, or time-delayed negative feedback. These funda:
@ental motifs (switches and oscillations) can be coupled together into networks of
increasing complexity and dynamical potential. Interested readers should now be
?eady to read and understand the growing body of literature that takes this dynam-
ical perspective on interesting topics in cell physiology. Some nice examples include:
cell—cycle control (Tyson et al.; 2002), circadian rhythms (Leloup and Goldbeter
1998), lysogenic viruses (Arkin et al., 1998), quorum sensing in bacteria (Jame;
et al., 2000; Usseglio Viretta and Fussenegger, 2004), NF-xB signaling (Hoffmann
et al., 2002), and programmed cell death (Eissing et al., 2004).
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