### A BioMEMS Device for On-chip Single-Cell, Flow-based Diagnostic Assays

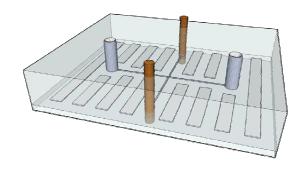
J.F. Audiffred<sup>1</sup>, M. Fincher<sup>1</sup>, P.Brown<sup>1</sup>, D.Patterson<sup>2</sup>, S.Soper<sup>2</sup>, W.T. Monroe<sup>1</sup>

<sup>1</sup>Department of Biological and Agricultural Engineering, <sup>2</sup>Department of Chemistry, Louisiana State University, Baton Rouge, LA

> IBE Conference Chapel Hill, NC

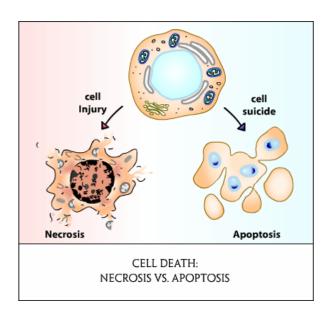
March 6-9, 2008






#### Overview

- Background
  - Cell Viability and Apoptosis
  - Apoptosis detection
  - Motivation
- Materials and Methods
  - Cell Assays
  - Microfluidic chip design and fabrication
- Results
  - Conductivity cell detection
  - Modeling of electrodes
- Summary & Future Works


#### Overall Objective

- Develop a microfluidic platform for sensitive detection and discrimination of single-cell live, necrotic, and early apoptotic cells using electrochemical techniques
- Proposed BioMEMS device
  - Label-free, Non-optical
  - Fluorescence for optical validation
  - Measure Impedance or Conductivity
  - Real-time capability



### What is Apoptosis?

- Apoptosis- programmed cell death
  - Membrane, DNA, mitochondria, caspase alterations
- Maintains balance in organisms
  - Tissue homeostasis
  - Defense mechanism
  - Aging process
- Inappropriate regulation of apoptosis leads to disease



#### **Necrosis:**

Pathological Cell Death

- Ruptured membrane
- Random DNA fragments
- Inflammation

#### **Apoptosis**:

**Programmed Cell Death** 

- Intact membrane
- DNA ladder fragmentation
- No inflammation

# Applications Apoptosis Detection-on-a-chip

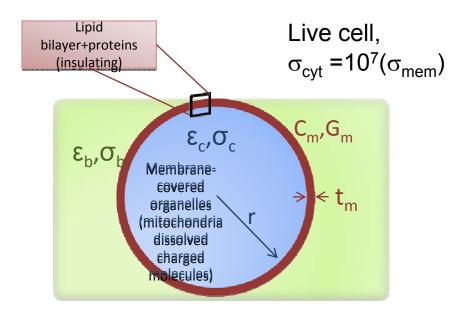
#### Diagnostics

- Early detection
- Portable point-of-care device
- Monitoring cancer treatment efficacy

#### High-throughput drug screening

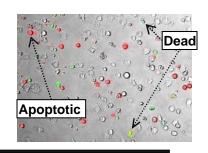
- Apoptosis & toxicity testing in drug screening
- Monitoring cells in recombinant protein production

#### Novel tool

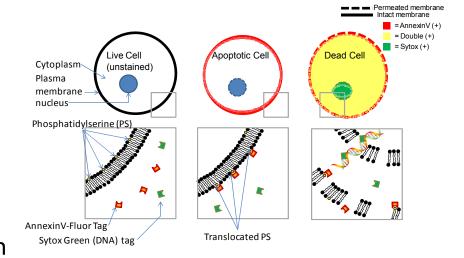

- Better understand signaling pathways
- Potentially help characterize cell phenotype

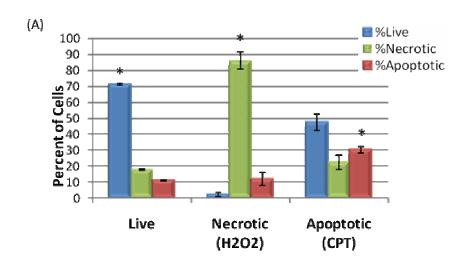
#### Label-free detection Advantages

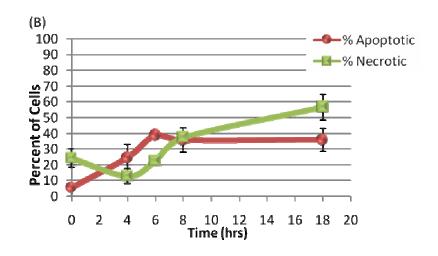
- Non-invasive method to quantify cell properties
- Able to be integrated in microfluidics
- Cheaper peripheral equipment (compared to optical and MS methods)


## Dielectric Summary of Cells

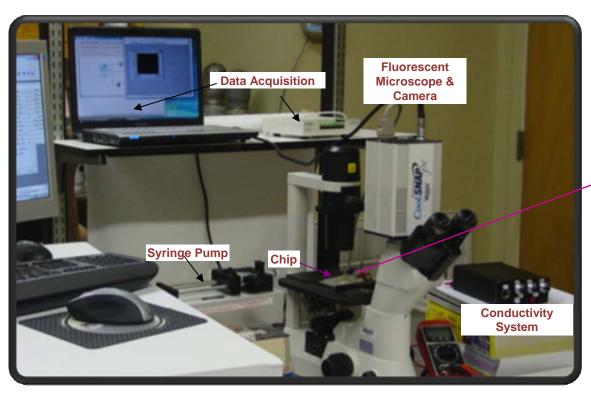
- Useful to compare relevant parameters which are a function of cell viability:
  - C<sub>m</sub> (cross-over frequency)
  - Cell size (r)
  - Membrane complexity
- Still no published account of conductive, label-free, single-cell apoptosis detection on-chip





| Cell Population | Membrane Capacitance (mF/m²)<br>HL-60 cells (Genistein)<br>(Wang et al. 2002) | Membrane Capacitance (mF/m²)  Jurkat cells (Etoposide)  (Pethig et al. 2007) |
|-----------------|-------------------------------------------------------------------------------|------------------------------------------------------------------------------|
| Live            | 17.6 ± 0.9                                                                    | 13.34 ± 2.88                                                                 |
| Apoptotic       | 9.1 ± 0.5                                                                     | 10.49 ± 4.00                                                                 |


## Cellular Annexin V Assay

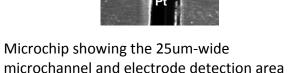



- Jurkat cells
- Camptothecin (CPT)- apoptotic control
  - Inhibitor of topoisomerase I- which is required for DNA synthesis
  - 10uM CPT @ 4-6 hrs
- Annexin V/SYTOX assay
  - Phosphatidylserine (PS) translocation-AnnexinV
  - Membrane integrity- SYTOX Green
- Fluorescence microscopy optimization



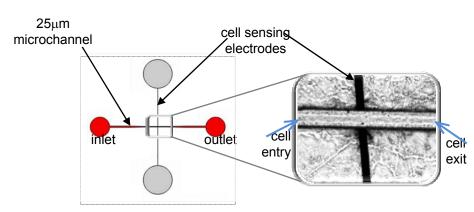


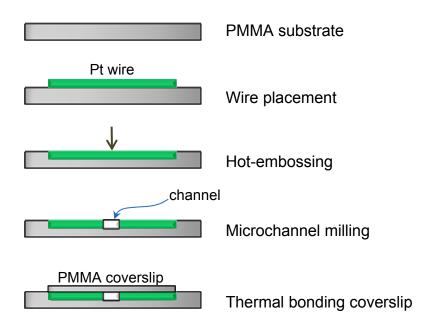


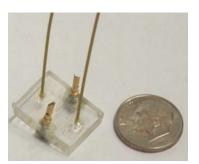

# **Experimental Setup**






- BF and Fluorescence microscopy
- Conductivity measurements acquired
  - Conductivity system
  - Data Acquisition via DAQ-Pad and LabVIEW

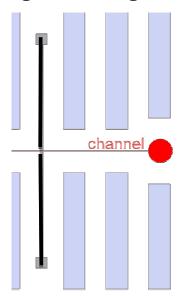



#### Microfluidic Chip Design & Fabrication

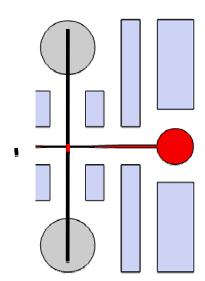
- PMMA substrate
  - Biocompatible, optically clear, non-fluorescent
- Pt wire electrodes
  - Inert, highly conductive
- Fluidic connections
  - Inlet and outlet
- Detection volume
  - Rectangular cross-section (25umx76umx76um)
- Cell Experiments
  - Cells suspended in buffer
  - Syringe pump control laminar flow of cells
  - Electrical field applied by conductivity system
  - Simultaneous video acquisition







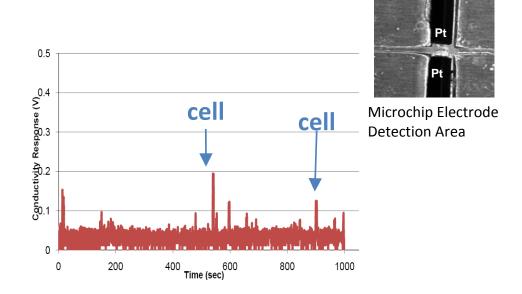

## 2 Primary Chip Designs


#### "Guide Channel"

- Chip channels micromilled
- Pt wire
  - Cut in 5mm segments
  - Placed in guide channels
  - Aligned along microchannel

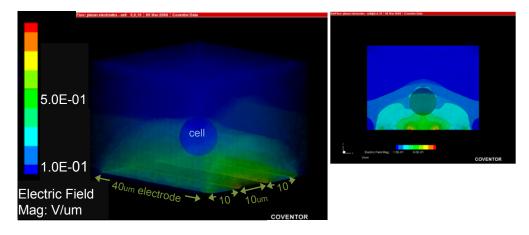


#### "Milled-wire"

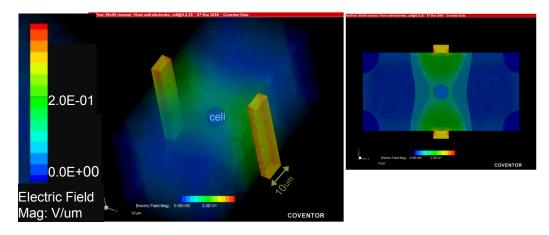

- Pt wire
  - Threaded through holes
  - Hot-embossed into PMMA
  - Cut during micromilling of channel



### **Conductivity Detection**


- Conductivity System
  - Bi-polar voltage (±0.5 V)
  - 40kHz
- Resistance in channel
  - Electrode gap and size (area)
  - Conductivity of buffer
- Experiment
  - Flow of dilute suspension of Jurkat cells
  - Peaks in Voltage indicate cell present
  - Conductivity measurements will be acquired simultaneously with video microscopy for optical validation

| Conductivity of biological cell buffers |                    |  |  |
|-----------------------------------------|--------------------|--|--|
| (Omega CDH-7X conductivity meter)       |                    |  |  |
| 0.1 mM PBS                              | 0.5 mS/cm (±0.04)  |  |  |
| 1 mM PBS                                | 1.2 mS/cm (±0.04)  |  |  |
| 10 mM PBS                               | 10.2 mS/cm (±0.04) |  |  |
| Tris-Glycine                            | 40 μS/cm (±0.04)   |  |  |




# Modeling of Electrodes

- Simulations
  - Optimize electrode geometry
  - Help understand parameters
    - Cell size, buffer, electrodes, micro channel geometry
  - Evaluate planar vs. side-wall electrodes
- 3D Modeling of Electric Field Magnitude
  - Coventor NetFlow analyzer
  - Pt Electrodes: 10um wide, 10um spacing
  - Buffer completely filling channel  $(\sigma_{1mMPBS}=1.2mS/cm)$
  - Applied Electric Potential =10V DC
  - Steady-state
- Dielectric biological cell disturbs electric field



Planar electrodes



Side wall electrodes

### Summary & Future Work

- Overall Goal:
  - Establish proof-of-concept for electrical, label-free BioMEMS device for quantifying cell properties
- Early detection of apoptosis is important for drug-screening and cancer treatment
- Apoptotic-induced dielectric alterations (membrane capacitance, cytoplasm conductivity, cell size) have been described
- A PMMA microchip device with embedded Pt electrodes is proposed for evaluating live, necrotic, and apoptotic Jurkat cells
- Future generations of microfabricated chips will be evaluated
  - Consider electrode alternatives
  - Conduct modeling simulations to estimate optimal geometry and expected results

### Acknowledgments

Jason Guy (Chem) Micromilling brass molds and on PMMA directly

"Matt" Hupert (Chem) Embossing and materials expertise

"Maggie" Witek (Chem) Chip design and wire embossing expertise

"Dr. Nick" Nikitopolous (ME) Chip modeling (CoventorWare) and design expertise

André Adams (Chem) Chip design and emphasizing parameters on micro-level

Thermoplastic fusion bonding and microtubing expertise

Proyag Datta (CAMD) Fabrication/Chip designs

Mr. Tom McClure (BE)

BE Machine shop expertise

NSF-EPS-0346411 (CBM<sup>2</sup>)

Taehyun Park (ME)

NSF CAREER Award program (WTM)

This material is based upon work supported under a National Science Foundation Graduate Research Fellowship (JFA).





### Thank You

Any Questions?