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Introduction and Motivation 
Force sensors such as the optical tweezers and atomic force microscope (AFM) provide a unique means for 
investigating single biomolecules.  Examples include the real-time monitoring of enzymatic activity with the 
optical tweezers and the direct measurement of forces required to unfold individual protein domains with the 
AFM.  At the heart of these force sensors is an ultrasensitive displacement detector that resolves the position of 
compliant structure (i.e. microcantilever or optically trapped mircobead) with nanometer, or in some cases, sub-
nanometer resolution.  The performance of the force sensor is determined by the mechanical properties of the 
structure (spring constant, resonant frequency, damping, etc) and the resolution of the displacement detector.  
When designing a force sensor for a particular application, it generally desirable to achieve a performance 
metric that is thermally limited.  In this limit, the noise level of the sensor is governed by kbT. 
 
The goal of this section of the course is to i) understand how the thermal limit of detection is related to the 
mechanical properties of the force sensor, and ii) experimentally determine if a force sensor is thermally 
limited.  The lectures and homework will focus on the first goal while the lab module will focus on the second 
one. 
 
As we will see from lectures, the power spectral density (PSD) is a useful function to calculate and measure for 
a given sensor.  Since we will model the mechanical properties of the force sensor a simple harmonic oscillator 
with spring constant k and RMS displacement <x2>, the Equipartition Theorem, 
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tells us that the integral of the position PSD, Sx(f), is directly related to Boltzmann’s constant by 
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Thus, by measuring the PSD, one can essentially “measure” kb and thereby determine if a force sensor is 
thermally limited by comparing it to the known value of 1.38 x 10-23 J/K.  This assumes that the temperature 
and spring constant are known.  Conversely, if a force sensor is known to be thermally limited, one can 
determine its mechanical properties by measuring the thermal noise. 
 
Lab module requirements 

1. Measure the biased z-mod response for the 275 μm and 350 μm cantilevers.  Plot the output voltage of 
the photodiode as a function as the voltage to the z-mod scanner.  Make sure to normalize your data for 
any gain applied to your signal downstream of the photodiode output.  Include the appropriate units on 
your plot.   

 
2. Using the diffraction equation in Section 3.1.2 and accounting for the correction factor described in 

Section 3.2.6, plot your data with the abscissa in nanometers (instead of the z-mod scanner voltage).  
What is the distance of adjacent minima and maxima?  How does this compare to the wavelength of the 
illumination? 

 



3. Measure the thermally excited motion for the 275 μm and 350 μm cantilevers.  Following the 
description in Sections 6.2 and 6.3, plot the Power Spectral Density (PSD) of each cantilever on the 
same graph using a log-log scale and units of Angstroms per √Hz for the ordinate.  From this plot, 
estimate the Quality factor Q and resonant frequency fo of each cantilever. 

 
4. Estimate the spring constant k for each cantilever as described in item 3 of Section 6.1.  Using these 

values, calculate the theoretical low-frequency limit of the thermomechanical motion of each cantilever.  
This limit is calculated from δ2 in Section 6.1 which is equivalent to Sx(ω=0) in the October 9 lecture 
notes.  Sketch this limit in your PSD from Part 3.  How well does the theoretical calculation compare to 
your measurement?  If your measurement differs by more than an order of magnitude, suggest what 
factors could give rise to such a difference, making rough estimates if necessary.  Note that it is common 
to see ‘1/f’ noise at low frequencies (typically below a few hundred Hertz for our system) so you will 
want to make the comparison of Sx (or δ2) at a frequency above this corner point yet below the resonant 
frequency. 

 
5. (OPTIONAL)  Following the guidelines in Section 6.4, fit the analytical expression of the 

thermomechanical noise (without the low frequency approximation) in order to determine Q, fo, and k.  
 
 
 


