Part 4. Behaviour at Infinity of the System

We use the Dimension-less version of the system
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The Dynamic System differs from the previous system by the addition of a term — EU , which
confers it a crucial property: all trajectories remain bounded

1) A Lyapunov Function

We are going to prove that for (U ,V) far enough from the origin, U+V is a Lyapunov function of
the flow. We restrict ourselves to the strictly positive trajectories.
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2) Behaviour at Infinity

It follows that the trajectories remain bounded even as time goes to infinity. We can
therefore apply Poincaré — Bendixson’s theorem. Trajectories will therefore converge either to
one steady points or to a limit cycle. If we can find a combination of parameters for which all
steady points are unstable , then the system will oscillate .



