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Stochastic fluctuations affect the dynamics of biological systems.
Typically, such noise causes perturbations that can permit genetic
circuits to escape stable states, triggering, for example, phenotypic
switching. In contrast, studies have shown that noise can surprisingly
also generate new states, which exist solely in the presence of
fluctuations. In those instances noise is supplied externally to the
dynamical system. Here, we present a mechanism in which noise
intrinsic to a simple genetic circuit effectively stabilizes a determin-
istically unstable state. Furthermore, this noise-induced stabilization
represents a unique mechanism for a genetic timer. Specifically, we
analyzed the effect of noise intrinsic to a prototypical two-component
gene-circuit architecture composed of interacting positive and nega-
tive feedback loops. Genetic circuits with this topology are common
in biology and typically regulate cell cycles and circadian clocks. These
systems can undergo a variety of bifurcations in response to param-
eter changes. Simulations show that near one such bifurcation, noise
induces oscillations around an unstable spiral point and thus effec-
tively stabilizes this unstable fixed point. Because of the periodicity of
these oscillations, the lifetime of the noise-dependent stabilization
exhibits a polymodal distribution with multiple, well defined, and
regularly spaced peaks. Therefore, the noise-induced stabilization
presented here constitutes a minimal mechanism for a genetic circuit
to function as a timer that could be used in the engineering of
synthetic circuits.
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S tochastic fluctuations in gene expression and protein concen-
trations are a natural by-product of biochemical reactions in

cells. Properties of this biochemical noise within genetic circuits,
such as their amplitude, distribution, and propagation, have been
extensively characterized (1–9). Additionally, theoretical and ex-
perimental studies have established that such noise can induce
stochastic switching between distinct and stable phenotypic states
(5, 10–23). Noise within genetic circuits is therefore thought to
contribute to phenotypic heterogeneity in genetically identical
cellular populations. It has also recently been shown experimentally
that noise can trigger cellular differentiation in fruit flies and
bacteria (14, 17, 18, 24). Together, these studies establish that noise
can play an active functional role in cellular processes by effectively
destabilizing and thus inducing escape from stable phenotypic
states.

Besides its common role in destabilizing stable states, noise
can also have the more counterintuitive effect of generating new
stable states that do not exist in the absence of fluctuations (25).
In particular, noise-induced bistability has been reported theo-
retically (26, 27) and experimentally (2). In those situations, one
of the two stable solution branches is usually present irrespective
of fluctuations, whereas the second one is purely induced by
noise (28). The appearance of such noise-induced branches of
solutions requires particular nonlinearities in the underlying
equations, and frequently an extrinsic noise source. It is thus of
interest to establish mechanisms through which noise-induced
stabilization can be caused by noise that is intrinsic to the
biochemical reactions that comprise biological systems. Further-

more, because of the limited number of examples of noise-
induced stabilization, it is unclear if and what different mecha-
nisms can support this counterintuitive phenomenon.

The address the questions raised above, we have investigated a
prototypical two-component activator–repressor genetic circuit as a
model system (Fig. 1A). This circuit comprises a promoter (Pa) that
expresses a transcription factor (A) that can activate both its own
promoter (Pa) and the promoter of a repressor (Pr). The repressor
protein (R) can inhibit the activity of the transcription factor (A) by
targeting it for degradation. The autoregulation of the activator
forms a positive feedback loop, whereas the activation of the
repressor (R) and the consecutive inhibition of the activator mol-
ecule (A) by the repressor (R) establish a net negative feedback
loop. Expression of activator and repressor transcription factors is
thus synchronized where A and R can both be either high or low.
Thus, this system constitutes a simple genetic circuit with interacting
positive and negative feedback loops.

Natural genetic circuits that are composed of such interacting
positive and negative feedback loops typically support various
nonlinear dynamic behaviors (29). In particular, this circuit topol-
ogy is common among genetic oscillators, such as cell cycle and
circadian clocks (30–35). Additionally, transient cellular processes
such as cell membrane polarization in neurons (36), yeast (37), and
differentiation in bacteria (17, 18, 20) are also controlled by genetic
circuits that are similar in architecture. Therefore, understanding
how noise influences the dynamics of genetic circuits with this
shared topology will be of general relevance to a wide range of
cellular processes. Furthermore, a mechanistic understanding of
the effects of noise on this simple circuit could guide the engineer-
ing of synthetic circuits with nonlinear dynamical behavior.

This investigation of the prototypical activator–inhibitor circuit
described above shows that intrinsic noise is able to effectively
stabilize an unstable state via a mechanism distinct and much
simpler than those proposed to date. Below, we present results that
demonstrate that intrinsic noise stabilizes an unstable fixed point
that already exists deterministically. Specifically, when an unstable
spiral point coexists with a second stable state from which it is
separated by a saddle point, the phase-space topology is such that
stochastic fluctuations are able to induce stochastic oscillations (38)
around the unstable spiral. These oscillations in turn lead to
increased dwell times in the region of space around the unstable
fixed point, and therefore to its effective stabilization. We remark
that, in our case, the effect is caused by standard intrinsic noise and
does not require an external noise source.

Interestingly, this stabilization mechanism based on noise-
induced oscillations around the unstable state also restricts the time
window during which switching from the unstable high-expression
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state to the stable low-expression state can take place. Conse-
quently, the unstable state is quasi-stable only for multiples of fixed
duration, and the corresponding distribution of stabilization life-
times is polymodal. Such polymodality has been reported in mam-
malian (39), yeast (40), and amphibian (41) cell cycles. Several
mechanisms have been proposed to account for this polymodality,
including specific gene circuits with complex dynamics (42, 43) and
intercell communication (44). Our results hint at a simpler mech-
anism for such quantized cellular transitions. Furthermore, dis-
cretization of duration times for which the unstable state is stabi-
lized represents a minimal mechanism for a genetic timer that could
be used in synthetic biology.

Results
Comparing Continuous and Discrete Stochastic Simulations of Excit-
able Dynamics. To investigate the effect of noise on the dynamics of
the activator–repressor circuit described above, we implemented a
stochastic description in terms of a set of biochemical reactions
compatible with the circuit architecture (Fig. 1A). From those
reactions, one can derive a corresponding set of coupled ordinary
differential equations that describe the dynamics of the activator
and repressor:

da
dt

� k1 �
k2An

Ka
n � An � k8a

dr
dt

� k3 �
k4Ap

Kr
p � Ap � k9r

dA
dt

� k5a � k7AR � k10A

dR
dt

� k6r � k11R

[1]

These equations can be derived from the microscopic reactions
underlying the circuit, listed in Materials and Methods. Here, A and
R represent the concentration of activator and repressor proteins,
respectively, a and r are the concentration of their corresponding
mRNA molecules, and ki are reaction rates (see Materials and
Methods for definitions). Positive self-regulation of the activator A
is represented by a Hill function with cooperativity exponent n and
strength k2, with half-maximal activation arising at a concentration
of A equal to Ka. Similarly, A is also assumed to activate transcrip-
tion of R following Hill kinetics with corresponding parameters p,
k4, and Kr.

Assuming that the dynamics of the mRNA molecules is much
faster than that of the proteins (which is a reasonable assumption
given that mRNA lifetimes are usually in the range of minutes,
whereas protein lifetimes are in the range of hours, assuming no
enzymatic degradation), we can adiabatically eliminate the equa-
tions for a and b, which leads to the following two-dimensional
deterministic model:

dA
dt

� �a �
�aAn

ka
n � An � �AR � �aA

dR
dt

� �r �
�rAp

kr
p � Ap � �rR

[2]

The interpretation of the different terms occurring in these equa-
tions is as follows. Both species are assumed to be expressed at a
basal rate given by �a and �r, and to degrade (for instance, because
of growth dilution) at constant rates �a and �r, respectively. Reg-
ulated expression of A and R is controlled by the Hill functions with
strengths �a and �r and rescaled Michaelis constants ka and kr,
respectively (see Materials and Methods). Finally, repression of A by
R is represented by the third term in the right-hand side of the A
equation, and is controlled by the parameter �. These parameters
are related with the reaction rates of the differential equations (1)
as follows:

�a �
k1k5

k8
,

� � k7,

�a �
k2k5

k8
,

�a � k10,

�r �
k3k6

k9
,

�r � k11

�r �
k4k6

k9 [3]

By using the deterministic model 2, we investigated the regime of
excitable dynamics, in which threshold-crossing perturbations trig-
ger well defined excursions in phase space. This regime occupies a
broad region of parameter space, including parameter values typical
for transcription, translation, and degradation processes. A repre-
sentative set of such values is given in Materials and Methods.
Nullcline analysis of the system showed that the excitable regime
has three fixed points, two of which are unstable (Fig. 1B).
Perturbations permit the system to escape the stable state (filled red
circle in Fig. 1B) and undergo a well defined excursion around the
unstable fixed points (open red symbols in the figure) and return to
the stable fixed point, generating transient pulses of high activity for
both activator and repressor molecules (Fig. 1C).

We then investigated the effect of biochemical noise on the
behavior of the system by using discrete stochastic simulations of the

Fig. 1. Continuous and discrete stochastic simulations of a simple activator–
repressor circuit generate qualitatively identical excitable dynamics. (A) Sche-
matic diagram of the activator–repressor circuit. Activator and repressor proteins
are denoted as A and R with corresponding genes a, r and promoters Pa and Pr,
respectively. B and D as well as corresponding C and E compare continuous and
discrete stochastic simulations of the repressor–activator circuit (kr � 0.12). (B)
Nullcline portrait of the activator–repressor circuit obtained from the two-
dimensional continuous model described in the text. Activator and repressor
nullclines are depicted in blue and green, respectively. One stable and two
unstable fixed points at the three nullcline intersections are shown in filled red
circle (stable node), open red circle (unstable saddle), and open red diamond
(unstable focus), respectively. Black line denotes the continuous excitable trajec-
tory of the system with gray arrows indicating its direction. (C) Continuous time
traces of activator A (blue) and repressor R (green) molecule numbers during the
transient excitable event shown in B. (D) The same nullcline portrait shown in B
overlaid with five sample excitable trajectories (black) of excitable dynamics
obtained from discrete stochastic simulations, which inherently account for bio-
chemical noise within the repressor–activator circuit. Shown in E are stochastic
time traces of activator A and repressor R molecule numbers during one of the
excitable events shown in D.
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underlying biochemical reactions (see Materials and Methods),
whose rates are related with the deterministic parameters of model
2 by means of the relations (Eq. 3). For the resulting rates, the
dynamics of the reactions were simulated by means of Gillespie’s
first reaction method (45). The stochastic phase-space trajectories
shown in Fig. 1 D and E are similar to their deterministic coun-
terparts and agree with the nullcline portrait corresponding to the
deterministic model. Both deterministic and stochastic simulations
generated transient pulses of high concentrations of activator and
repressor during an excitable episode. Thus, accounting for bio-
chemical noise within the genetic circuit in discrete stochastic
simulations does not appear to introduce qualitatively different
excitable dynamics when compared with continuous simulations.

Effect of Noise on Activator–Repressor Circuit Dynamics near a
Bifurcation. Next we investigated how circuit dynamics behave when
parameter values change, leading, in particular, to a bifurcation
where the system transitions from one dynamical regime to another.
Recent work showed that bifurcations from excitable to other
dynamical regimes, such as oscillatory or bistability, are possible for
a bacterial cellular differentiation circuit and yeast mating MAP
kinase pathway in vivo (18, 46). Similarly, for the model system
described in this study, changes in various parameter values can
induce bifurcations. Specifically, here we investigated the dynamics
of the activator–repressor system on changes in the binding affinity
of the Pr promoter for the activator A, which is accounted for by the
parameter kr. Although the lower fixed point remains stable and the
middle fixed point is unstable for all values of kr studied, the upper
fixed point undergoes a Hopf bifurcation and transitions from an
unstable fixed point to a stable focus in response to increasing kr
values (Fig. 2A). This transition leads to a bistable regime for large
kr in which both the low- and high-concentration states for A and
R molecules are stable.

What effect does noise have on the bifurcation scenario described
above? To address this question, we compared continuous and
discrete stochastic simulations for a value of kr smaller than, but
close to, the critical value beyond which the upper fixed point is
stable. In the deterministic case, the unstable upper fixed point of
the excitable regime is stabilized exactly at the Hopf bifurcation
point. Before the bifurcation the genetic circuit continues to behave
deterministically as an excitable system (Fig. 2 B and C). For the
identical (smaller than critical) value of kr, however, results from
discrete stochastic simulations differ qualitatively, showing that the
system can orbit around the unstable upper fixed point (Fig. 2D).
During these oscillations concentrations of A and R molecules
remain relatively high and near the unstable fixed point (Fig. 2E).
Thus, noise within the genetic circuit appears to effectively stabilize
the deterministically unstable upper fixed point, keeping the system
in the high-expression state for prolonged periods of time.

Effective Stabilization of an Unstable Fixed Point by Noise. To
establish the mechanism through which noise keeps the system in
the high-expression state, we now turn to the phase-space analysis
of model 2. As mentioned above, the resting state of the system in
the excitable regime corresponds to the stable fixed point indicated
by the filled red circle at the bottom left of Fig. 3A. Of the two
unstable fixed points, the upper one is an unstable focus (Fig. 3A,
open red diamond), from which trajectories escape by spiraling
outward. The middle fixed point is a saddle point (Fig. 3A, open red
circle), from which four invariant trajectories emerge, two of them
repulsive (data not shown in the figure), and two others attractive
(Fig. 3A, magenta lines). The attractive invariant trajectories form
the stable manifold of the saddle.

The part of the stable manifold that lies below the saddle is the
excitability threshold, and separates deterministic trajectories cor-
responding to perturbations that lead to an excitable event from
those leading to a direct (nonexcitable) relaxation to the stable fixed
point. The part of the stable manifold above the saddle originates

from the unstable focus, from which it spirals outward, as shown in
detail in Fig. 3B. This situation occurs typically when an unstable
focus is located close to a saddle, for instance, right after a
homoclinic bifurcation (47). The spiraling manifold line separates
deterministic trajectories that lead directly to the stable fixed point
(Fig. 3B, dashed black line) from those that are forced to orbit
around the unstable focus before returning to the stable fixed point
(Fig. 3B, solid black line). Trajectories can cross the manifold line
many times resulting in consecutive orbits as shown in Fig. 2E. Such
trajectories with more than one oscillation have their amplitude first
reduced and then slowly increased until exit. This is because the
oscillations spiral away from the unstable fixed point, whereas they
cross the manifold line multiple times. In any case, as a result of such
orbits, the time the trajectory spends near the unstable focus is
increased, which can be viewed as an effective stabilization of the
unstable focus.

Discretized Switching Between High and Low States of the Activator–
Repressor Circuit due to Noise. Next, we investigated how the
particular noise-induced mechanism described above affects the

Fig. 2. Near a bifurcation, noise induces qualitative differences in activator–
repressor circuit dynamics. (A) Enlarged view around the upper fixed point (in
red) shown in Fig. 1 B and D, of activator and repressor nullclines in blue and
green, respectively. For increasing values of the kr parameter (which accounts for
the binding affinity of the repressor promoter for activator protein), the blue
activator nullcline shifts from left to right. At the critical value of kr � 0.1559
(indicated with black-yellow dotted line) the upper fixed point undergoes a Hopf
bifurcation and switches from an unstable focus (open red diamond) to a stable
focus (filled red circle). Thus, for kr values smaller than the critical value, the
activator–repressor circuit constitutes an excitable system, whereas for higher kr

values the system is bistable. (B and D) Shown in black are excitable trajectories
of continuous and discrete stochastic simulations, respectively, for a value of kr �
0.14 for which the upper fixed point is deterministically unstable. Note that in D,
the three sample trajectories obtained from discrete stochastic simulations orbit
the upper deterministically unstable fixed point, whereas no such behavior is
observed in the continuous simulation shown in B. (C) Continuous simulation
time traces of activator and repressor molecule numbers are consistent with
excitable dynamics as shown in Fig. 1C. (E) Discrete stochastic simulation time
traces exhibit small oscillations at high molecule numbers that clearly differ from
continuous simulation results shown in C obtained for identical kr values.
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nonlinear dynamic of the activator–repressor circuit. In the absence
of noise, excitable events always take the system above the stable
manifold, and thus never elicit oscillations around the unstable
focus (Fig. 3B, dashed black line). In the presence of noise, however,
stochastic fluctuations can force the trajectory to cross the stable
manifold leading to tight orbits around the unstable focus, as shown
by the red solid line in Fig. 3B (yellow-highlighted region in the
figure). Such crossings might happen multiple times during the
period the trajectory attempts to escape the unstable focus, leading
to consecutive oscillations around the unstable focus. These orbits
have a characteristic period, resulting in a quantized increase in the
duration of the excitable event.

Interestingly, the noise-induced oscillations around the deter-
ministically unstable focus lead to a quantization of the return times
to the lower stable fixed point (Fig. 4A). The number of oscillations
around the spiral point is given by the number of inward crossings
of the manifold line minus the number of outward crossings (Fig.
3B). Because these oscillations have the same period, the return
time is a multiple of this period. This quantization causes the genetic
circuit to act as a timer, permitting the system to leave the
high-expression state only at multiples of defined time periods (Fig.
4A). This effect results in a polymodal distribution of duration
times, as shown in Fig. 4B for 5,000 excitable events at a fixed value
of kr relatively close to, but smaller than, the critical bifurcation
value. Fig. 4C shows how the polymodal distribution emerges

gradually as the value of kr approaches the bifurcation, although it
already exists well before that point. Thus, for a range of kr values,
noise inherent to the activator–repressor circuit induces the system
to function as a genetic timer.

Discussion
Noise within genetic circuits is typically known to destabilize
stable states (48, 49). Numerous studies have demonstrated that
noise can provide the perturbation for a system to escape the
attraction of stable states and trigger switching between distinct
phenotypes (48, 50, 51). For example, the phage-� lysis-lysogeny
cellular decision-making switch was one of the first systems for
which noise was proposed to be the trigger (52). More recent
work has shown both theoretically and experimentally that noise
initiates differentiation of Bacillus subtilis cells into competence
(14, 17, 18, 20). The duration of proviral latency in HIV-1 has
been suggested to be determined by noise in Tat, a transcription
factor (53). Furthermore, noise-induced variability in gene ex-
pression between cells has been shown to generate phenotypic
heterogeneity in genetically identical populations of cells (1, 7,
49, 51, 54). Other effects of noise include its ability to enhance
oscillations in circadian clocks (29).

Despite the diverse organisms and model systems investigated, a
common theme in the studies listed above is that noise provides the
means to escape the attraction of a stable state. In this work,

Fig. 3. Noise effectively stabilizes a deterministically
unstable fixed point. (A) Phase portrait of the system
for kr � 0.14, with activator and repressor nullclines
shown in blue and green, respectively. The determin-
istic stable manifold of the saddle point (open red
circle) is shown in magenta. The stable fixed point is
shown as a filled red circle, and the unstable focus as an
open red diamond. (B) Enlarged view of phase portrait
for the region around the upper unstable fixed point,
as indicated by gray dotted line in A. Black lines are two
deterministic trajectories with two different starting
points with respect to the stable manifold (yellow-
highlighted region). One of these trajectories (dashed
black line) starts just outside of the stable manifold and
returns directly to the stable fixed point shown in A.
The other trajectory (solid back line) starts just inside
the stable manifold and orbits the unstable fixed point
once before returning to the stable fixed point. The red line is a trajectory obtained from discrete stochastic simulations. Noise inherent to the stochastic
simulations causes the trajectory to cross the stable manifold (yellow-highlighted region). This results in the system orbiting the unstable fixed point at least once
before ultimately returning back to the lower stable fixed point. This extends the time the system spends in the high-activity state and thus the duration of the
trajectory.

Fig. 4. Noise-induced stabilization generates quan-
tized durations of activator–repressor circuit dynamics.
A and B show results from discrete stochastic simula-
tionsobtainedforkr �0.1475,which is smaller thanthe
deterministically critical bifurcation value. (A) Sample
time traces aligned in time with respect to maximum of
first high molecule number peak. Depicted in gray,
magenta, green, and blue are sample traces that orbit
the deterministically unstable fixed point once, twice,
three, or four times, respectively. Transitions from
high- to low-molecule-number states are restricted to
discretized time windows. (B) Histogram of duration
times in high-activity state obtained from 5,000 trajec-
tories including sample traces depicted in A. Note the
polymodalnatureof thedistribution. (C)Histogramsof
high-activity-state durations (as shown in B) for indi-
cated kr values, normalized to its maximum for each kr

value,andcolor-codedwithrespecttothehistogramof
count values (in logarithmic scale). Note the polymodal
distribution of duration times.
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however, we present the opposite situation, in which stochastic
fluctuations provide the means for a dynamical system to remain
near an unstable state over time. Previous studies have addressed
this issue by showing that noise is able to induce transitions leading
to new states that do not exist in the absence of fluctuations (25).
Hasty et al. (26), for instance, showed theoretically that noise-
induced bistability can be used to design switches and amplifiers for
gene expression. In another theoretical study, simulations of a
prototypical enzymatic futile cycle suggested that noise can induce
a behavior that differs qualitatively from what is predicted or
possible deterministically (27). An experimental observation of
noise-induced bistability was also reported by Blake et al. (2). In
those studies, the origin of noise is external to the system, and thus,
the specific coupling of this external noise to the system is critical.
Here, we show, however, that in a simple two-component gene
regulatory circuit, stochastic fluctuations inherent to the biochem-
ical reactions that comprise the activator–repressor circuit can
generate qualitatively distinct and deterministically inaccessible
dynamics. Therefore, we demonstrated that external sources of
noise are not necessary and that noise intrinsic to the genetic circuit
can also induce dynamic behaviors. Furthermore, the dynamics
observed in the activator–repressor circuit described here are
unique in that they combine properties of excitable dynamics and
bistability. The well defined durations of transient activity that are
inherent to excitable dynamics are merged with the bistable prop-
erty of switching between two distinct states, even though only one
deterministically stable state exists. This fusion of excitability and
bistability generate a dynamic behavior that combines switch-like
behavior with periodicity.

The effect of noise on the dynamics of the simple activator–
repressor circuit observed near a bifurcation also suggests possible
evolutionary advantages. Simulations show that before bifurcation,
noise allows the activator–repressor system to sample a dynamic
regime that is deterministically accessible only after bifurcation.
Therefore, noise appears to smear out the deterministically well
defined bifurcation line into a region or area. This could have
several biologically relevant advantages such as providing the
system with the ability to sense distance to a critical bifurcation.
Rather than an instant change in dynamics observed determinis-
tically, the stochastic system undergoes a smooth transition from
one dynamic regime to the next. In the region close to the
bifurcation, the system can additionally exhibit a dynamic behavior
that is a combination of the two dynamic regimes separated by the
bifurcation. Furthermore, noise also expands the range of param-
eter values for which the activator–repressor circuit retains the
ability to remain excitable, making excitability more robust against
parameter changes. This work thus shows that noise within a genetic
circuit can generate qualitatively different and dynamically unique
behaviors that are accessible near bifurcations.

The stabilization of the unstable state of the activator–repressor
circuit near the bifurcation interestingly occurs in a periodic man-
ner. This mechanism allows the system to operate as a digital timer
that controls transitions between the low and high gene expression
states of the genetic circuit. Therefore, subpopulations of cells can
switch from specific states with well defined wait times producing
phenotypic heterogeneity within the population (Fig. 4A). Addi-
tionally, the mechanism described here generates a unique type of
dynamic variability in the system. Rather than accessing the high
gene expression state for random periods of time, as is common for
bistable systems, here, the high-expression state is stabilized for well
defined durations. This causes the system to behave as a genetic
timer with a characteristic frequency.

This mechanism of noise-induced stabilization may be used in
biological systems, in which exit from a certain cellular state needs
to be correlated with periodic cellular activities such as the cell cycle
or other metabolic rhythms without feedback control. For example,
phenotypic switching and cellular differentiation requires the ex-
pression of hundreds of genes. To efficiently execute such cellular

processes, it may be desirable to couple to metabolic cycles the
probability of switching between states. Numerous examples of
genetic circuits that share the simple architecture discussed here
have been shown to regulate various processes in biological system
(30–33, 55–58). It will thus be interesting to investigate whether the
simple mechanism of a noise-induced timer presented here is used
in the regulation of these cellular processes. Furthermore, poly-
modal distributions of cell cycle duration times have been reported
in Chinese hamster V79 cells (39), in fission yeast (40), and during
the early development of Xenopus embryos (41, 59). Because the
topology of these eukaryotic cell cycle circuits is similar to that of
the model described here, the observed quantized increases in cell
cycle duration times may be explained by the proposed noise-
induced stabilization phenomenon. In particular, the Anaphase
Promoting Complex (APC) in eukaryotic cell cycles corresponds to
the repressor molecule (R) in our model system. In combination
with intrinsic noise, variations in the overall strength of the APC-
mediated cell cycle negative feedback loop (corresponding to kr in
our model) could therefore give rise to the reported polymodal
distribution of cell cycle times.

The simplicity of the two-component genetic circuit makes the
noise-induced stabilization mechanism described here particularly
accessible for synthetic biology applications. The noise-induced
counter can be used to regulate the timing of phenotypic switching.
Furthermore, no feedback control is necessary to couple pheno-
typic transitions to, for example, the cell cycle. Once the genetic
circuit is triggered it can use its internal periodicity to exit at
appropriate phases of the cell cycle. The minimal topology of the
circuit is also ideal to experimentally tune the cycles of the counter.
Therefore, this simple mechanism could be used to engineer
synthetic circuits whose activities can be tuned and coupled to cyclic
processes in the cell without requiring feedback control.

Materials and Methods
A set of reactions that respond to the architecture of the activator–inhibitor
circuit shown in Fig. 1A is:

PA
constO¡

k1

PA
const � mRNAA

PAO¡

f�A ,k2,Ka,n�
PA � mRNAA

PR
constO¡

k3

PR
const � mRNAR

PRO¡

g�A ,k4,Kr,p�
PR � mRNAR

mRNAAO¡
k5

mRNAA � A

mRNARO¡
k6

mRNAR � R

R � AO¡

k7/�
R

mRNAAO¡
k8

�
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mRNARO¡
k9

�

AO¡
k10

�

RO¡

k11

�

where PA
const and PA represent the constitutive and regulated promoters of the

activator gene, respectively, with similar definitions for the repressor. The
relation between concentrations and molecule numbers is given by the fol-
lowing factor:

� � VA � 1.66�m3 	 6.023 �1023molec/mol � 1 molec/nM

where A is Avogadro’s number, and V is the cell volume, which we assume here
to have a value of 1.66 �m3.

The rates of regulated transcription of the activator and repressor are given by
the Hill functions:

f�A, k2, Ka, n� �
k2An

Ka
n � An, g�A, k4, Kr, p� �

k4Ap

Kr
p � AP

where the Michaelis constants Ka and Kr are the half-maximal activation and
repression molecule numbers, respectively. A set of parameters of the deter-
ministic model 2 that leads to excitable dynamics is:

�a � 0.00875 s�1,

�r � 0.025 s�1,

�a � 7.5 s�1,

�r � 2.5 s�1,

ka � 0.2,

kr � 0.12,

�a � 10�4 s�1

�r � 10�4 s�1

� � 4.10�8 molec�1, n � 2, p � 5

The Michaelis constants are Ka � ka� and Kr � kr�, where � � 2.5�104 molecules
is a scaling factor. Now, assuming reasonable values for the rates of mRNA
translation and degradation, k5 � k6 � 0.2 s�1 and k8 � k9 � 0.005 s�1, and
using the relations given in Eq. 3, one finds the following values for the rates
of the remaining reactions:

k1 � 0.00022 s�1, k2 � 0.1875 s�1,

k3 � 0.000625 s�1, k4 � 0.0625 s�1

k7 � 4.10�8 molec�1, k10 � 10�4 s�1, k11 � 10�4 s�1
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