Optics & Microscopy IV
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What have we learned last lecture:

Interference

Fourier transform spectroscopy

Speckle imaging

Common contrast mechanisms in white light microscopy
a. Dark field

b. Phase

c. DIC

d. Polarization



Microscopic confrast and resolution
Two of the most important and difficult to quantify aspects of an
optical microscope are its ability to generate contrast and it ability

to rezolve fine stmuctures

What 15 contrast? Contrast refers to an “intensity” difference
between a specimen of interest and 1ts background.

Optically contrast 15 defined as the visibility:
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What is resolution? Resolution defines how fine we can see ...
how far apart two objects have to be for them to be distinguishable.

Rayleigh's Criterion:

Two objects are distinguishable if their centers are separation by
firrthar than their frll sridth at half mavimnm



Diffraction Huygens-Fresnel Principle

Diffraction can be considered as a more advanced treatment of
mterference effect. The basic physics of the two phenomena are
wdentical. While we have treated interference as light originating
from point sources (like the double slit expeniment), diffraction
considers interference of light from fimte size objects such as an

aperture. Spherical Wave Solution

Diffraction effect can be easily seen when light is restricted into

dimensions that are comparable to its wavelength. For coherent

light source, like a laser, diffraction effects can be readily

observed. An example 15 sending laser light through a narrow sli :
EGrt)=E sin(k,.r —r)

The treatment of diffraction effects started in the 1700s-1800s wi 1) 0 7

the imtroduction of the Huvgens-Fresnel Principle.

and ¢k, =@

Huygens-Fresnel Principle: Every unobstructed points of a wave
front are a source of secondary spherical wave. The optical field
far awav can be determined by the interference of the secondary
waves.

The Huvgen's principle can be denved directly from the wave
equation assumuing the electric field can be treated as scalar
quantities. It 1s quite a bit of work and I will not go through 1t
here.



Diffraction |

Single slit diffraction is a result of the interference of light due to its wave nature
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Diffraction Il

Single Sht Experiment

Let's consider the simplest diffraction sifuation that of a finite size
slit:

v r

dy = /R/— 1
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The contribution of element dy at position P can be calculated
from Huvgen's prninciple:

dE = £ﬂ__inl::f.r;-a* — k)dy
N



Diffraction Il
In the far field (Fraunhoffer) limit, == D

We can approximate r by K and the distance r can be approximated
as a function of B, v and & (using Law of cosine):

2 .
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Keepmng terms to first order in v, we have

dE = iain{mr — kR + kysm#)

The total field at P 1s:

E D2
E== [sin(er—kR+ kysin® )dy
-D/2

Therefore, we have

EDsin[(kD/2)sinf] . |
= of — kR
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Diffraction IV

Defining 3 = (kD/ 2)simn6 and calculating the intensity at P we
have:

1 EE'}J_ L_Emﬁ):_ =I(0)sme(f)
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Note that sinc function corresponds to a number of fringes
reflecting the fundamental interference effect of diffraction.

The maxima and minima location of the intensity can be identify
by the first and 2™ derivatives of I(8):

EZI(D)Eain,ﬁ{ﬁ cosff—sm f3) 0
dp iR

i . . . .
From the 2™ derviative, we get the minima is corresponding to the
solution of

sin 3 =10
The maxima corresponds to the solutions of:

tan f§ = 3

Note that in this derivation, we have ignored near field effects

(Fresnel diffraction) as well as the vector nature of the electric
field.



Diffraction V
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Microscopy imaging can be consider as the diffraction from a circular aperture
with a lens for focusing — diffraction results in “broadening” of the focal point.



Fourier Optics |

Recall the interference of two plane waves

| (F,t) = 21 + 21 cos(k,.F —k,.F)

In the case where the waves incident symmetrically and looking at the intensity along the

aniS 0
k, = ksin &k +k cos &y

k, =ksin&& —kcos &y

r=yy

The intensity has a simple distribution depend on angle ©:

| (,t) = 21 (1+ cos(2k cos &y))

Note that when angle is zero degree (light wave counter propagating), the highest
frequency oscillation is observed at spatial frequency: 2k = 27:(%) . When the waves are

parallel, angle is 90 degree, the spatial frequency is zero (constant intensity light).



Fourier Optics |l

Consider two point source at the focal plane of a lens, the light rays
become collimated plane waves after the lens and interference is observed.




Fourier Optics Il

What happen when the two sources coincide? Only parallel plane waves
are generated.




Fourier Optics IV

What happen if the point sources are made further apart?




Resolution viewed from Fourier Optics

Light emission from any object in the specimen plane can be
Decomposed into its Fourier components. Which Fourier component
will pass the finite aperture of the objective lens? Low frequencies!




Resolution viewed from Fourier Optics Il

. NA = nsin(6)

What is the maximum frequency that can be pass? Consider the case
of a very large lens (numerical aperture, NA approach one). The

waves will approach counter propagating and the maximum frequency
IS:

2
k  =27(%
max ﬂ(z)

Note that maximum spatial frequency is a function of wavelength.
Shorter wavelength implies higher frequency (resolution) imaging.
A

At a given wavelength, we should expect a resolution of about

2



Resolution viewed from Fourier Optics Il

J_ H H Point Spread function

Jl(fmsiﬂﬁ)]_w.
kasing

More quantitative analysis show (@) =1 (D}[2
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J,(x)=0 at x=383 = rmin:@
NA



Resolution viewed from Fourier Optics VI

OTF (k) = F(PSE (1))




